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Abstract. Based on the variable Hilbert scale interpolation inequality, bounds

for the error of regularisation methods are derived under range inclusions. In
this context, new formulae for the modulus of continuity of the inverse of

bounded operators with non-closed range are given. Even if one can show the

equivalence of this approach to the version used previously in the literature, the
new formulae and corresponding conditions are simpler than the former ones.

Several examples from image processing and spectral enhancement illustrate

how the new error bounds can be applied.

1. Introduction. Let X and Y be infinite dimensional separable Hilbert spaces
with norms ‖ · ‖ and scalar products (·, ·). We study linear inverse problems which
take the form of ill-posed operator equations

(1) Af = g, f ∈ X, g ∈ Y,
characterised by an injective bounded linear forward operator A : X → Y for
which the range, denoted by range(A), is a non-closed subset of Y . Then equation
(1) is unstable in the sense that the inverse operator A−1 : range(A) ⊆ Y → X is
unbounded. If one replaces the exact right-hand side g of equation (1) by perturbed
data gδ, satisfying

(2) ‖g − gδ‖ ≤ δ
for some (small) noise level δ > 0, one may get arbitrarily large errors in the so-
lution or no solution at all. As a consequence of this ill-posedness phenomenon,
regularisation methods are required for the stable approximate solution of inverse
problems. Their basic idea consists in finding approximations to the exact solution
f in form of solutions fα = fα(gδ) to stable auxiliary problems neighbouring (1).
Those solutions are obtained by using the noisy data gδ. The degree of neighbour-
hood of the exploited auxiliary problems is controlled by a regularisation parameter
α > 0. In this context, small α express closeness to (1) in combination with a
low level of stability, whereas larger α ensure better stability, however combined
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with a low level of approximation. For the success of any regularisation method an
appropriate trade-off between stability and approximation has to be found when
choosing the regularisation parameter.

A successful way for doing regularisation for linear ill-posed problems in Hilbert
spaces, which guarantees convergence and convergence rates of constructed meth-
ods, requires some knowledge about the impact of smoothness on the regularised
solutions. Here smoothness is understood to mean both solution smoothness and
smoothing properties of the operator A. For expressing solution smoothness the
variable Hilbert scales suggested by Hegland in [13, 14] are a powerful tool and
the consequences formulated there have introduced a new facet of regularisation
theory. We are going to present a couple of new results on convergence rates de-
rived from the interpolation inequality in variable Hilbert scales. In particular, we
consider the chances of incorporating range inclusions in that context. Another goal
of this paper is to compare Hegland’s approach with an alternative approach devel-
oped and published by Mathé and Pereverzev (see [28, 29, 30]) and extended by
Hofmann and other co-workers (see, e.g., [10, 18, 19, 20]) also exploiting variable
Hilbert scales.

The paper is organised as follows: In the second section we review the definition
and some properties of index functions and variable Hilbert scales. The funda-
mental interpolation inequality is given together with an application to a general
regularisation method. We then show how variable Hilbert scales provide natural
source conditions. In the third section bounds for the modulus of continuity are
given in a variable Hilbert scale setting. An important part of this section compares
the new bounds on the modulus of continuity with some obtained earlier and shows
how the new results have a substantially simpler structure. The fourth section anal-
yses linear regularisation methods and parameter choices using the variable Hilbert
scale approach. In order to illustrate the abstract theory we conclude the paper in
Section 5 with several examples from image processing and spectral enhancement.

2. Interpolation inequalities and consequences. The main tool used here to
derive error bounds for regularised solutions is an extension of interpolation in-
equalities to variable Hilbert scales. For classical Hilbert scales {Xr}r∈R – with real
numbers as scale index r – interpolation inequalities are well-established. These
interpolation inequalities were initially applied to the treatment of linear ill-posed
problems (1) by Natterer in [34]. A detailed discussion can be found in the mono-
graph [9, §8.4]). For variable Hilbert scales, new interpolation inequalities have to
be formulated. A variable Hilbert scale as introduced in [13, 14] is a family of
Hilbert spaces {Xθ}θ∈I indexed by continuous functions θ : (0,∞) → (0,∞). The
index set I of the variable Hilbert scale is thus the set of all continuous positive
functions defined for positive real numbers. This set of index functions I includes
the positive constant functions and all power functions but not the zero function.
For index functions φ and ψ, the functions φ+ψ, φψ and φ/ψ are defined pointwise
and are again index functions.

The original Hilbert scales only allowed the derivation of convergence rates of
the form O(δκ) where δ is the norm of the data error. This is too limited, especially
for mildly ill-posed problems like the computation of the derivative of a smooth
function, and for very severely ill-posed problems arising when integral equations
with smooth kernels are solved if the data is not sufficiently smooth. In both cases
variable Hilbert scale theory overcomes the limitation and provides the framework
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for the derivation of convergence rates of the form O(θ(δ)) where the rate function
θ(t) – defined and positive for all 0 < t < ∞ and tending to zero as t → +0 – is
assumed to be continuous and monotonically increasing. Note that any monotoni-
cally increasing continuous function θ(t) defined on a finite interval (0, t0] satisfying
lim
t→+0

θ(t) = 0 can be extended to a rate function θ̄ such that θ̄(t) = θ(t) for t ∈ (0, t0].

Furthermore, the index functions corresponding to the classical Hilbert scales Xr

can be seen to be power functions θ(λ) = λr for real r. Rate functions are obtained
for this case if r > 0. We will in the following denote the index functions by lower
case Greek letters and rate functions by overlined lower case Greek letters.

Variable Hilbert scales as introduced in [13, 14] are generated by an injective
positive definite linear operator T . They are families {Xθ}θ∈I of Hilbert spaces Xθ

which themselves are defined as the completion of the domain D of the operator
θ(T ) with respect to the topology defined by the quadratic form

(3) ‖f‖2θ = (f, θ(T ) f).

In general, different operators T give rise to different variable Hilbert scales.
In this paper, in the context of ill-posed problems (1) we often assume that T is
unbounded but has a bounded inverse, i.e. the spectrum of T is contained in the
interval [‖T−1‖−1,∞) and has +∞ as an accumulation point. As the function 1/λ
is an index function and the set of index functions is closed under composition,
the inverse T−1 generates the same Hilbert scale as T . It is thus not necessary to
consider variable Hilbert scales generated by invertible T and bounded T−1 sepa-
rately. The more general case where both T and the inverse T−1 are unbounded is
only considered for the negative Laplacian T = −∆ and in particular T = −d2/dt2.
For the more general case where also A is unbounded we refer to the recent pa-
per [20]. To get a link with (1), a particular T is suggested with respect to the
forward operator A. A common choice is T = (A∗A)−1 for injective operators A
with a non-closed range. It follows that A∗A = θ(T ) if θ(λ) = 1/λ. For classes
of problems connected with deconvolution, however, T = −d2/dx2 on L2(R) is the
canonical choice as T is the generator of symmetric convolutions. An index function
θ such that A∗A = θ(T ) is then found using Fourier transforms. More generally, for
problems where the source conditions relate to smoothness, T = −∆ can be chosen.

The most important connection between the norms of different spaces Xθ is the
interpolation inequality for variable Hilbert scales. This inequality is stated in the
following lemma. A proof can essentially be found in [14] and is also given in an
extended version [16] of the current paper (which also reviews other variable Hilbert
scale properties).

Lemma 2.1 (Interpolation inequality). Let T be an unbounded injective self-adjoint
positive definite linear operator densely defined on the Hilbert space X with bounded
inverse T−1 : X → X. Moreover let φ, ψ, θ and Ψ be index functions such that Ψ
is concave and

(4) φ(λ) ≤ Ψ(ψ(λ)), for ‖T−1‖−1 ≤ λ <∞.
Then for any element 0 6= f ∈ Xθ ∩Xψθ one gets f ∈ Xφθ and

(5)
‖f‖2φθ
‖f‖2θ

≤ Ψ

(
‖f‖2ψθ
‖f‖2θ

)
.

The concavity of Ψ is the key property which enables us to use Jensen’s inequality.
We will see below that concavity only needs to hold for large arguments. We can
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focus on large arguments, if the spectrum of T under consideration contains only
sufficiently large values and has +∞ as an accumulation point. We need some
auxiliary result:

Lemma 2.2. If θ : [t0,∞) → (0,∞) is concave for some t0 > 0 then θ is mono-
tonically increasing. If moreover lim

t→∞
θ(t) =∞, then θ is strictly increasing.

Proof. Let 0 < t1 < t2 and let t > t2. Then t2 = (1 − λ)t1 + λt where λ =
(t2 − t1)/(t− t1). Using the concavity of θ, we have θ(t2) ≥ (1− λ)θ(t1) + λθ(t) ≥
(1 − λ)θ(t1). Taking the limit t → ∞, we have λ → 0 so that θ(t2) ≥ θ(t1). If
θ(t1) = θ(t2) then concavity yields θ(t2) ≥ θ(t). Using the monotonicity one has
θ(t) = θ(t2). Consequently θ(t)→ θ(t2) <∞ for t→∞. The strict increase follows
by contraposition.

