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Abstract: In this paper we investigate the problem of identifying the source term f in the elliptic system

−∇ ·
(
Q∇Φ

)
= f in Ω ⊂ Rd, d ∈ {2, 3}, Q∇Φ · ~n = j on ∂Ω and Φ = g on ∂Ω

from a single noisy measurement couple (jδ, gδ) of the Neumann and Dirichlet data (j, g) with noise level δ > 0. In this

context, the diffusion matrix Q is given. A variational method of Tikhonov-type regularization with specific misfit

term of Kohn-Vogelius-type and quadratic stabilizing penalty term is suggested to tackle this linear inverse problem.

The method also appears as a variant of the Lavrentiev regularization. For the occurring linear inverse problem in

infinite dimensional Hilbert spaces, convergence and rate results can be found from the general theory of classical

Tikhonov and Lavrentiev regularization. Using the variational discretization concept, where the PDE is discretized

with piecewise linear and continuous finite elements, we show the convergence of finite element approximations to

solutions of the regularized problem. Moreover, we derive an error bound and corresponding convergence rates

provided a suitable range-type source condition is satisfied. For the numerical solution we propose a conjugate

gradient method. To illustrate the theoretical results, a numerical case study is presented which supports our

analytical findings.
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1 Introduction

Let Ω be an open, bounded and connected domain of Rd, d ∈ {2, 3}, with Lipschitz boundary ∂Ω. We
consider the elliptic system

−∇ ·
(
Q∇Φ

)
= f in Ω, (1.1)

Q∇Φ · ~n = j† on ∂Ω and (1.2)

Φ = g† on ∂Ω, (1.3)

where ~n is the unit outward normal on ∂Ω and the diffusion matrix Q is given. Furthermore, we assume
that Q := (qrs)1≤r,s≤d ∈ L∞(Ω)

d×d
is symmetric and satisfies the uniformly ellipticity condition

Q(x)ξ · ξ =
∑

1≤r,s≤d

qrs(x)ξrξs ≥ q|ξ|2 a.e. in Ω (1.4)

for all ξ = (ξr)1≤r≤d ∈ Rd with some constant q > 0.

The system (1.1)–(1.3) is overdetermined, i.e. if the Neumann and Dirichlet boundary conditions j† ∈
H−1/2(∂Ω) := H1/2(∂Ω)

∗
, g† ∈ H1/2(∂Ω), and the source term f ∈ L2(Ω) are given, then there may

be no Φ satisfying this system. In this paper we assume that the system is consistent and our aim is to
reconstruct a function f ∈ L2(Ω) in the system (1.1)–(1.3) from a noisy measurement couple (jδ, gδ) ∈
H−1/2(∂Ω) × H1/2(∂Ω) of the exact Neumann and Dirichlet data

(
j†, g†

)
, where δ > 0 stands for the

measurement error, i.e. we assume the noise model∥∥jδ − j†∥∥H−1/2(∂Ω)
+
∥∥gδ − g†∥∥H1/2(∂Ω)

≤ δ. (1.5)
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The source identification problem in PDEs arises in many branches of applied science such as electroen-
cephalography, geophysical prospecting and pollutant detection, and attracted great attention from many
scientists in the last 30 years or so. For surveys on this subject we may consult in [7, 15, 18, 22, 25, 42] and
the references therein. Up to now, only a limited number of works was investigated the general source iden-
tification problem and obtained results concentrated on numerical analysis for the identification problem. In
[19, 31, 32] authors have used the dual reciprocity boundary element methods to simulate numerically for the
above mentioned identification problem. In case some priori knowledge of the identified source is available,
such as a point source, a characteristic function or a harmonic function, numerical methods treating the
problem have been obtained in [5, 6, 30, 39]. A survey of the problem of simultaneously identifying the
source term and coefficients in elliptic systems from distributed observations can be found in [38], where
further references can be found.

In the present paper, the general source identification problem in elliptic partial differential equations from
a single noisy measurement couple of Neumann and Dirichlet data is studied. So far, we have not yet found
investigations on the discretization analysis for this source recovery problem, a fact which also motivated
the research presented in the paper. By using a suitable version of the Tikhonov-type regularization with
some non-standard misfit term we could outline that the source distribution inside the physical domain
Ω can be reconstructed from a finite number of observations on the boundary ∂Ω, at least by numerical
approximations. The specific regularization approach proves to be a version of Lavrentiev regularization
with implicit forward operator. One of the main results of the paper is to show convergence of the finite
element discretized Tikhonov-regularized solutions to a sought source function. Another main result is
the interpretation of an occurring condition of solution smoothness as a range-type source condition of
Lavrentiev’s regularization method. This allows us to establish error bounds and corresponding convergence
rates for the regularized solutions.

To formulate precisely the problem, we first give some notations. Let us denote by γ : H1(Ω) → H1/2(∂Ω)
the continuous Dirichlet trace operator with γ−1 : H1/2(∂Ω)→ H1(Ω) its continuous right inverse operator,
i.e. (γ ◦ γ−1)g = g for all g ∈ H1/2(∂Ω). We set

H1
� (Ω) :=

{
u ∈ H1(Ω)

∣∣∣ ∫
∂Ω

γudx = 0

}
and H

1/2
� (∂Ω) :=

{
g ∈ H1/2(∂Ω)

∣∣∣ ∫
∂Ω

g(x)dx = 0

}
and denote by CΩ the positive constant appearing in the Poincaré-Friedrichs inequality (cf. [35])

CΩ

∫
Ω

ϕ2 ≤
∫

Ω

|∇ϕ|2 for all ϕ ∈ H1
� (Ω). (1.6)

Since H1
0 (Ω) :=

{
u ∈ H1(Ω) | γu = 0

}
⊂ H1

� (Ω), the inequality (1.6) is in particular valid for all ϕ ∈ H1
0 (Ω).

Furthermore, by (1.4), the coercivity condition

‖ϕ‖2H1(Ω) ≤
1 + CΩ

CΩ

∫
Ω

|∇ϕ|2 ≤ 1 + CΩ

CΩq

∫
Ω

Q∇ϕ · ∇ϕ (1.7)

holds for all ϕ ∈ H1
� (Ω).

Now, for any fixed (j, g) ∈ H−1/2(∂Ω)×H1/2
� (∂Ω) we can simultaneously consider the Neumann problem

−∇ · (Q∇u) = f in Ω and Q∇u · ~n = j on ∂Ω (1.8)

as well as the Dirichlet problem

−∇ · (Q∇v) = f in Ω and v = g on ∂Ω. (1.9)

By the aid of (1.7) and the Riesz representation theorem, we conclude that for each f ∈ L2(Ω) there exists
a unique weak solution u of the problem (1.8) in the sense that u ∈ H1

� (Ω) and satisfies the identity∫
Ω

Q∇u · ∇ϕ = 〈j, γϕ〉+ (f, ϕ) (1.10)

for all ϕ ∈ H1
� (Ω), where notation 〈j, g〉 stands for the value of the function j ∈ H−1/2(∂Ω) at g ∈ H1/2(∂Ω)

and the notation (f, ϕ) is the inner product of f and ϕ in the space L2(Ω). Then we can define the Neumann
operator

N : L2(Ω)→ H1
� (Ω) with f 7→ Nf j,
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which maps each f ∈ L2(Ω) to the unique weak solution Nf j := u of the problem (1.8). Similarly, the
problem (1.9) also attains a unique weak solution v in the sense that v ∈ H1(Ω), γv = g and the identity∫

Ω

Q∇v · ∇ψ = (f, ψ) (1.11)

holds for all ψ ∈ H1
0 (Ω). The Dirichlet operator is defined as

D : L2(Ω)→ H1
� (Ω) with f 7→ Dfg,

which maps each f ∈ L2(Ω) to the unique weak solution Dfg := v of the problem (1.9). Therefore, for any
fixed f ∈ L2(Ω) we can define the so-called Neumann-to-Dirichlet map

Λf : H−1/2(∂Ω)→ H
1/2
� (∂Ω), j 7→ Λf j := γNf j.

We mention that since H1
0 (Ω) ⊂ H1

� (Ω), we from (1.10) have that
∫

Ω
Q∇Nf j ·∇ψ = (f, ψ) for all ψ ∈ H1

0 (Ω).
In view of (1.11) we therefore conclude Λf j = g if and only if Nf j = Dfg, where the identities

Nf j = Nf0 +N0j and Dfg = Df0 +D0g (1.12)

are satisfied, and the operators f 7→ Nf0 and f 7→ Df0 are linear and bounded from L2(Ω) into itself.
Furthermore, Λf j = γNf j = γN0j + γNf0 = Λ0j + Λf0, where Λ0j is linear, self-adjoint, bounded and
invertible, as the diffusion Q is smooth enough (cf. [33]).

As in electrical impedance tomography (EIT) or for the Calderón’s problem [4, 14, 33] one can pose the
question whether the source distribution f inside a physical domain Ω can be determined from an infinite
number of observations on the boundary ∂Ω, i.e. from the Neumann-to-Dirichlet map Λf :

f1, f2 ∈ L2(Ω) with Λf1
= Λf2

⇒ f1 = f2 ?

To the best of our knowledge, the above question is still open so far. In case an observation Λδ of Λf being
available one can use a certain regularization method to approximate the sought source. For example, one
can consider for operator norms ‖ · ‖∗ a minimizer of the problem

min
f∈L2(Ω)

‖Λf − Λδ‖2∗ + ρ‖f − f∗‖2L2(Ω)

as a reconstruction along the lines of Tikhonov’s regularization method, where ρ > 0 is the regularization
parameter and f∗ is an a-priori estimate of the sought source.

However, in practice we have only a finite number of observations and the task is to reconstruct the identified
source, at least by numerical approximations. Furthermore, for simplicity of exposition we below restrict
ourselves to the case of just one observation pair (jδ, gδ) being available, while the approach described here
can be easily extended to multiple measurements

(
jiδ, g

i
δ

)
i=1,...,I

, see Section 6, Ex. 6.2. The inverse problem

is thus stated as follows.

Given
(
j†, g†

)
∈ H−1/2(∂Ω)×H1/2

� (∂Ω) with Λf j
† = g†, find f ∈ L2(Ω). (IP)

In other words, the interested problem is, for given
(
j†, g†

)
∈ H−1/2(∂Ω)×H1/2

� (∂Ω), to find some f ∈ L2(Ω)
and consequently Φ ∈ H1

� (Ω) such that the system (1.1)–(1.3) is satisfied in the weak sense. Precisely, we
define the general solution set

I
(
j†, g†

)
:=
{
f ∈ L2(Ω)

∣∣ Λf j
† = g†

}
=
{
f ∈ L2(Ω)

∣∣ Nf j† = Dfg†
}

(1.13)

of the inverse problem (IP). The source identification problem as described here is well known to be not
uniquely determined from boundary observations (see a counterexample in [3]), i.e. the set I

(
j†, g†

)
fails to

be a singleton. Since not the Neumann-to-Dirichlet map is given, but only one pair
(
j†, g†

)
, the problem is

even highly underdetermined. Thus instead we will search for the uniquely determined f∗-minimum-norm
solution f†, which is the minimizer of the problem

min
f∈I(j†,g†)

‖f − f∗‖2L2(Ω). (IP −MN)
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As a consequence of item (iii) of Lemma 2.1 below, the set I
(
j†, g†

)
is non-empty, closed and convex, hence

f† is uniquely determined. On the other hand, for all f ∈ I
(
j†, g†

)
the equation Nf j† = Dfg† is fulfilled.

However, we have to solve this equation with noise data (jδ, gδ) ∈ H−1/2(∂Ω)×H1/2
� (∂Ω) of

(
j†, g†

)
satisfying

(1.5). The simplest variety of regularization may be to consider a minimizer of the Tikhonov functional

‖Nf jδ −Dfgδ‖2L2(Ω) + ρ‖f − f∗‖2L2(Ω) (1.14)

over f ∈ L2(Ω) as an approximation solution to f†.

In present work we adopt the variational approach of Kohn and Vogelius [27, 28, 29] in using cost functional
containing the gradient of forward operators to the above mentioned inverse source problem. More precisely,
we use the convex functional

Jδ(f) :=

∫
Ω

Q∇ (Nf jδ −Dfgδ) · ∇ (Nf jδ −Dfgδ) dx, (1.15)

instead of the mapping f 7→ ‖Nf jδ − Dfgδ‖2L2(Ω), together with Tikhonov regularization and consider the
unique solution fρ,δ of the strictly convex minimization problem

min
f∈L2(Ω)

Υρ,δ(f) with Υρ,δ(f) := Jδ(f) + ρ‖f − f∗‖2L2(Ω), (Pρ,δ)

where the gradient of the functional Υρ,δ can be explicitly written as

1

2
∇Υρ,δ(f) = Nf jδ −Dfgδ + ρ(f − f∗) for all f ∈ L2(Ω). (1.16)

The motivation in using this cost functional Jδ as misfit functional is that for all ξ ∈ L2(Ω) the inequality