We observe that for any index function θ which is concave on [λ0,∞) for some
λ0 > 0 the index function Ψ defined by

Ψ(λ) =

{
θ(λ), λ1 ≤ λ <∞,
λθ(λ1)/λ1, 0 < λ ≤ λ1,

is concave on (0,∞).
The interpolation inequality is the main tool to obtain error bounds for solvers of

linear ill-posed problems. However, by inspection it becomes clear that rate results
derived from Lemma 2.1 are only based on the behaviour of Ψ(λ) for large λ ≥ λ1.
Without loss of generality Ψ can be amended for 0 < λ ≤ λ1 by the linear function
Ψ(λ) = Ψ(λ1)λ/λ1 for 0 < λ < λ1.

Three typical choices for Ψ(λ) being concave at least for sufficiently large λ are
Ψ(λ) = λκ where κ ∈ (0, 1), Ψ(λ) = λ/ log(λ) and Ψ(λ) = log(λ). For all three
choices we have the limit condition

(6) lim
λ→∞

Ψ(λ)

λ
= 0

and one gets the following versions of interpolation inequalities from Lemma 2.1:

• For Ψ(λ) = λκ one gets

‖f‖φθ ≤ ‖f‖1−κθ ‖f‖κψθ ,
• for Ψ(λ) = λ/ log(λ) one gets

‖f‖φθ ≤
‖f‖ψθ√

2 log(‖f‖ψθ/‖f‖θ)
,

• and for Ψ(λ) = log(λ) one has

‖f‖φθ ≤ ‖f‖θ
√

2 log(‖f‖ψθ/‖f‖θ.

Asymptotically, i.e. for ‖f‖θ → 0, the interpolation inequality allows us to find
error bounds in the application to the error estimation for the solution of equation
(1). One aims to get bounds for the norm ‖f‖ in X using values of the image norm
‖Af‖ in Y and values of the norm ‖f‖ψθ which expresses the specific additional
smoothness of f . The terms in the interpolation inequality (5) are then

‖f‖φθ = ‖f‖ for f ∈ Xφθ and ‖f‖θ = ‖Af‖ for f ∈ Xθ.

The first condition leads to φ(λ)θ(λ) = 1 for all λ and the second condition gives
θ(T ) = A∗A and with θ(λ) := 1/λ the relations T = (A∗A)−1 and φ(λ) = λ. We
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are still free to choose the index functions ψ and do it in the form ψ(λ) := χ(λ)λ
with an appropriate index function χ.

For later use we add here some observations about concave functions which are
stated as a lemma:

Lemma 2.3. Let Ψ : (0,∞) → (0,∞) be a concave function. Then we have the
following properties:

(a) The function Ξ : (0,∞)→ (0,∞) defined by

(7) Ξ(λ) :=
Ψ(λ)

λ
, 0 < λ <∞

is monotonically decreasing.
(b) The function Φ : (0,∞)→ (0,∞) defined by

(8) Φ(µ) := µΨ

(
1

µ

)
, 0 < µ <∞

is concave and monotonically increasing.

Proof. (a) Let 0 < λ0 < λ1 < λ2. As Ψ is concave and positive one has

Ψ(λ1) ≥ λ1 − λ0

λ2 − λ0
Ψ(λ2) +

λ2 − λ1

λ2 − λ0
Ψ(λ0)

≥ λ1 − λ0

λ2 − λ0
Ψ(λ2).

As this holds for arbitrarily small λ0 > 0 one has

Ψ(λ1) ≥ λ1

λ2
Ψ(λ2)

and consequently Ξ(λ1) ≥ Ξ(λ2). This proves assertion (a) of the lemma.
(b) Let 0 < µ0 < µ1 < µ2 and λi = 1/µi. Then one has 0 < λ2 < λ1 < λ0 and

by the concavity of Ψ and some simple algebraic manipulations one gets

µ1 − µ0

µ2 − µ0
Φ(µ2) +

µ2 − µ1

µ2 − µ0
Φ(µ0) =

1
λ1
− 1

λ0

1
λ2
− 1

λ0

Ψ(λ2)

λ2
+

1
λ2
− 1

λ1

1
λ2
− 1

λ0

Ψ(λ0)

λ0

=
1

λ1

(
λ0 − λ1

λ0 − λ2
Ψ(λ2) +

λ1 − λ2

λ0 − λ2
Ψ(λ0)

)
≤ 1

λ1
Ψ(λ1) = Φ(µ1).

It follows that Φ is concave and hence by Lemma 2.2 also increasing. This completes
the proof of the lemma.

Remark 1. We note here that the transformation S : Ψ ∈ I 7→ Φ ∈ I according
to formula (8), applicable to every index function and preserving concavity, is an
involution, that is, S2 is the identity map on I, and hence S is bijective. If the
concave index function Ψ satisfies lim

λ→∞
Ψ(λ) =∞, then by Lemma 2.2 the function

is even strictly increasing and if, in addition, Ψ is a rate function, i.e., it satisfies the
additional limit condition lim

λ→+0
Ψ(λ) = 0, the inverse function Ψ−1 is a well-defined

and convex index function. If, on the other hand, the limit condition (6) holds,
then we have

lim
µ→+0

Φ(µ) = lim
µ→+0

µΨ(1/µ) = lim
λ→∞

Ψ(λ)/λ = 0
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and taking into account Lemma 2.3 (a) and (b) one sees that Φ = S(Ψ) is a concave
rate function. Vice versa we have that Ψ = S(Φ) satisfies (6) whenever Φ is a rate
function.

By inspection of the proof of Lemma 2.3 one can also see the following facts: If
Ψ(λ) is only concave for λ ∈ [λ0,∞), then Φ(µ) = [S(Ψ)](µ) is concave for µ ∈ (0, µ]
with µ0 = 1/λ0. The involution S preserves also the convexity of an index function
and if the concavity or convexity is strict, then the strictness carries over to the
transformed function.

The following corollaries provide direct applications of the interpolation inequal-
ity to obtain error bounds for abstract regularisation methods. The proofs are
essentially in [14], see also [16].

Corollary 2.4. Let A : X → Y be an injective bounded linear operator with non-
closed range mapping between the two Hilbert spaces X and Y . Furthermore let the
variable Hilbert scale {Xν}ν∈I be generated by T = (A∗A)−1. Moreover let χ and
Ψ be index functions and Ψ be concave such that

(9) Ψ (χ(λ)λ) ≥ λ for all λ ∈ [‖T−1‖−1,∞) .

If the solution f to (1) in addition satisfies the condition f ∈ Xχ and if fα ∈ Xχ is
such that f 6= fα then

(10) ‖f − fα‖ ≤ ε
√

Ψ(ζ2/ε2)

where ε = ‖Afα −Af‖ and ζ = ‖fα − f‖χ.

Results similar to those of Corollary 2.4 can be found for other choices of T ,
see for example Corollary 2.5 where T = −d2/dt2. The bound in the corollary
guarantees that any method which defines some family of fα which

• is stable in the sense that ‖fα‖χ is bounded uniformly in α and
• is consistent in the sense that the residuum Afα → Af for α→ 0

is also convergent in the sense that fα → f for α→ 0.

Corollary 2.5. Let Xν be the Hilbert scales generated by T = −d2/dt2 from L2(R).
Furthermore, let A : L2(R)→ L2(R) be a (convolution) operator satisfying

A∗A = θ(T )

for some bounded index function θ. Moreover, let φ, ψ and Ψ be index functions
and Ψ be concave such that

φ(λ) ≤ Ψ(ψ(λ)), φ(λ)θ(λ) = 1, for λ > 0.

If Af = g ∈ Xψ and if fα is such that Afα ∈ Xψ and

‖Afα − g‖ψ = ζ

‖Afα − g‖ = ε

then
‖f − fα‖ ≤ ε

√
Ψ(ζ2/ε2).

In comparison with Corollary 2.4 this corollary uses an operator T which is not
necessarily equal to (A∗A)−1 but more importantly, the source condition is here not
given as a property of the solution f but of the data g.

Note that the error estimate (10) of Corollary 2.4 requires the essential conditions
f ∈ Xχ and fα ∈ Xχ, i.e. the approximate solutions fα are constructed such that
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they obtain the same smoothness level with respect to T as the exact solution f . A
next step for drawing conclusions of Lemma 2.1 will be formulated in Corollary 2.6
by assuming that f belongs to the ball

(11) Bχ(R) := {h ∈ Xχ : ‖h‖χ ≤ R}
in Xχ with radius R = R1 and that the approximate solutions fα for all α > 0
under consideration belong to another such ball with radius R = R2. Moreover, we
consider for data gδ satisfying (2) the limit process δ → +0 in correspondence with
associated regularised solutions fα = fδα, where the regularisation parameter α > 0
is chosen either a priori as α = α(δ) or a posteriori as α = α(δ, gδ).

Corollary 2.6. Under the setting of Corollary 2.4 let the limit condition (6) be
satisfied and let f ∈ Bχ(R1), R1 > 0 and let Af = g. Let α = α(δ) be such that for
some δmax > 0 one has fδα(δ) ∈ Bχ(R2) and

(12) 0 < ‖Afδα(δ) − g‖ ≤ C̄ ξ̄(δ),

for all δ ∈ (0, δmax] and for some rate function ξ̄ and some constant C̄ > 0.
Then we have

(13) ‖f − fδα(δ)‖ ≤ C̄ξ̄(δ)

√√√√Ψ

([
R1 +R2

C̄ξ̄(δ)

]2
)
, 0 < δ ≤ δmax ,

where the upper bound in (13) is a rate function, i.e., it tends to zero as δ → 0.

Proof. As ‖Afδα(δ) − g‖ > 0 one has fδα(δ) 6= f and by Corollary 2.4 one has

‖fδα(δ) − f‖ ≤ ε
√

Ψ(ζ2/ε2) where ε = ‖Afδα(δ) − g‖ and ζ = ‖fδα(δ) − f‖χ. From the

conditions and the triangle inequality one obtains ‖fδα(δ) − f‖χ ≤ R1 +R2.

By Lemma 2.2 the function Ψ is monotonically increasing and consequently
‖fδα(δ) − f‖ ≤ ε

√
Ψ((R1 +R2)2/ε2). Substituting λ = (R1 + R2)2/ε2 gives

‖fδα(δ) − f‖ ≤ (R1 +R2)
√

Ψ(λ)/λ. By Lemma 2.3 the expression Ψ(λ)/λ is mono-

tonically decreasing in λ.
By assumption ε = ‖Afδα(δ) − g‖ ≤ C̄ξ̄(δ) and thus λ ≥ (R1 + R2)2/(C̄2ξ̄(δ)2).

Using the monotonicity of Ψ(λ)/λ leads to

‖fδα(δ) − f‖ ≤ (R1 +R2)

√√√√√√√Ψ

((
R1+R2

C ξ(δ)

)2
)

(
R1+R2

C ξ(δ)

)2 .

The claimed bound then follows directly. The upper bound in (13) is a function of
δ which decreases to zero as ξ(δ) decreases to zero. This is a direct consequence of
the limit condition (6) which Ψ satisfies.

Remark 2. We can extend the situation of Corollary 2.6 to aposteriori choices
αdis = αdis(δ, g

δ) for the regularisation parameter realised by a discrepancy
principle

(14) ‖Afδαdis
− gδ‖ = Cdisδ

with some prescribed Cdis > 0. Then by using the triangle inequality we obtain
with (2) as noise model

‖Afδαdis
− g‖ ≤ ‖Afδαdis

− gδ‖+ ‖gδ − g‖ ≤ (Cdis + 1) δ = C̄ δ .
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Then for such α = αdis under (6) the regularisation method converges strongly in
X with the convergence rate

(15) ‖f − fδα‖ = O
(
δ
√

Ψ(K̄/δ2)

)
as δ → 0

for some constant K̄ > 0. Note that, in addition to the assumption f ∈ Bχ(R1) on
the solution smoothness, for that result the strong condition fδα(δ,gδ) ∈ Bχ(R2), for

all δ ∈ (0, δmax] and all associated gδ satisfying (2), is required.

The convergence rate in (15) depends only on the asymptotic behaviour of Ψ(λ)
as λ → ∞. Thus the alteration of Ψ(λ) for small λ has no influence on that rate.
For the class of functions Ψ(λ) = λκ with 0 < κ < 1 rate functions proportional to
δ1−κ occur in (15). All those error rates are lower than the rate δ typically occurring
for well-posed problems. It should be mentioned that Ψ(λ) = λ fails to satisfy the
condition (6) and in Corollary 2.4 does not yield a convergence rate.

To get a feeling for the role of the solution smoothness f ∈ Xχ we can study con-
sequences of the inequality (9) as a hypothesis of Corollary 2.4 taking into account
Lemma 2.2. One consequence of (9) is the limit condition limλ→∞Ψ(λ) =∞ for the
function Ψ which is, because of its concavity, strictly increasing and invertible with

convex Ψ−1(λ) also tending to infinity as λ→∞. Then (9) implies χ(λ) ≥ Ψ−1(λ)
λ

for large λ. Under that condition (6) is equivalent to limλ→∞Ψ−1(λ)/λ = ∞.
Hence, the index function χ(λ) tends to infinity for λ→∞ provided that (6) holds
true.

For a non-closed range of A regularised solutions can only converge with a con-
vergence rate that is expressed by a rate function θ̄ if some source condition is
fulfilled, see [38]. General source conditions are in the standard case of the form

(16) f = ψ̄(A∗A)v

with some source element v ∈ X and with some rate function ψ̄. The standard case
with monomials ψ̄(t) = tκ, κ > 0, was comprehensively discussed in the monograph
by Engl, Hanke and Neubauer [9], the logarithmic case ψ̄(t) = (log(1/t))−p with
p > 0 was motivated and worked out in detail by Hohage, see [22, 23]. However,
there exist numerous examples of inverse problems like parameter identification in
PDEs or problems analysed in frequency space, see also Example 4 below, where
ψ̄ cannot be taken from the two classes mentioned above. Therefore the concept
of general source conditions using index functions ψ̄ other than monomials and
logarithmic functions was early applied to regularisation theory by Tautenhahn
in [40, 41]. Further progress including error estimates and convergence rates was,
for example, obtained by Nair and coauthors, see [31, 32].

When setting φ(λ) := λ, θ(λ) := 1/λ and ψ(λ) := Ψ−1(λ) in the interpolation
inequality (5) then the corresponding regularity condition f ∈ Xψθ is equivalent to
a source condition (16) which expresses the specific smoothness of the solution f
with respect to the forward operator A of equation (1).

Proposition 2.7. Let Ψ(λ), for 0 < λ < ∞, be a concave and strictly increasing
index function satisfying the limit conditions lim

λ→+0
Ψ(λ) = 0, lim

λ→∞
Ψ(λ) = ∞

and (6). Moreover let T = (A∗A)−1 and set φ(λ) := λ, θ(λ) := 1/λ as well as
ψ(λ) := Ψ−1(λ) for 0 < λ <∞. Then we have f ∈ Xψθ if and only if f satisfies a
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source condition (16) with the function

(17) ψ̄(t) =
1√

tΨ−1(1/t)
, 0 < t <∞,

which is then a rate function.

Proof. Under the stated assumptions the function ψ̄ is a well-defined rate func-

tion. Namely, we can write 1√
tΨ−1(1/t)

=
√

Ψ(u)
u when using the substitution

u := Ψ−1(1/t). The variable u > 0 is strictly decreasing with respect to t > 0
such that u→∞ corresponds with t→ +0 and vice versa t→∞ corresponds with
u→ +0, because Ψ−1 is also strictly increasing and we have lim

λ→∞
Ψ−1(λ) =∞ and

lim
λ→+0

Ψ−1(λ) = 0 for the functions Ψ under consideration. Now by (6) we have

lim
u→∞

Ψ(u)
u = 0 and with Lemma 2.3 (a) the quotient Ψ(u)

u is monotonically decreas-

ing in u > 0. This, however, implies that ψ̄(t) is monotonically increasing for t > 0
with limit condition lim

t→+0
ψ̄(t) = 0. Hence, ψ̄ is a rate function.

Moreover, we have

f ∈ Xψθ ⇐⇒ (f,Ψ−1(T )T−1f) <∞
and

f = ψ̄(A∗A)v, for v ∈ X ⇐⇒ ([ψ̄(A∗A)]−1f, [ψ̄(A∗A)]−1f) <∞ .

One has equivalence if and only if

[Ψ−1((A∗A)−1)](A∗A) = [ψ̄(A∗A)]−2

and the claim follows. This proves the proposition.

3. Modulus of continuity of A−1. The modulus of continuity of A−1 restricted
to the set AM with M ⊆ X is

ω(M, δ) = sup{‖x‖ : x ∈M, ‖Ax‖ ≤ δ}.
The impact of the modulus of continuity on error bounds in regularisation has
recently been discussed in the paper [19, §4]. Here we will prove a bound for the
modulus of continuity where M is a ball in a variable Hilbert scale. It turns out that
in many cases the bounds using more traditional source sets (see for example [27,
29, 19, 33]) are equivalent to the ones considered here. This is shown explicitly
in the following for the bounds from [29, 19]. We found that the conditions (and
proofs) simplify in the variable Hilbert scale framework compared to the traditional
source set framework.