J0(ξ) :=

∫
Ω

Q∇
(
Nξj† −Dξg†

)
· ∇
(
Nξj† −Dξg†

)
dx ≥

CΩq

1 + CΩ

∥∥Nξj† −Dξg†∥∥2

H1(Ω)
≥ 0

holds true and J0(f) = 0 at any f ∈ I
(
j†, g†

)
. The advantage is evident, because the minimizer fρ,δ ∈ L2(Ω)

satisfies the equation ∇Υρ,δ(fρ,δ) = 0 such that, for j := jδ, g := gδ and f := fρ,δ, we have

Lj,g(f) := Nf j −Dfg + ρ(f − f∗) = 0, (1.17)

and hence, for f := fρ,δ, we have

f − f∗ = −1

ρ
(Nf jδ −Dfgδ) . (1.18)

Due to formula (1.18), the Tikhonov regularization approach under consideration with specific misfit term
also appears as a variant of the Lavrentiev regularization (see, e.g., [2, 12, 24, 43]). After some operator-
theoretic settings and preliminary results in Section 2, concerning also the ill-posedness of the linear inverse
problem under consideration, we apply in Section 3 the general theory of classical Tikhonov and Lavrentiev
regularization for such problems yielding propositions on convergence and convergence rates for the regular-
ized solutions in the infinite dimensional Hilbert spaces. However, for convenience in numerical analysis with
the finite element methods introduced in Section 4 our focus is here on the extremal problem for minimizing
the Tikhonov functional with Kohn-Vogelius misfit term and quadratic penalty. The use of different convex
penalty terms, e.g. total variation, may be a work for us in future.

Let N h
f jδ and Dhf gδ be corresponding approximations of the solution maps Nf jδ and Dfgδ in the finite

dimensional space Vh1 of piecewise linear, continuous finite elements. We then consider the discrete regularized
problem corresponding to (Pρ,δ), i.e., the following strictly convex minimization problem

min
f∈L2(Ω)

∫
Ω

Q∇
(
N h
f jδ −Dhf gδ

)
· ∇
(
N h
f jδ −Dhf gδ

)
dx+ ρ‖f − f∗‖2L2(Ω).

(
Phρ,δ

)
Using the variational discretization concept introduced in [23], we show in Section 4 that the unique solution

fhρ,δ of the problem
(
Phρ,δ

)
automatically belongs to the finite dimensional space Vh1 . Thus, a discretization

of the admissible set L2(Ω) can be avoided.
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As h, δ → 0 and with an appropriate a-priori regularization parameter choice ρ = ρ(h, δ), also in Section 4,
we prove that the sequence

(
fhρ,δ
)

converges to f† in the L2(Ω)-norm. Furthermore, the corresponding state

sequences
(
N h
fhρ,δ

jδ

)
and

(
Dh
fhρ,δ

gδ

)
converge in the H1(Ω)-norm to Φ† = Φ†(f†, j†, g†) solving (1.1)–(1.3).

Section 5 is devoted to convergence rates for the discretized problem. In this section we also show that if
f ∈ I

(
j†, g†

)
and there is a function w ∈ L2(Ω) such that f − f∗ = Lj†,g†(w), or in other notation

f − f∗ = Nwj† −Dwg†, (1.19)

then f = f†, i.e. f is the unique f∗-minimum-norm solution of the identification problem. Condition
(1.19) appears to be a source condition for both, Tikhonov and Lavrentiev regularization, and allows for
corresponding convergence rates of the continuous setting in infinite dimensional spaces as well as after

incorporating the discretization. In the latter case, precisely for the known matrix Q ∈ C0,1(Ω)
d×d

and the
exact data

(
j†, g†

)
∈ H1/2(∂Ω)×H3/2(∂Ω), we derive the convergence rates∥∥∥N h
fhρ,δ

jδ −Dhfhρ,δgδ
∥∥∥2

H1(Ω)
+ ρ
∥∥fhρ,δ − f†∥∥2

L2(Ω)
= O

(
δ2 + h2 + hρ+ δρ+ ρ2

)
and ∥∥∥N h

fhρ,δ
jδ − Φ†

∥∥∥2

H1(Ω)
+
∥∥∥Dhfhρ,δgδ − Φ†

∥∥∥2

H1(Ω)
= O

(
δ2ρ−1 + h2ρ−1 + h+ δ + ρ

)
.

Finally, for the numerical solution of the discrete regularized problem
(
Phρ,δ

)
we employ in Section 6 a

conjugate gradient algorithm. Numerical case studies illustrate the analytical results and show the efficiency
of our theoretical findings.

We conclude this introduction with a remark that since the main interest is to clearly state our ideas, we
only treat the model elliptic problem (1.1) while the approach described here can be easily extended to more
general models, e.g., for the source identification problem in diffusion-reaction equations

−∇ ·
(
Q∇Φ

)
+ κ2Φ = f in Ω, Q∇Φ · ~n+ σΦ = j† on ∂Ω and Φ = g† on ∂Ω (1.20)

from a measurement (jδ, gδ) of
(
j†, g†

)
, where Q satisfying the condition (1.4), 0 6= κ = κ(x) ∈ L∞(Ω), i.e

the set {x ∈ Ω|κ(x) 6= 0} has positive Lebesgue measure, and σ = σ(x) ∈ L∞(∂Ω) with σ ≥ 0 are given.
The variational approach is now formulated as the minimizing problem with the misfit∫

Ω

Q∇ (Rf jδ −Dfgδ) · ∇ (Rf jδ −Dfgδ) dx+

∫
Ω

κ2 (Rf jδ −Dfgδ)
2
dx+

∫
∂Ω

σ (Rf jδ −Dfgδ)
2
dx

over f ∈ L2(Ω), where R and D are the Robin operator and the Dirichlet operator relating with the equation
(1.20), respectively.

We here would like to mention an inverse problem related closely to the identification in this paper, the
problem of identifying the source term f in the Helmholtz-type equation

∇ ·
(
Q∇Φ

)
+ κ2Φ = f in Ω

from measured Cauchy data (jδ(κ), gδ(κ)) which is available for all frequency κ > 0. The uniqueness results
for this identification problem can be found in [3, 8], while several effective recovered algorithms have been
presented in [1, 9].

Throughout the paper we use the standard notion of Sobolev spaces H1(Ω), H1
0 (Ω), W k,p(Ω), etc from, for

example, [44]. If not stated otherwise we write
∫

Ω
· · · instead of

∫
Ω
· · · dx.