From [19, Lemma 4.2] one can find a minimax-expression for the modulus of
continuity in the case of centrally symmetric and convex source sets for M of the
form

(18) M = G[B(R)] := {x ∈ X : x = Gv, v ∈ X, ‖v‖ ≤ R} ,
corresponding to condition (38). To obtain an explicit upper bound we consider the
special case G = ψ̄(A∗A) and

M = ψ̄(A∗A)[B(R)] := {x ∈ X : x = ψ̄(A∗A)v, v ∈ X, ‖v‖ ≤ R}
associated with the source condition (16). Note that the rate function ψ̄(t) is only
of interest here for arguments 0 < t ≤ ‖A‖2, but without loss of generality (cf. [20,

Inverse Problems and Imaging Volume 5, No. 3 (2011), 619–643



628 Markus Hegland and Bernd Hofmann

Theorem 1 (b)]) we can extend ψ̄ to be a monotonically increasing index function
defined on (0,∞). Then by using the strictly increasing auxiliary function

(19) Θ(t) :=
√
t ψ̄(t) , 0 < t <∞

satisfying the limits conditions lim
t→+0

Θ(t) = 0 and lim
t→∞

Θ(t) = ∞ one obtains for

M = ψ̄(A∗A)[B(R)]

(20) ω(M, δ) ≤ R ψ̄

(
Θ−1

(
δ

R

))
, δ > 0

provided that

(21) ψ̄2((Θ2)−1(t)) is concave for 0 < t <∞ .

This result can be derived from Corollary 3.7 and Theorem 2.1(c) in [19] (see also
Theorem 1 in the earlier paper [29]). A similar assertion was already mentioned in
a rudimentary form in a paper by Ivanov and Korolyuk in 1969 [24].

The following proposition yields an upper bound for the modulus of continu-
ity based on a variable Hilbert scale interpolation inequality using Lemma 2.1 or
Corollary 2.4. For the proof we use Lemma 2.3 (a).

Proposition 3.1. Let Ψ(λ), for 0 < λ < ∞, be a concave and strictly increasing
index function satisfying the limit conditions lim

λ→+0
Ψ(λ) = 0, lim

λ→∞
Ψ(λ) = ∞ and

(6), for which an index function χ exists that satisfies

χ(λ) ≥ Ψ−1(λ)/λ, 0 < λ <∞.
Furthermore let Xχ be an element of a Hilbert scale generated by T = (A∗A)−1

where A is injective. Then

(22) ω(M, δ) ≤ δ

√
Ψ

(
R2

δ2

)
, δ > 0 ,

for M = Bχ(R).

Proof. Under the assumptions stated on Ψ and χ Corollary 2.4 applies. We can

conclude (from the proof of Corollary 2.4) that ‖h‖ ≤ ‖Ah‖
√

Ψ
(
‖h‖2χ
‖Ah‖2

)
for all

0 6= h ∈ Xχ. As Ψ is monotonically increasing one then gets ‖h‖

≤ ‖Ah‖
√

Ψ
(

R2

‖Ah‖2

)
. Now by Lemma 2.3 (a) the function Ξ(ζ) = Ψ(ζ)/ζ is mono-

tonically increasing and so Ξ(ζ1) ≥ Ξ(ζ2) for 0 < ζ1 ≤ ζ2 < ∞. This gives with

ζ1 := R2

δ2 and ζ2 := R2

‖Ah‖2 the estimate ‖h‖ ≤ δ
√

Ψ
(
R2

δ2

)
for all h ∈ Bχ(R) satisfy-

ing the additional condition ‖Ah‖ ≤ δ. Thus the proposition is proven.

We note that for centrally symmetric and convex sets M, f ∈M, and regularised
solutions fδαdis

∈M obtained from the discrepancy principle of form (14) mentioned
in Remark 2 we easily derive along the lines of [19, Lemma 2.2] that

(23) ‖f − fδαdis
‖ ≤ ω(2M, (Cdis + 1)δ)

with 2M := {u ∈ X : u = 2v, v ∈M}. In the case M = Bχ(R) with 2M = Bχ(2R)
the estimate (23) yields with (22) a convergence rate of the form (15) with constant
K̄ = 4R2/(Cdis + 1)2. With more generality such rates were verified above directly
from Corollary 2.4.
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Under weak additional assumptions (see [19, Corollary 3.7]) there is also a con-
stant C > 0 such that

ω(Bχ(R), δ) ≥ C δ

√
Ψ

(
R2

δ2

)
, δ > 0 .

Then a convergence rate of the form (15) is order optimal independent of the con-

stant K̄ > 0 because of
√

Ψ
(
C R2

δ2

)
≤ max{C, 1}

√
Ψ
(
R2

δ2

)
for all C > 0. On the

other hand, Corollary 2.6 yields an error estimate of best order just for ξ(δ) ∼ δ,
hence the discrepancy principle is order optimal in that sense.

Evidently, under the assumptions of Proposition 2.7 with the interdependencies

(24) χ(λ) :=
Ψ−1(λ)

λ
=

1

ψ̄(1/λ)2
, 0 < λ <∞

one has
ψ̄(A∗A)[B(R)] = Bχ(R)

where Bχ(R) denotes the ball (11) of radius R in Xχ, an element of the Hilbert scale
generated by T = (A∗A)−1 expressed through the index function χ. We emphasise
that the upper bound in (22) for the modulus of continuity from Proposition 3.1
needing only one function Ψ has a much simpler structure than the nested upper
bound in (20) composing the functions ψ̄ and Θ−1. Also the required concavity of
Ψ for obtaining (22) looks much simpler than the needed concavity of the composite
function

ψ̄2((Θ2)−1(t)) ≡ ψ̄2(Θ−1(
√
t)), 0 < t <∞,

for obtaining (20).
Owing to the correspondence (17) between the concave index function Ψ and the

rate function ψ̄ it is of some interest to compare the quality of the estimates (20)
and (22) as well as the strength of conditions which have to imposed in order to
ensure those bounds for ω.

Proposition 3.2. Let Ψ(λ), for 0 < λ < ∞, be a concave and strictly increasing
index function satisfying the limit conditions lim

λ→+0
Ψ(λ) = 0, lim

λ→∞
Ψ(λ) = ∞ and

(6). Then for the rate function ψ̄(t) := 1/
√
tΨ−1(1/t) (cf. (17)) and by setting

Θ(t) :=
√
tψ̄(t), 0 < t <∞, we have the following assertions: The error bounds in

(22) and in (20) and the corresponding concavity conditions required for obtaining
those bounds coincide, i.e., we have

(25) δ

√
Ψ

(
R2

δ2

)
= R ψ̄

(
Θ−1

(
δ

R

))
, R > 0, δ > 0 .

Moreover, the function ψ̄2((Θ2)−1(t)) is concave for all 0 < t <∞.
Conversely, any rate function ψ̄(t), 0 < t < ∞, determines by equation (17) in

a unique manner a strictly increasing index function Ψ(λ), 0 < λ < ∞, satisfying
the limit conditions lim

λ→+0
Ψ(λ) = 0, lim

λ→∞
Ψ(λ) = ∞ and (6) which is concave for

all 0 < λ < ∞ if ψ̄2((Θ2)−1(t)) is concave for all 0 < t < ∞ which again implies
the coincidence (25) of the error bounds.

Proof. First we find from Proposition 2.7 that ψ̄(t), t > 0, is a rate function if
Ψ(λ), 0 < λ < ∞ is a concave and strictly increasing index function satisfying the
limit conditions lim

λ→+0
Ψ(λ) = 0, lim

λ→∞
Ψ(λ) = ∞ and (6). Then from the right
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equation in (24) (cf. (17)) we have Ψ−1(λ) = λ/ψ̄2(1/λ). By using the bijective

substitution u = 1/λ in (0,∞) this yields Ψ−1(1/u) = 1
Θ2(u) and 1

u = Ψ
(

1
Θ2(u)

)
for 0 < u <∞. Multiplying the last equation by the factor u ψ̄2(u) we derive

ψ̄2(u) = u ψ̄2(u)Ψ

(
1

Θ2(u)

)
= Θ2(u)Ψ

(
1

Θ2(u)

)
and ψ̄(u) = Θ(u)

√
Ψ
(

1
Θ2(u)

)
. By exploiting the bijection t = Θ(u) of (0,∞) into

itself this provides us with the equation ψ̄
(
Θ−1(t)

)
= t
√

Ψ
(

1
t2

)
which implies the

required identity (25) by inserting t := δ/R and multiplying the arising equation
by R.