2 Preliminaries and operator-theoretic settings

In order to define appropriate operators, we recall the decompositions (1.12) of the corresponding Neumann
and Dirichlet problems, where Nf0 and Df0 characterize linear mappings of f ∈ L2(Ω). On the other
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hand, N0j and D0g depend nonlinearly on j and g, respectively, but both are independent of f . Hence, the
difference of Nf j and Dfg characterizes, for fixed elements j and g, the affine mapping Lj,g of f ∈ L2(Ω)

defined by formula (1.17). First we introduce the linear operator T̃ : L2(Ω)→ H1
� (Ω) defined as

T̃(f) := Nf0−Df0 ∈ H1
� (Ω) .

Since the image elements Nf0−Df0 ∈ H1
� (Ω) also belong to L2(Ω), one can moreover introduce the operator

T : L2(Ω)→ L2(Ω) defined by

T(f) := Nf0−Df0 ∈ L2(Ω) , (2.1)

where T(f) = T̃(f) for all f ∈ L2(Ω). On the other hand, we remark that the expression

[u, v] :=

∫
Ω

Q∇u · ∇v (2.2)

generates an inner product on the space H1
� (Ω) which is equivalent to the usual one. Now let

T̃∗ : H1
� (Ω)→ L2(Ω)

be the adjoint operator of T̃ : L2(Ω)→ H1
� (Ω), where H1

� (Ω) is equipped with the inner product (2.2) above.
For all f ∈ L2(Ω) and φ ∈ H1

� (Ω) we thus have[
T̃f, φ

]
=

∫
Ω

Q∇Nf0 · ∇φ−
∫

Ω

Q∇Df0 · ∇φ = (f, φ)−
∫

Ω

Q∇Df0 · ∇φ = (f, T̃∗φ), (2.3)

by (1.10). We now decompose H1
� (Ω) into the orthogonal direct sum H1

� (Ω) = H1
0 (Ω)⊕H1

0 (Ω)
⊥

with respect

to the inner product (2.2). We note for all g ∈ H1/2
� (∂Ω) that D0g ∈ H1

0 (Ω)
⊥

. Furthermore,

∀ g1, g2 ∈ H1/2
� (∂Ω), g1 6= g2 ⇒ D0g1 6= D0g2

which implies dimH1
0 (Ω)

⊥ ≥ dimH
1/2
� (∂Ω) =∞. For all f ∈ L2(Ω) we deduce from (1.11) and (2.3) that

φ ∈ H1
0 (Ω)⇔

∫
Ω

Q∇Df0 · ∇φ = (f, φ)⇔ (f, T̃∗φ) = 0⇔ T̃∗φ = 0⇔ φ ∈ ker T̃∗,

or in other words ker T̃∗ = H1
0 (Ω). Furthermore, for all φ̂ ∈ H1

0 (Ω)
⊥

we get
∫

Ω
Q∇Df0 · ∇φ̂ = 0, since

Df0 ∈ H1
0 (Ω). Again, the equation (2.3) implies that

(f, φ̂) = (f, T̃∗φ̂) for all f ∈ L2(Ω), φ̂ ∈ H1
0 (Ω)

⊥
.

Therefore, T̃∗|H1
0 (Ω)⊥

is the compact embedding H1
0 (Ω)

⊥
↪→ L2(Ω) and T̃∗ is the composition of the projector

from H1
� (Ω) onto H1

0 (Ω)
⊥

and the embedding operator from H1(Ω) to L2(Ω). Furthermore we have, for all
f ∈ L2(Ω),

T (f) = T̃∗[T̃(f)] , (2.4)

because range(T̃) is orthogonal to ker T̃∗ and hence T̃∗ acts only as embedding operator.

Lemma 2.1. (i) The operator T defined by formula (2.1) is linear, bounded, self-adjoint and non-negative,
i.e. we have

(T(f), w) = (f,T(w)) and (T(f), f) ≥ 0 for all f, w ∈ L2(Ω). (2.5)

Moreover, T is compact and has an infinite dimensional range which is non-closed, i.e. we have range(T) 6=
range(T).

(ii) For any fixed (j, g) ∈ H−1/2(∂Ω)×H1/2(∂Ω) the map Lj,g : L2(Ω)→ L2(Ω) defined by

Lj,g(f) := Nf j −Dfg = T(f) +N0j −D0g

is affine linear, continuous and monotone, i.e. we have

(Lj,g(f)− Lj,g(w), f − w) ≥ 0 for all f, w ∈ L2(Ω). (2.6)

(iii) The solution set I (cf. (1.13)) is a closed affine subspace of the Hilbert space L2(Ω).
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Proof. (i) It follows from (1.10) that

(T(f), w) =

∫
Ω

Q∇Nw0 · ∇(Nf0−Df0) =

∫
Ω

Q∇Nw0 · ∇Nf0−
∫

Ω

Q∇Nw0 · ∇Df0, (2.7)

and similarly,

(f,T(w)) =

∫
Ω

Q∇Nf0 · ∇Nw0−
∫

Ω

Q∇Nf0 · ∇Dw0. (2.8)

Using (1.10)–(1.11) again, we get∫
Ω

Q∇Nw0 · ∇Df0 = (w,Df0) =

∫
Ω

Q∇Dw0 · ∇Df0∫
Ω

Q∇Nf0 · ∇Dw0 = (f,Dw0) =

∫
Ω

Q∇Df0 · ∇Dw0

(2.9)

and the self-adjoint property of T now follows directly from (2.7)-(2.9). We further have from (1.10)–(1.11)
for all f ∈ L2(Ω) that

∫
Ω
Q∇Df0 · ∇(Nf0 − Df0) = 0. Combining this with the identity (T(f), f) =∫

Ω
Q∇Nf0 · ∇(Nf0−Df0) we arrive at (T(f), f) =

∫
Ω
Q∇(Nf0−Df0) · ∇(Nf0−Df0) ≥ 0.

We now show that T is compact and has an infinite dimensional range. The operator T : L2(Ω) → L2(Ω)
as a composition of a bounded linear operator T̃ and a compact embedding operator is compact. Next, we
show that dim(T̃) =∞. For deriving a contradiction we assume that dim range(T̃) <∞. Then we can write

H1
� (Ω) = range(T̃) ⊕ range(T̃)

⊥
with respect to the inner product (2.2). By (2.3), for all ϕ ∈ range(T̃)

⊥

we get
∫

Ω
Q∇Df0 · ∇ϕ = (f, ϕ) holding for all f ∈ L2(Ω) which implies that ϕ ∈ H1

0 (Ω). Therefore,

H1
0 (Ω)

⊥ ⊂
(
range(T̃)

⊥)⊥
= range(T̃) = range(T̃) and this yields the contradiction ∞ = dimH1

0 (Ω)
⊥ ≤

dim range(T̃) < ∞. Consequently, T : L2(Ω) → L2(Ω) is compact operator and possesses an infinite
dimensional range.

(ii) The inequality (2.6) follows directly from (2.5).

(iii) Since T is a bounded linear operator, the solution set can be written as

I(j†, g†) =
{
f = f0 ⊕ f⊥0 ∈ L2(Ω)

∣∣ f0 ∈ ker(T), f⊥0 = T†(D0g
† −N0j

†)
}

with the Moore-Penrose pseudoinverse T† of T. Then the nullspace ker(T) is a closed subspace and
T†(D0g

† − N0j
†) a well-defined element in L2(Ω). Consequently, I(j†, g†) is a non-empty closed affine

subspace and hence also a convex set in the Hilbert space L2(Ω).

Due to item (ii) of Lemma 2.1, we can reformulate the identification problem (IP) as an operator equation
with linear bounded self-adjoint non-negative operator T mapping in L2(Ω). Finding an element f ∈
I
(
j†, g†

)
is then equivalent to solving the linear operator equation

T(f) = κ(j†, g†), where κ(j, g) := D0g −N0j. (2.10)

This makes the inverse problem explicit, but we have to take into account that instead of the exact right-
hand side κ(j†, g†) only noisy data κ(jδ, gδ) satisfying (1.5) for jδ and gδ are available. As a consequence of
item (i) of Lemma 2.1 we see that the equation (2.10) formulated in the Hilbert space L2(Ω) is ill-posed of
type II in the sense of Nashed (cf. [34]). Stable approximate (regularized) solutions fρ,δ to equation (2.10)
satisfy with f = fρ,δ the auxiliary linear operator equation

T(f) + ρ (f − f∗) = κ(jδ, gδ) (2.11)

in L2(Ω) with some regularization parameter ρ > 0.

At this point we should recall and note that we have, for all jδ, gδ under consideration and f ∈ L2(Ω), and
due to (1.10) – (1.11)

T(f) ∈ H1
0 (Ω)

⊥ ⊂ H1
� (Ω) as well as κ(jδ, gδ) ∈ H1

0 (Ω)
⊥
,

which means that the elements κ(jδ, gδ) and T̃∗[κ(jδ, gδ)] in L2(Ω) coincide. Nevertheless, we have to
distinguish the two cases κ(jδ, gδ) ∈ H1

� (Ω) and κ(jδ, gδ) ∈ L2(Ω) in the following lemma.
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Lemma 2.2. Under the noise model (1.5) there is a constant 0 ≤ K̃ <∞ independent of δ such that

‖κ(jδ, gδ)− κ(j†, g†)‖H1(Ω) ≤ K̃ δ.

Moreover, there is also a constant 0 ≤ K <∞ independent of δ such that

‖κ(jδ, gδ)− κ(j†, g†)‖L2(Ω) ≤ K δ.

Proof. By Lemma 4.5 below the existence of such constant K̃ in the first estimate of this lemma follows with
the settings h := 0, f1 = f2 := 0 and K̃ := max{CN , CD}. Then we have under the noise model (1.5)

‖κ(jδ, gδ)− κ(j†, g†)‖H1(Ω) ≤ ‖N0jδ −N0j
†‖H1(Ω) + ‖D0jδ −D0j

†‖H1(Ω)

≤ K̃
(
‖jδ − j†‖H−1/2(∂Ω) + ‖gδ − g†‖H1/2(∂Ω)

)
≤ K̃δ.

By setting K := K̃‖T̃‖ the second estimate of the lemma gets established. This completes the proof.

We conclude this section by mentioning that the functional Jδ defined by (1.15) is convex and weakly
sequentially lower semi-continuous. In fact, the above defined operator T̃ : L2(Ω)→ H1

� (Ω) is compact (see
the proof of Lemma 2.1). Using the equivalent inner product (2.2), we therefore conclude that

Jδ
(
f
)

= [Nf jδ −Dfgδ,Nf jδ −Dfgδ] =
[
T̃(f)− κ(jδ, gδ), T̃(f)− κ(jδ, gδ)

]
, (2.12)

which shows the convexity and weak sequential lower semi-continuity of the functional Jδ and is the basis
for a classical Tikhonov regularization approach in the subsequent section. Moreover, we have as a basis for
Lavrentiev regularization in the subsequent section

Jδ
(
f
)

+ ρ‖f − f∗‖2L2(Ω) = (T(f), f) + ρ ‖f‖2L2(Ω) − 2 (f, κ(jδ, gδ) + ρ f∗) + const., (2.13)

where the constant is independent of f , and it is well-known that, due to the properties of T from Lemma 2.1,
the unique minimizer fρ,δ of this functional coincides with the unique solution of the operator equation (2.11).

We close this section by the following note. As discussed in the Introduction section, instead of using
Kohn and Vogelius’ function (1.15) we can use the least squares function (cf. (1.14)), and then the jointed
minimization problem reads as

min
f∈L2(Ω)

Θ(f) with Θ(f) := ‖T(f)− κ(jδ, gδ)‖2L2(Ω) + ρ‖f − f∗‖2L2(Ω) (2.14)

where T(f) and κ(jδ, gδ) were defined by (2.1) and (2.10), respectively. One can show easily that the problem
attains a unique solution f̄ . Furthermore, for computation this minimizer f̄ in practice one must derive the
L2-gradient ∇Θ(f̄). Let ξ ∈ L2(Ω) be arbitrary. We will compute briefly the differential Θ′(f̄)ξ as follows.

We have that 1
2Θ′(f̄)ξ =

(
T(f̄)− κ(jδ, gδ),T(ξ)

)
+ ρ(f̄ − f∗, ξ). Consider the adjoint problem

−∇ ·
(
Q∇Φ̄

)
= T(f̄)− κ(jδ, gδ) in Ω, (2.15)

Q∇Φ̄ · ~n = 0 on ∂Ω. (2.16)

(We here do not use the homogeneous Dirichlet boundary condition Φ̄ = 0 on ∂Ω instead of (2.16), because
in general T(ξ) /∈ H1

0 (Ω).) Next, we decompose

Φ̄ = Φ̄1 ⊕ Φ̄2 ∈ H1
0 (Ω)⊕H1

0 (Ω)
⊥

(2.17)

with respect to the inner product (2.2). Then we obtain that(
T(f̄)− κ(jδ, gδ),T(ξ)

)
=

∫
Ω

Q∇Φ̄ · ∇T(ξ) =

∫
Ω

Q∇Nξ0 · ∇Φ̄−
∫

Ω

Q∇Dξ0 · ∇Φ̄1 −
∫

Ω

Q∇Dξ0 · ∇Φ̄2︸ ︷︷ ︸
=0

= (ξ, Φ̄)− (ξ, Φ̄1) = (Φ̄2, ξ).