In a second step we note that by using the monotonically increasing bijection
s = Θ2(u) between s ∈ (0,∞) and u ∈ (0,∞) and once more by exploiting the right
equation in (24) we can write as follows for all s > 0:

ψ̄2((Θ2)−1(s)) = ψ̄2(u) =
Θ2(u)

u
= Θ2(u) Ψ

(
1

Θ2(u)

)
= sΨ

(
1

s

)
= [S(Ψ)](s).

Hence, by Lemma 2.3 (b) we immediately see that as required ψ̄2((Θ2)−1(s)), s > 0,
is concave if Ψ(λ), λ > 0, is concave.

Since the involution S (cf. Remark 1) preserves concavity, the reverse assertion
formulated in Proposition 3.2 becomes immediately clear, since (17) represents a
one-to-one correspondence between index functions ψ̄ and strictly increasing func-
tions Ψ with the limit conditions under consideration.

We now investigate the concavity condition for the function ψ̄2((Θ2)−1(s)) in
more detail. For this a characterisation of the concavity of index functions is given
in terms of the monotonicity of certain divided differences.

Lemma 3.3. Let ψ be an index function. Then the three following statements are
equivalent:

1. ψ is concave
2. (ψ(s0 + s)− ψ(s0))/s is a decreasing index function for all s0 > 0
3. (ψ(s0) − ψ(s0 − s))/s is an increasing continuous function (0, s0) → R+ for

all s0 > 0.

Proof. If ψ is a concave index function then by Lemma 2.2 ψ is increasing and so
both (ψ(s0 +s)−ψ(s0))/s and (ψ(s0)−ψ(s0−s)/s are positive continuous functions
for s > 0 and s ∈ (0, s0), respectively. Furthermore by definition

(t2 − t0)ψ(t1) ≥ (t2 − t1)ψ(t0) + (t1 − t0)ψ(t2)

and by simple algebraic manipulations and the right choice of t0 < t1 < t2 one gets
the second and third statement from the first.

Conversely, if (ψ(s0 + s)− ψ(s0))/s is a decreasing index function for all s0 > 0
one has for all t0 < t1 < t2

ψ(t1)− ψ(t0)

t1 − t0
≥ ψ(t2)− ψ(t0)

t2 − t0
and thus ψ is concave. A similar argument shows that ψ is concave if the third
statement holds.
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A direct consequence of this lemma is that for concave rate functions ψ̄ one has

ψ̄(s0)− ψ̄(s0 − s)
s

≤ ψ̄(s0)

s0

as lims→0 ψ̄(s) = 0. Another consequence is

Proposition 3.4. If ψ(t) is a concave rate function then so is ψ(
√
t)2.

Proof. By lemma 3.3 we have to show that for all t0 > 0 the function (ψ(
√
t+ t0)2−

ψ(t0)2)/t is a decreasing index function. As the mapping s→ (s+s0)2 is monotone
it is sufficient to show that

ω(s) =
ψ(s+ s0)2 − ψ(s0)2

(s+ s0)2 − s2
0

is monotonically decreasing.
As ψ is assumed to be concave, Lemma 3.3 implies that

σ(s) =
ψ(s+ s0)− ψ(s0)

s

is monotonically decreasing. Furthermore

ω(s) = σ(s)

(
ψ(s+ s0) + ψ(s0)

s+ 2s0

)
= σ(s)

sσ(s) + 2ψ(s0)

s+ 2s0
.

Now let s1 < s2. As σ(s) is monotonically decreasing one has

ω(s1) ≥ σ(s2)
s1σ(s2) + 2ψ(s0)

s1 + 2s0
= σ(s2)2 s1 + 2ψ(s0)/σ(s2)

s1 + 2s0
.

The right-hand side is a decreasing function of s1 if 2s0 ≤ 2ψ(s0)/σ(s2), i.e., σ(s2) ≤
ψ(s0)/s0. This is a consequence of Lemma 3.3 as stated in the remark after the
lemma. Replacing s1 by s2 thus gives a lower bound for ω(s1) and thus

ω(s1) ≥ σ(s2)2 s2 + 2ψ(s0)/σ(s2)

s2 + 2s0
= ω(s2).

It follows that ω is monotonically decreasing.

A consequence of this lemma is that for the concavity of the function
ψ̄2((Θ2)−1(s)) = ψ̄2(Θ−1(

√
s)) it is thus sufficient to show that ψ̄ ◦ Θ−1 is con-

cave.
Finally we conjecture that a similar result to the proposition above also holds

more generally, i.e., that a sufficient condition for concavity of g ◦ ψ ◦ g−1 is the
concavity of ψ where g belongs to a class of suitably chosen functions.

4. Linear regularisation approaches. Our goal in this section is to draw con-
clusions from Corollary 2.4 for linear regularisation methods. Taking into account
the setting of Corollary 2.4 we assume throughout this section that the index func-
tion Ψ(λ) is concave and strictly increasing for all 0 < λ < ∞ satisfying the limit
conditions lim

λ→+0
Ψ(λ) = 0, lim

λ→∞
Ψ(λ) = ∞, and (6). Moreover, we have the in-

terdependencies (24) between Ψ and the index functions χ and ψ̄. Then χ is an
increasing index function with lim

λ→∞
χ(λ) =∞ and ψ̄ is an increasing index function

with lim
t→+0

ψ̄(t) = 0, hence a rate function. As outlined in Section 3 under these

assumptions we have ψ̄(A∗A)[B(R)] = Bχ(R) and the best case for regularised so-
lutions fδα approximating the exact solution f ∈ Xχ based on data gδ satisfying (2)
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by using an a priori choice α = α(δ) or a posteriori choice α = α(δ, gδ) is to achieve
the order optimal convergence rate (15). It is a specific consequence of interpolation
theory and can be seen easily by inspection of Corollary 2.4 that a successful use
requires the focus on regularisation methods which yield regularised solutions of ap-
propriate smoothness. Precisely, there must be a ball Bχ(R) to which the elements
fδα belong for all α > 0 attributed to sufficiently small δ > 0 and gδ satisfying (2).

4.1. General linear regularisation schemata. In a first approach we are going
to consider linear regularisation schemes as described in many textbooks on linear
regularisation theory (see, e.g., [9, Chap. 4], [11, Chap. 2] and [2, 3, 25, 26, 36]).
We consider approximate solutions

(26) fδα := hα(A∗A)A∗gδ.

to f based on a family of piecewise continuous real functions hα(t), 0 < t ≤ ‖A‖2,
to which we assign bias functions

rα(t) := t hα(t)− 1, 0 < t ≤ ‖A‖2 .

These functions depend on a regularisation parameter α ∈ (0, αmax], where αmax

may be a finite real number or ∞. Small α > 0 characterise good approximation of
the original problem (1), whereas larger values α are connected with more stability.
Hence, an appropriate trade-off between the two conflicting goals approximation
and stability can be controlled by the choice of α. We say that such a function hα
describes a linear regularisation method if the properties

(27) lim
α→+0

rα(t) = 0, 0 < t ≤ ‖A‖2,

and

(28) sup
0<α≤αmax

sup
0<t≤‖A‖2

t |hα(t) | ≤ C1

with a constant C1 > 0 hold. Because of (28) we have another constant C2 > 0
such that

sup
0<α≤αmax

sup
0<t≤‖A‖2

| rα(t) | ≤ C2

and hence for all 0 < α ≤ αmax the estimate

‖Afδα − gδ‖ = ‖(Ahα(A∗A)A∗ − I)gδ‖ ≤

[
sup

0<t≤‖A‖2
| rα(t) |

]
‖gδ‖ ≤ C2 ‖gδ‖.

This implies the limit condition lim
α→+0

‖Afδα − gδ‖ = 0 for all data gδ ∈ Y . As a

consequence we have that there is always a parameter choice α = α(δ, gδ), 0 < δ ≤
δmax, such that

‖Afδα(δ,gδ) − g
δ‖ ≤ Cdis δ (0 < δ ≤ δmax)

for some prescribed constant Cdis > 0. If the mapping α 7→ ‖Afδα − gδ‖ is even
continuous, then the discrepancy principle can be realised by a parameter choice
αdis = αdis(δ, g

δ) satisfying the equation (14).
Here we call a rate function ϕ̄ a qualification of the regularisation method gen-

erated by hα if there is a constant Cquali > 0 such that

(29) sup
0<t≤‖A‖2

|rα(t)|ϕ̄(t) ≤ Cquali ϕ̄(α), 0 < α ≤ αmax .
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Now we are going to study under what conditions the inequality (12) in Corollary 2.6
can be fulfilled here with ξ̄(δ) = δ. First we obtain

(30) ‖Afδα− g‖ = ‖Arα(A∗A)f +Ahα(A∗A)A∗(gδ−Af)‖ ≤ ‖Arα(A∗A)f‖+C1δ.

In order to apply that corollary for obtaining a convergence rate (15) we assume
f ∈ Bχ(R1) = ψ̄(A∗A)[B(R1)] taking into account the cross-connection (24). So

let f = ψ̄(A∗A)v, ‖v‖ ≤ R1. Provided that Θ(t) :=
√
tψ̄(t) is a qualification of the

method with constant Cquali > 0 this gives with (30)

(31) ‖Afδα − g‖ ≤

[
sup

0<t≤‖A‖2
rα(t)Θ(t)

]
R1 + C1δ ≤ CqualiR1 Θ(α) + C1δ

and hence an estimate of type (12) is fulfilled with ξ̄(δ) = δ when an a priori
parameter choice α = Θ−1(δ) is used.

Next we will check whether fδα ∈ Bχ(R2) for some 0 < R2 <∞. We have

fδα = hα(A∗A)A∗(gδ −Af) + hα(A∗A)A∗Af

and after some reformulation

fδα = ψ̄(A∗A)
[
hα(A∗A)(ψ(A∗A))−1(A∗A)1/2g̃ + hα(A∗A)A∗Av

]
with ‖g̃‖ ≤ δ, since the different functions of A∗A are commutable. Now let the
interplay of the regularisation method expressed by hα(t) and the parameter choice
α = α(δ, gδ) be such that there is a constant Cpara > 0 with

(32) sup
0<t≤‖A‖2

√
t |hα(δ,gδ)(t)| δ

ψ̄(t)
≤ Cpara, 0 < δ ≤ δmax .

The upper bound Cpara in (32) must hold for all data gδ ∈ Y associated with the
noise level δ > 0 and satisfying (2), where the case of an a priori parameter choice
α = α(δ) should be included as a special case. Under (32) we have with (28)

‖hα(δ,gδ)(A
∗A)(ψ(A∗A))−1(A∗A)1/2g̃+hα(δ,gδ)(A

∗A)A∗Av‖ ≤ R2 := Cpara+C1R1,

in other terms fδα(δ,gδ) ∈ ψ̄(A∗A)[B(R2)] = Bχ(R2).

If there is a function Γ(α) satisfying for sufficiently small α > 0 the inequality

(33)

[
sup

0<t≤‖A‖2

√
t|hα(t)|
ψ̄(t)

]
≤ Γ(α)

such that

(34) δ Γ(α(δ, gδ)) ≤ Cpara, 0 < δ ≤ δmax ,

this represents a sufficient condition for (32). In particular, if moreover the a priori
parameter choice α(δ, gδ) := Θ−1(δ) satisfies (34) we have an estimate of type (12)
with ξ̄(δ) = δ for that a priori parameter choice whenever Θ is a qualification of the
regularisation method under consideration.

Hence the considerations above gave a sketch of the proof for the following propo-
sition as a consequence of Corollary 2.6:

Proposition 4.1. Under the standing assumptions of this section let f ∈ Xχ =
range(ψ̄(A∗A)) and consider regularised solutions (26) with a generator function hα
that determines the regularisation method and satisfies (27) – (28) as well as (33)
with some function Γ such that Θ(t) :=

√
tψ̄(t) satisfies (34) with some constant

Cpara > 0 and is a qualification of the method (cf. (29)). Then for the a priori
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regularisation parameter choice α = α(δ) := Θ−1(δ) → +0 as δ → +0 we have the
convergence rate

(35) ‖f − fδα‖ = O
(
δ
√

Ψ(K̄/δ2)

)
as δ → +0

with some constant K̄ > 0.

Note that in Proposition 4.1 the rate (35) also holds for any other parameter
choice α = α(δ, gδ) that fulfils the inequalities (34) and

(36) ‖Afδα(δ,gδ) − g‖ ≤ C̄ δ, 0 < δ ≤ δmax ,

with some constant Ĉ > 0.

Example 1. The most prominent example of a linear regularisation method (26)
is the Tikhonov regularisation with the generator function hα(t) = 1

t+α and with

the bias function rα(t) = α
t+α , where the requirements (27) and (28) are satisfied

for the constants C1 = C2 = 1. It is well known that all concave rate functions
ϕ̄ are qualifications of the method satisfying (29) with the constant Cquali = 1.
From that class we consider the monomials ϕ̄(t) = tν for exponents 0 < ν ≤ 1.
Then Θ(t) =

√
tψ̄(t) is a qualification with the same constant for the Tikhonov

regularisation in case of a rate function ψ̄(t) = tµ with 0 < µ ≤ 1/2. Taking
into account (24) this rate function is associated with χ(λ) = λ2µ and the strictly

concave function Ψ(λ) = λ
1

2µ+1 . By the estimate (31) we have then (36) with
C̄ = R1 + 1 for f = (A∗A)µv, ‖v‖ ≤ R1 and for the a priori parameter choice

(37) α = Θ−1(δ) = δ
2

2µ+1 .

To derive a function Γ such that (33) is valid, we exploit the inequality

tκ

t+ α
≤ (1− κ)1−κκκ ακ−1 ,

which holds for all t > 0, α > 0 and 0 < κ < 1. In the limit case κ = 0 we also have
the inequality 1/(t+α) ≤ 1/α. Thus there is a constant ĉ > 0 depending on κ ∈ [0, 1)

such that tκ

t+α ≤
ĉ

α1−κ . By setting κ := 1/2−µ we obtain for ψ̄(t) = tµ, 0 < µ ≤ 1/2

the inequality (33) with the function

Γ(α) =
ĉ

αµ+ 1
2

.

Then one easily verifies that δ Γ(Θ−1(δ)) ≤ ĉδ(
δ

2
2µ+1

)µ+ 1
2

= ĉ and that (34) is fulfilled

with Cpara = ĉ. Hence Proposition 4.1 applies and we obtain for the parameter
choice (37) and all 0 < µ ≤ 1/2 the optimal convergence rate

‖f − fδα‖ = O
(
δ

2µ
2µ+1

)
as δ → +0 .

The best possible rate obtained in that way is ‖f − fδα‖ = O
(√

δ
)

for µ = 1/2.

For µ > 1/2 the function Ψ remains strictly concave, but a finite function Γ(α) in

(33) fails to exist, since we have sup
0<t≤‖A‖2

√
t

ψ̄(t)(t+α)
= +∞. The limitation of Propo-

sition 4.1 to lower Hölder rates than the saturation of Tikhonov’s method admits
seems to be a consequence of the fact that our approach based on Corollary 2.6
and the construction (26) do not interact good enough in case of higher smoothness
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of f . In order to overcome that effect, we will consider another approach in the
following subsection.

4.2. Regularisation with unbounded operators and range inclusions. In a
second approach we suppose a non-standard source condition

(38) f = Gw

with source element w ∈ X and with an injective bounded self-adjoint positive defi-
nite linear operator G : X → X possessing a non-closed range. Under this condition
which characterises the available a priori knowledge on the solution smoothness, we
exploit a variant of the Tikhonov regularisation with regularised solutions

(39) fδα := G(GA∗AG+ αI)−1GA∗gδ .

Since the unbounded linear operator with B = G−1 : range(G) ⊆ X → X is
frequently a differential operator, this approach is sometimes called regularisation
with differential operators, see also Hanke [12]. Precisely, by construction the
element fδα ∈ range(G) is well-defined for all α > 0 as the minimiser of the extremal
problem

Tα(f̃) := ‖Af̃ − gδ‖2 + α‖Bf̃‖2 → min, subject to f̃ ∈ range(G),

and then the penalty term in Tα contains derivatives of the function f̃ .
To apply Corollary 2.6 under (24) we assume f ∈ G[B(R1)], with G[B(R)] from

(18), and a range inclusion

(40) range(G) ⊆ Xχ = range(ψ̄(A∗A)) ,

which is equivalent to

(41) ‖Gw‖ ≤ C ‖ψ̄(A∗A)w‖, for all w ∈ X,

with some C > 0 and links the operators A and G. Then from [18, Lemma 6.2]
we obtain that f ∈ G[B(R1)] implies f ∈ Bχ(CR1) = ψ̄(A∗A)[B(CR1)]. For more
details on range inclusions we refer to [6, 21].

Along the lines of the paper [7] by Cheng and Yamamoto we consider an a
priori parameter choice α = α(δ) as

(42) c δ2 ≤ α(δ) ≤ c δ2, 0 < δ ≤ δmax ,

with constants 0 < c ≤ c < ∞, for which we obtain from Tα(fδα) ≤ Tα(f) the
inequalities

‖Afδα(δ) − g
δ‖2 + α(δ)‖G−1fδα(δ)‖

2 ≤ ‖Af − gδ‖2 + α(δ)‖G−1f‖2 ≤ δ2 + c δ2R2
1 .

Now we have

‖Afδα(δ) − g‖ ≤ C̄ δ, with C̄ =
√

1 + cR2
1 + 1

satisfying condition (12) with ξ̄(δ) = δ and

‖G−1fδα(δ)‖ ≤

√
δ2

α(δ)
+ ‖G−1f‖2 ≤

√
1

c
+R2

1 =: R2 .