As a result, we arrive at 1
2∇Θ(f̄) = Φ̄2 + ρ(f̄ − f∗). Compared with (1.16), by utilizing Kohn and Vogelius’

function (1.15), we here avoid any computations for the adjoint problem (2.15)–(2.16). Furthermore, we
avoid computing numerically for the terms Φ̄1 and Φ̄2 in the decomposition (2.17) which seems to be still
very difficult for us.
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3 Lavrentiev regularization versus Tikhonov regularization for the
continuous problem in infinite dimensional Hilbert spaces

In this section, we consider the error analysis of stable approximate solutions to the continuous problem
(2.10) in infinite dimensional Hilbert spaces by distinguishing the situations that the right-hand side κ is
considered as an element in L2(Ω) and alternatively as an element in H1(Ω).

First our focus is on the Lavrentiev regularization approach based on formula (2.13), in which κ(jδ, gδ) ∈
L2(Ω). The general theory of linear Lavrentiev regularization (see, e.g., [43] and also [2, 12, 24, 36, 37])
yields convergence and convergence rates results for the error of regularized solutions fρ,δ with respect to the
uniquely determined f∗-minimizing solution f† to problem (IP−MN). Taking into account that Lemma 2.2
holds, we immediately derive (see, e.g., [12, Rem. 3.3]) the error estimate

‖fρ,δ − f†‖L2(Ω) ≤ ρ‖(T + ρI)−1(f† − f∗)‖L2(Ω) +
Kδ

ρ
≤ ‖f† − f∗‖L2(Ω) +

Kδ

ρ
. (3.1)

This immediately yields (see [24, section 2]) the following convergence assertion.

Proposition 3.1. For any a priori parameter choice ρ(δ) of the regularization parameter satisfying the
conditions

ρ(δ)→ 0 and
δ

ρ(δ)
→ 0 as δ → 0 (3.2)

we have for a sequence δn → 0, associated data jδn , gδn , and associated Lavrentiev-regularized solutions
fρ(δn),δn that

lim
n→∞

‖fρ(δn),δn − f
†‖L2(Ω) = 0,

i.e. the regularized solutions are strongly convergent in L2(Ω) to the f∗-minimum norm solution f†.

We can also apply the following well-known result on convergence rates from [43, Theorem 2.2]:

Proposition 3.2. If there is a source element v ∈ L2(Ω) such that the range-type source condition

f† − f∗ = T(v) (3.3)

is satisfied, we have for an a priori choice ρ(δ) ∼
√
δ of the regularization parameter ρ the convergence rate

‖fρ(δ),δ − f†‖L2(Ω) = O(
√
δ) as δ → 0 (3.4)

of Lavrentiev-regularized solutions.

Corollary 3.3. The rate result (3.4) remains true if we have some element w ∈ L2(Ω) such that

f† − f∗ = Nwj† −Dwg†. (3.5)

Proof. Evidently we have Nwj† − Dwg† = T(w) − κ(j†, g†) and f† is a solution to the operator equation
(2.10) with exact right-hand side κ(j†, g†). Hence (3.5) can be rewritten as f†−f∗ = T(w−f†). This yields
(3.3) with the new source element v := w − f†.

Remark 3.4. It was shown by a saturation theorem in [36] that (3.4) is the best possible rate for linear
Lavrentiev regularization, with the exception of singular situations with respect to the forward operator,
here T, and with respect to the solution f†.

Revisiting the source condition (3.5), we add the following remarkable result.

Proposition 3.5. Assume that f ∈ I
(
j†, g†

)
and that there is a function w ∈ L2(Ω) such that

f−f∗ = Nwj†−Dwg†. Then f is the uniquely determined f∗-minimum-norm solution of problem (IP −MN),
i.e. we have f = f†.
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Proof. We have with ξ ∈
{
ξ ∈ L2(Ω)

∣∣ Nξj† = Dξg†
}

that

1

2
‖ξ − f∗‖2L2(Ω) −

1

2
‖f − f∗‖2L2(Ω)

=
1

2
‖ξ − f‖2L2(Ω) + (f − f∗, ξ − f) ≥ (f − f∗, ξ − f) =

(
Nwj† −Dwg†, ξ − f

)
=

∫
Ω

Q∇Nξj† · ∇
(
Nwj† −Dwg†

)
−
〈
j†, γ

(
Nwj† −Dwg†

)〉
−
∫

Ω

Q∇Nf j† · ∇
(
Nwj† −Dwg†

)
+
〈
j†, γ

(
Nwj† −Dwg†

)〉
=

∫
Ω

Q∇
(
Nξj† −Nf j†

)
· ∇
(
Nwj† −Dwg†

)
.

Since γNξj† = γNf j† = g†, it follows that Nξj† −Nf j† ∈ H1
0 (Ω). We thus obtain from the last inequality

1

2
‖ξ − f∗‖2L2(Ω) −

1

2
‖f − f∗‖2L2(Ω) ≥

∫
Ω

Q∇Nwj† · ∇
(
Nξj† −Nf j†

)
−
∫

Ω

Q∇Dwg† · ∇
(
Nξj† −Nf j†

)
=
(
w,Nξj† −Nf j†

)
+
〈
j†, γ

(
Nξj† −Nf j†

)〉
−
(
w,Nξj† −Nf j†

)
= 0,

which finishes the proof.

Remark 3.6. Indeed, the statement of Proposition 3.5 is a special case of the general assertion that source
conditions f − f∗ = T(v), v ∈ X, for self-adjoint non-negative bounded linear operators T in the Hilbert
space X can only hold if f is a f∗-minimum-norm solution (see [37, Remark 6]). However, as shown above
we have here Nwj† −Dwg† = T(v) with v = w − f† ∈ L2(Ω).

Our second alternative focus is on the classical Tikhonov regularization approach based on formula (2.12),
in which κ(jδ, gδ) ∈ H1(Ω). Then the regularized solution can be established as

fρ,δ = (T̃∗T̃ + ρI)−1
[
T̃∗(κ(gδ, jδ)) + ρf∗

]
(3.6)

(cf., e.g., [18, Sec. 5.1]). From (3.6) and Lemma 2.2 we easily derive the error estimate

‖fρ,δ − f†‖L2(Ω) ≤ ρ‖(T̃∗T̃ + ρI)−1(f† − f∗)‖L2(Ω) +
K̃δ

2
√
ρ
≤ ‖f† − f∗‖L2(Ω) +

K̃δ

2
√
ρ
, (3.7)

on which the following proposition is based.