This yields fδα(δ) ∈ G[B(R2)], thus fδα(δ) ∈ Bχ(CR2) = ψ̄(A∗A)[B(CR2)] and con-

sequently an estimate of type (13) with ξ̄(δ) = δ and CR1, CR2 instead of R1, R2.
With the above considerations we have shown the convergence rate result of the
following proposition again as a consequence of Corollary 2.6:
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Proposition 4.2. Under the standing assumptions of this section let f satisfy (38),
where the link condition (40) is valid. Then for the a priori regularisation parameter
choice (42) we have the convergence rate (35) with some constant K̄ > 0.

Due to [19, Corollary 4.5] for all concave Ψ fulfilling the standing assumptions
of this section the rate (35) is even order optimal in the sense of

O
(
δ
√

Ψ(K̄/δ2)

)
= O (ω(G[B(R1)], δ)) as δ → +0 .

Note that the requirement (40) gets stronger for higher rates in (35). In many
applications (see as an illustration the examples in [21]) instead of (40) one can
only verify range inclusions of the form

(43) range(%̄(G)) ⊆ range(A∗) = range((A∗A)1/2)

with some rate function %̄. Under operator monotonicity of the function [ρ̄−1(
√
t)]2

(43) implies (40) with ψ̄(t) = ρ̄−1(
√
t) and χ(λ) =

[
ρ̄−1

(
1/
√
λ
)]−2

.

In order to verify in general for which index functions χ a range inclusion (40)
with range(G) ⊆ Xχ is fulfilled, one can use the spectral theorem for unbounded
self-adjoint operators T (see [42, Chapter VII.3] and also [35, Chapter VIII]). In
the Hilbert space X, the injective, densely defined, self-adjoint, positive definite,
and unbounded linear operator T is unitarily invariant to a multiplication operator
M expressed by a real multiplier function m. This means that there are a measure
space (Σ,A, µ) with finite measure µ, a unitary operator U : X → L2(Σ,A, µ) and
a real measurable function m(t), t ∈ Σ, such that [Mh](t) := m(t)h(t) a.e., where
M maps in L2(Σ,A, µ), and

U T U∗ h =Mh = m · h

for all h from the domain ofM. We note that the closure of the range range(m) of
the multiplier function m and the spectrum spec(T ) ⊆ [‖T‖−1,∞) of the operator
T , possessing +∞ as an accumulation point, coincide. Moreover, we have for index
functions ψ ∈ I and h from the domain of ψ(M)

U ψ(T )U∗ h = ψ(M)h = ψ(m) · h .

Then by using the notations f̂ := Uf ∈ L2(Σ,A, µ) and (̂Gw) := U Gw ∈ L2(Σ,A, µ)
by definition we immediately find that range(G) ⊆ Xχ is equivalent to the condition
that

(44) (Gw,χ(T )Gw) = ((̂Gw), χ(M)(̂Gw))L2(Σ,A,µ) =

∫
Σ

χ(m(t))|(̂Gw)(t)|2dt <∞

holds for all w ∈ X. In Example 2 with background in imaging (cf. [37]) we will
consider the special case that U denotes the two-dimensional Fourier transform and
that the corresponding measure space is (R2,B(R2), µ) with the associated Borel
σ-algebra and measure. In that example, T and G are commuting operators, both
non-compact with a non-closed range.

On the other hand, in Example 3 we will exploit the one-dimensional Fourier
transform to formulate sufficient conditions such that classical source conditions
are satisfied for linear compact integral operators.
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5. Further examples. In the remaining examples we illustrate the theory. All
the occurring operators A are linear integral operators. First the Example 2 refers
to convolution operators A which occur, for example, when the deblurring of noisy
images is under consideration. Then the Example 3 illustrates the low rate case
where an integral equation with a smooth kernel is solved and it is known that the
solution is in a Sobolev space. The situation here is similar to the case of elliptic
partial differential equations and has been discussed in [6]. In contrast to the PDE
situation here convergence rates are low, typically of the form O(| log(δ)|−k). The
final Example 4 illustrates the high rate case where a derivative of data in the range
of an integral operator with smooth kernel is considered. The high convergence
rates are here of the form O(δ| log(δ)|k).

In the examples we consider functions over Rd (d = 1, 2) and Sobolev spaces
H l(Rd) (l = 1, 2, ...) of Hilbert type will be used with norms ‖ · ‖l defined by

‖x‖2l =
1

(2π)d

∫
Rd

(1 + |ω|2 + · · ·+ |ω|2l)|x̂|2 dω,

where x̂ = x̂(ω), ω ∈ Rd, is the Fourier transform of x. Now let El : H l(Rd) →
L2(Rd) denote the embedding and E∗l the adjoint of El. Then ElE

∗
l : L2(Rd) →

L2(Rd) is an integral operator and

ÊlE∗l y(ω) =
ŷ(ω)

1 + |ω|2 + · · ·+ |ω|2l
.

Example 2. In this example with X = Y = L2(R2) we are interested in deblurring,
that means in finding a true picture which is characterised by a function f = f(t) ∈
L2(R2), t = (t1, t2)T , that satisfies a linear operator equation (1) of convolution
type

(45) Af (s) =

∫
R2

k(s− t)f(t) dt = g(s), s = (s1, s2)T ∈ R2,

where g ∈ L2(R2) is a blurred image of f which is additionally contaminated with
noise such that only the noisy blurred image gδ ∈ L2(R2) satisfying (2) is available as
data. Following [4, Chapter 3] the kernel function k(τ), τ = (τ1, τ2)T ∈ R2, is called
point spread function of a space invariant imaging system under consideration. We

assume that the kernel is such that its Fourier transform k̂ = k̂(ω) , ω = (ω1, ω2)T ,
called transfer function is bounded. Different variants of such deblurring problems
are presented and analysed in [4]. As a reference situation we exploit for illustration
a variant of an out-of-focus blur for which

k̂(ω) = 2
J1(D|ω|)
D|ω|

where J1 is the Bessel function of order one and D is the radius of the circle of
confusion (cf. [4, formula (3.25) on p.60]). The linear convolution operator A :
L2(R2)→ L2(R2) in this example has a non-closed range but it is non-compact and
the kernel is not square integrable.

In order to apply our theory to this example one needs to find an index function
θ and a symmetric positive definite operator T such that A∗A = θ(T ). A natural

choice in this context is T = −∆ and in this case θ needs to satisfy |k̂(ω)|2 = θ(|ω|2).

This, however, is not possible, as k̂(ω) is zero for some finite ω but an index function
has to satisfy θ(λ) > 0 for all λ > 0 and it can only be zero asymptotically at zero
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or infinity. It is thus not possible to get error bounds for the deblurring problem
using the variable Hilbert scale theory and T = −∆.

One does not have this problem if one chooses T = (A∗A)−1. Let us define
the solution smoothness as f ∈ H l(R2). Then we have the operator G = E∗l El
in (38) characterising the associated non-standard source condition. To find index
functions χ that satisfy the link condition (40) we can make use of formula (44)

taking into account that m(ω) = 1/|k̂(ω)|2 and

|Ĝw(ω)|2 = (1 + |ω|2 + · · ·+ |ω|2l)−1|ŵ(ω)|2.

Then the range inclusion range(G) ⊆ Xχ takes the form

(46) χ

(
1

|k̂(ω)|2

)
1

(1 + |ω|2 + · · ·+ |ω|2l)
≤ C̄ <∞ for all ω ∈ R2 .

Now as k̂(ω) can be zero for finite ω, this range condition can only be satisfied if χ
is bounded. Thus χ(λ) ≤ C <∞ and consequently Xχ ⊃ X = L2(R). The “source
condition” then reduces to f ∈ L2(R) which does not lead to an error bound.

The failure of the above attempts to get error bounds clearly illustrates the need
to extend the variable Hilbert scale theory to be able to cope with the deblurring
problem. One can, however, deal with a partial deblurring problem. Observe that
one has the asymptotics

2

∣∣∣∣J1(D|ω|)
D|ω|

∣∣∣∣ � |ω|−3/2

for large |ω| (cf. [4, formula (3.29) on p.60]). It follows that k̂(ω) = |ω|−3/2κ(ω)
for some bounded κ(ω). The first factor |ω|3/2 relates to a “smoothing component”
of the out-of-focus blur situation. We now consider inversion of this smoothing
component only. For this we introduce an integral operator A with kernel k which
satisfies

(47) k̂(ω) = |ω|3/2.

For the “partial” out-of-focus blur situation (47) and monomials χ(λ) = λκ, κ >
0, we have (46) if and only if κ ≤ 2l

3 . With the relation χ(λ) = Ψ−1(λ)/λ this

corresponds with Ψ(λ) ≤ λ3/(2l+3). Hence based on Proposition 4.2 for the situation
(47) and under f ∈ H l(R2) a best possible convergence rate

‖f − fδα‖L2(R2) = O
(
δ

2l
2l+3

)
as δ → +0

can be obtained by Tikhonov regularisation with H l-penalty term.

Example 3. In this example we consider compact forward operators A in Equa-
tion (1) with X = Y = L2(R) and linear operators A : L2(R) → L2(R), for which
the range of the operator K := ψ̄(A∗A) is a subset of Xφ with some index function
φ and some rate function ψ̄; and where the generating operator of the Hilbert scales
is T = −d2/dt2. It follows that range(K) ⊆ Xφ and a source condition of the form
of Equation (16) leads to the condition f ∈ Xφ implying the corresponding conver-
gence rates in regularisation. In this context, let K be a linear Fredholm integral
operator of Hilbert-Schmidt type. For such operators one can provide conditions
on the kernel which guarantee this range condition.
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Lemma 5.1. Let K : L2(R) → L2(R) be a Hilbert-Schmidt operator with kernel

k(t, s) ∈ L2(R2). Furthermore, let K̃ : L2(R)→ L2(R) be an integral operator with

kernel k̃(ω, s) =
∫
R
e−iωtk(t, s) dt. Then K̃ is a Hilbert-Schmidt operator and

K̃x = K̂x, x ∈ L2(R).

Proof. The adjoint operator K∗ of K is an integral operator with kernel k∗(s, t) =

k(t, s) as a consequence of the theorem of Fubini. By Plancherel’s theorem one has

K∗u =
1

2π
K̃∗û.

An application of Parseval’s identity several times gives for u, v ∈ L2(R):

1

2π
(û, K̂v) = (u,Kv)

= (K∗u, v)

=
1

2π
(K̃∗û, v)

=
1

2π
(û, K̃v).

Proposition 5.2. Let K : L2(R)→ L2(R) be a Hilbert-Schmidt operator where the

Fourier transform k̃(ω, s) =
∫
R e
−iωtk(t, s) dt of the kernel of K satisfies∫

R

∫
R
φ(ω2)|k̃(ω, s)|2 ds dω <∞

for some index function φ. Then range(K) ⊆ Xφ where Xφ is generated by T =
−d2/dt2.

Proof. By Lemma 5.1, if y = Kx, then

ŷ(ω) =

∫
R
k̃(ω, s)x(s) ds.

Therefore, from the Cauchy-Schwarz inequality:∣∣∣∣∫
R
k̃(ω, s)x(s) ds

∣∣∣∣2 ≤ ∫
R
|k̃(ω, s)|2 ds ‖x‖2,

it follows that

‖y‖2φ =
1

2π

∫
R
φ(ω2)|ŷ(ω)|2 dω

≤ 1

2π

∫
R

∫
R
φ(ω2)|k̃(ω, s)|2 ds dω ‖x‖2

and consequently y ∈ Xφ.

Example 4. As a concrete application example we consider a problem from deriva-
tive spectroscopy [39]. Here numerical derivatives are used to enhance the resolution
of measured spectra in order to separate close peaks. An instance is the Eddington
correction formula. The approach determines

f = Lg := g − g(2)

2
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from observed gδ where g(2) is the second derivative of g. We now apply the theory
developed so far to determine how well f = Lg can be determined from spectral
data gδ.

For f ∈ H2(R) and f = Lg the Fourier transforms f̂ and ĝ satisfy

f̂(ω) = (1 + ω2/2) ĝ(ω), a.e.

Using Plancherel’s theorem, one obtains from this the bounds

1

2
‖f‖2 ≤ ‖Lf‖ ≤ ‖f‖2, f ∈ H2(R)

which means in particular that ‖Lf‖ is an equivalent norm for H2(R). Using
standard arguments, one can then show that L : H2(R)→ L2(R) is a Hilbert space
isomorphism. Using the convolution theorem one sees that A = E2L

−1 : L2(R) →
L2(R) is an integral operator with

Af (t) =
1√
2

∫
R

exp(−
√

2|t− s|)f(s) ds t ∈ R

where E2 denotes the embedding H2(R)→ L2(R). As L−1 maps L2(R) onto H2(R)
the range of A can be identified with H2(R).

In addition to the Sobolev spaces, which form a classical Hilbert scale, we will
use a variable Hilbert scale of function spaces Xφ generated by the operator T =
−d2/dt2 which thus have norms ‖ · ‖φ defined by

‖x‖2φ =
1

(2π)

∫ ∞
−∞

φ(ω2) |x̂(ω)|2 dω

where φ are index functions. The index functions

νk(λ) = 1 + λ+ · · ·+ λk =
λk − 1

λ− 1

define the Sobolev spaces, in particular, one has Xνk = Hk(R) and furthermore,
the Sobolev norm is equal to the norm of the corresponding variable Hilbert scale:

‖f‖k = ‖f‖νk , f ∈ Xνk .

In this framework, we now get error bounds analogue to the ones in Corollary 2.4
which are again a consequence of Lemma 2.1, see Corollary 2.5. For the application
of 2.5 to the case of the Eddington correction formula one chooses θ(λ) = 1/(1+λ/2)
and so φ(λ) = 1 + λ/2.

In contrast to the usual case, where the source condition is stated as a condition
on f , here the source condition is stated as a condition on (the original spectrum)
g. This source condition results from physical models for the spectrum, and, in
particular for the so-called spectral broadening. A variety of models are used,
the most common ones are the Gaussian, Lorenz and Voigt spectra where a Voigt
spectrum is a combination of a Lorenz and a Gaussian spectrum. Here we consider
Gaussian spectra defined by

g(t) =
1√
2π

∫
R

exp(−(t− s)2/2)v(s) ds

for some v ∈ L2(R). For a different discussion and more background on the problem,
the reader may consult the paper by Hegland [15].
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It follows that g ∈ Xψ with ψ(λ) = exp(λ). The concave function Ψ can then be
chosen as

Ψ(λ) =

{
λ, for λ ≤ 1

(1 + log(λ)/2)2, for λ ≥ 1.

It follows that Ψ is concave and that φ(λ) ≤ Ψ(ψ(λ)). As a consequence one gets
the error bounds

‖f − fδα‖ ≤ δ(1 + log(η/δ))

for δ < η and ‖f − fδα‖ ≤ η if δ ≥ ε. The stabilisation guarantees that even if the
errors are very large, the error of the approximation does not grow to infinity. In
fact, the solution fα = 0 would probably be a good choice for the large data error
case.

Acknowledgments. The authors express their thanks to two anonymous referees
for important hints that improved the paper in some essential points. The paper
was started during a research stay of the second author at the Australian National
University, Canberra, in November 2009. B. Hofmann thanks the ANU for kind
hospitality and allowance. The research of the second author was also supported
by the Deutsche Forschungsgemeinschaft (DFG) under the grants HO 1454/7-2 and
1454/8-1.

REFERENCES

[1] K. Atkinson and W. Han, “Theoretical Numerical Analysis. A Functional Analysis Frame-

work,” 3rd edition, Texts in Applied Mathematics, 39, Springer, Dordrecht, 2009.

[2] A. B. Bakushinsky and M. Yu. Kokurin, “Iterative Methods for Approximate Solution of

Inverse Problems,” Mathematics and its Applications (New York), 577, Springer, Dordrecht,
2004.

[3] J. Baumeister, “Stable Solution of Inverse Problems,” Friedr. Vieweg & Sohn, Braunschweig,

1987.

[4] M. Bertero and P. Boccacci, “Introduction to Inverse Problems in Imaging,” Institute of

Physics Publishing, Bristol, 1998.

[5] R. Bhatia, “Matrix Analysis,” Graduate Texts in Mathematics, 169, Springer-Verlag, New

York, 1997.
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[30] P. Mathé and U. Tautenhahn, Interpolation in variable Hilbert scales with application to
inverse problems, Inverse Problems, 22 (2006), 2271–2297.

[31] M. T. Nair, E. Schock and U. Tautenhahn, Morozov’s discrepancy principle under general

source conditions, Z. Anal. Anwendungen, 22 (2003), 199–214.

[32] M. T. Nair, S. Pereverzev and U. Tautenhahn, Regularization in Hilbert scales under general
smoothing conditions, Inverse Problems, 21 (2005), 1851–1869.

[33] M. T. Nair, “Linear Operator Equations: Approximation and Regularization,” World Scien-
tific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.

[34] F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal., 18
(1984), 29–37.

[35] M. Reed and B. Simon, “Methods of Modern Mathematical Physics I: Functional Analysis,”
Second edition, Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York,

1980.

[36] A. Rieder, “Keine Probleme mit inversen Problemen,” (German) [No Problems with Inverse
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