Proposition 3.7. For any a priori parameter choice ρ(δ) of the regularization parameter satisfying the
conditions

ρ(δ)→ 0 and
δ√
ρ(δ)

→ 0 as δ → 0 (3.8)

we have for a sequence δn → 0, associated data jδn , gδn , and associated Tikhonv-regularized solutions fρ(δn),δn

that
lim
n→∞

‖fρ(δn),δn − f
†‖L2(Ω) = 0,

i.e. the regularized solutions are strongly convergent in L2(Ω) to the f∗-minimum norm solution f†.

Furthermore, under the source condition (3.3), which is equivalent to

f† − f∗ = [T̃∗T̃](v), (3.9)

we find even the bounds

‖fρ,δ − f†‖L2(Ω) ≤ ρ‖(T̃∗T̃ + ρI)−1[T̃∗T̃](v)‖L2(Ω) +
K̃δ

2
√
ρ
≤ ρ‖v‖L2(Ω) +

K̃δ

2
√
ρ
, (3.10)

which as a consequence of T(v) = [T̃∗T̃](v) for all v ∈ L2(Ω) immediately yields the rate assertion of the
following proposition.
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Proposition 3.8. If there is a source element v ∈ L2(Ω) such that the range-type source condition (3.3)
(equivalent to (3.5) due to Corollary 3.3) is satisfied, then we have for an a priori choice ρ(δ) ∼ δ2/3 of the
regularization parameter ρ the convergence rate

‖fρ(δ),δ − f†‖L2(Ω) = O(δ2/3) as δ → 0 (3.11)

of Tikhonov-regularized solutions. If the regularization parameter is chosen as ρ(δ) ∼ δ, then we obtain also
here the convergence rate (3.4) as in Proposition 3.2.

Remark 3.9. It was shown by a saturation theorem of Groetsch 1984 (see, e.g, [18, Proposition 4.20]) that
(3.11) is the best possible rate for classical linear Tikhonov regularization, with the exception of singular
cases. At first glance, it is amazing that the best possible rate (3.11) in Proposition 3.8 is higher than the
best possible rate (3.4) in Proposition 3.2. However, here the classical Tikhonov regularization makes use
of the higher smoothness assumption κ(jδ, gδ) ∈ H1(Ω), whereas the version of Lavrentiev regularization
employed here ignores this higher smoothness of the right-hand side of equation (2.10) and considers κ(jδ, gδ)
only as an element in L2(Ω), see the two different noise inequalities in Lemma 2.2.

4 Finite element approximation and convergence for the discretized
problem

We in Section 3 applied the Lavrentiev regularization and the Tikhonov regularization for the continuous
identification problem. In the remain Sections 4 – 6 we will analyze the problem in finite dimensional spaces.
So far we have not yet found investigations on the discretization error in a combination of both functionals
for the fully setting, a fact which motivated the research presented in this paper.

Let
(
T h
)

0<h<1
be a family of regular and quasi-uniform triangulations of the domain Ω with the mesh size

h. For the definition of the discretization space of the state functions let us denote

Vh1 :=
{
vh ∈ C(Ω) | vh|T ∈ P1(T ), ∀T ∈ T h

}
and Vh1,� := Vh1 ∩H1

� (Ω) and Vh1,0 := Vh1 ∩H1
0 (Ω) ⊂ Vh1,�,

where P1 consists all polynomial functions of degree less than or equal to 1.

Proposition 4.1. (i) Let f be in L2(Ω) and j be in H−1/2(∂Ω). Then the variational equation∫
Ω

Q∇uh · ∇ϕh =
(
f, ϕh

)
+
〈
j, γϕh

〉
for all ϕh ∈ Vh1,� (4.1)

admits a unique solution uh ∈ Vh1,�. Furthermore, the estimate∥∥uh∥∥
H1(Ω)

≤ CN
(
‖f‖L2(Ω) + ‖j‖H−1/2(∂Ω)

)
(4.2)

is satisfied. The map N h : L2(Ω)→ Vh1,� from each f ∈ L2(Ω) to the unique solution uh =: N h
f j of (4.1) is

then called the discrete Neumann operator.

(ii) Let f be in L2(Ω) and g be in H
1/2
� (∂Ω). The equation∫

Ω

Q∇vh · ∇ψh =
(
f, ψh

)
for all ψh ∈ Vh1,0 (4.3)

has a unique solution vh ∈ Vh1,� with γvh = g. Furthermore, the inequality∥∥vh∥∥
H1(Ω)

≤ CD
(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
(4.4)

is satisfied. The map Dh : L2(Ω)→ Vh1,� from each f ∈ L2(Ω) to the unique solution vh =: Dhf g of (4.3) is
called the discrete Dirichlet operator.

We now can introduce the strictly convex, discrete cost function

Υh
ρ,δ(f) := J hδ (f) + ρ ‖f − f∗‖2L2(Ω) with J hδ (f) :=

∫
Ω

Q∇
(
N h
f jδ −Dhf gδ

)
· ∇
(
N h
f jδ −Dhf gδ

)
.
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Theorem 4.2. The problem

min
f∈L2(Ω)

Υh
ρ,δ(f)

(
Phρ,δ

)
attains a unique minimizer f which satisfies the equation

f − f∗ = −1

ρ

(
N h
f jδ −Dhf gδ

)
. (4.5)

Remark 4.3. Since N h
f jδ and Dhf gδ are both in V1

h, so is f , provided that f∗ ∈ V1
h. Thus, taking this into

account, a discretization of the set L2(Ω) can be avoided.

Proof of Theorem 4.2. One can see easily that the problem
(
Phρ,δ

)
has a unique solution. It remains to show

(4.5). Let f ∈ L2(Ω) be the minimizer to
(
Phρ,δ

)
. The first-order optimality condition yields that Υh

ρ,δ

′
(f)ξ =

J hδ
′
(f)ξ + 2ρ(ξ, f − f∗) = 0 for all ξ ∈ L2(Ω). A short computation shows J hδ

′
(f)(ξ) = 2

(
ξ,N h

f jδ −Dhf gδ
)

and so obtain
(
ξ, 1
ρ

(
N h
f jδ −Dhf gδ

)
+ f − f∗

)
= 0 for all ξ ∈ L2(Ω), which finishes the proof.

From now on C is a generic positive constant which is independent of the mesh size h of T h, the noise level
δ and the regularization parameter ρ. Before presenting the convergence of finite element approximations
we here state some auxiliary results.

Lemma 4.4. A projection operator Πh
� : L1(Ω)→ Vh1,� exists such that

Πh
�ϕ

h = ϕh for all ϕh ∈ Vh1,� and Πh
�
(
H1

0 (Ω)
)
⊂ Vh1,0 ⊂ Vh1,�.

Furthermore, it satisfies the properties

lim
h→0

∥∥ϑ−Πh
�ϑ
∥∥
H1(Ω)

= 0 for all ϑ ∈ H1
� (Ω) (4.6)

and ∥∥ϑ−Πh
�ϑ
∥∥
H1(Ω)

≤ Ch‖ϑ‖H2(Ω) for all ϑ ∈ H1
� (Ω) ∩H2(Ω). (4.7)

Proof. Let Πh : L1(Ω) → Vh1 be the Clement’s mollification interpolation operator, see [17] and some
generalizations [10, 11, 41]. We then define the operator

Πh
�ϑ := Πhϑ− 1

|∂Ω|

∫
∂Ω

γΠhϑ ∈ Vh1,�, ∀ϑ ∈ L1(Ω)

which has the properties (4.6) and (4.7). The proof is completed.

On the basis of (4.6) and (4.7) we introduce for each Φ ∈ H1
� (Ω)

%hΦ :=
∥∥Φ−Πh

�Φ
∥∥
H1(Ω)

. (4.8)

We note that limh→0 %
h
Φ = 0 and

0 ≤ %hΦ ≤ Ch (4.9)

in case Φ ∈ H2(Ω). Furthermore, let (f, j, g) ∈ L2(Ω)×H−1/2(∂Ω)×H1/2
� (∂Ω) be fixed, we denote by

αhf,j =
∥∥N h

f j −Nf j
∥∥
H1(Ω)

and βhf,g =
∥∥Dhf g −Dfg∥∥H1(Ω)

. (4.10)

Then limh→0 α
h
f,j = limh→0 β

h
f,g = 0. In particular, if Nf j ∈ H2(Ω) and Dfg ∈ H2(Ω), the error estimates

αhf,j ≤ Ch and βhf,g ≤ Ch (4.11)

are satisfied (cf. [13, 16]).
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Lemma 4.5. Let (f1, j1, g1) and (f2, j2, g2) be arbitrary in L2(Ω) × H−1/2(∂Ω) × H
1/2
� (∂Ω). Then the

estimates ∥∥N h
f1
j1 −N h

f2
j2
∥∥
H1(Ω)

≤ CN
(
‖f1 − f2‖L2(Ω) + ‖j1 − j2‖H−1/2(∂Ω)

)
(4.12)

and ∥∥Dhf1
g1 −Dhf2

g2

∥∥
H1(Ω)

≤ CD
(
‖f1 − f2‖L2(Ω) + ‖g1 − g2‖H1/2(∂Ω)

)
(4.13)

hold for all h ≥ 0.

Proof. According to the definition of the discrete Neumann operator, we have for all ϕh ∈ Vh1,� that∫
Ω
Q∇N h

fi
ji · ∇ϕh =

〈
ji, γϕ

h
〉

+
(
fi, ϕ

h
)

with i = 1, 2. Thus, ΦhN := N h
f1
j1 − N h

f2
j2 is the unique solu-

tion to the variational problem
∫

Ω
Q∇ΦhN · ∇ϕh =

〈
j1 − j2, γϕh

〉
+
(
f1 − f2, ϕ

h
)

for all ϕh ∈ Vh1,� and so
that (4.12) is satisfied. Likewise, we also obtain (4.13). The proof is completed.

Lemma 4.6. Let
(
T hn

)
be a sequence of triangulations with limn→∞ hn = 0. Assume that (jδn , gδn) is a

sequence in H−1/2(∂Ω) ×H1/2
� (∂Ω) convergent to (jδ, gδ) in the H−1/2(∂Ω) ×H1/2(∂Ω)-norm and (fn) is

a sequence in L2(Ω) weakly convergent in L2(Ω) to f , then there holds the inequality

lim inf
n→∞

J hnδn (fn) ≥ Jδ(f). (4.14)

Proof. The proof is based upon the mollification operator introduced in Lemma 4.4 together with standard
arguments, therefore omitted here.

We now show the convergence of finite element approximations to the identification problem.

Theorem 4.7. Assume that limn→∞ hn = 0 and (δn) and (ρn) any positive sequences such that

ρn → 0,
δn√
ρn
→ 0,

αhn
f†,j†√
ρn
→ 0 and

βhn
f†,g†√
ρn
→ 0 as n→∞, (4.15)

where αhn
f†,j†

and βhn
f†,g†

are defined by (4.10). Furthermore, assume that (jδn , gδn) is a sequence in H−1/2(∂Ω)×
H

1/2
� (∂Ω) satisfying ∥∥jδn − j†∥∥H−1/2(∂Ω)

+
∥∥gδn − g†∥∥H1/2(∂Ω)

≤ δn

and fn := fhnρn,δn is the unique minimizer of
(
Phnρn,δn

)
for each n ∈ N . Then:

(i) The sequence (fn) converges in the L2(Ω)-norm to f†.

(ii) The corresponding state sequences
(
N hn
fn
jδn

)
and

(
Dhnfn gδn

)
converge in the H1(Ω)-norm to the unique

weak solution Φ† = Φ†
(
f†, j†, g†

)
of the boundary value problem (1.1)–(1.3).

Before going to prove the theorem, we make the following short remark.

Remark 4.8. In case the weak solution Φ† = Φ†
(
f†, j†, g†

)
of (1.1)–(1.3) belonging to H2(Ω), the estimate

(4.11) shows that 0 ≤ αhn
f†,j†

, βhn
f†,g†

≤ Chn. Therefore, in view of (4.15), the above convergences (i) and (ii)

are obtained if the sequence (ρn) is chosen such that

ρn → 0,
δn√
ρn
→ 0 and

hn√
ρn
→ 0 as n→∞.

By regularity theory for elliptic boundary value problems, the regularity assumption Φ† ∈ H2(Ω) is satisfied

if the diffusion matrix Q ∈ C0,1(Ω)
d×d

, j† ∈ H1/2(∂Ω), g† ∈ H3/2(∂Ω) and either ∂Ω is smooth of the class
C0,1 or the domain Ω is convex (see, for example, [20, 44]).
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Proof of Theorem 4.7. We have from the optimality of fn that

J hnδn (fn) + ρn‖fn − f∗‖2L2(Ω) ≤ J
hn
δn

(f†) + ρn‖f† − f∗‖2L2(Ω). (4.16)

Since at f† there holds the equation Nf†j† = Df†g†, we infer from Lemma 4.5 that

J hnδn (f†) ≤ C
(
δ2
n +

(
αhn
f†,j†

)2

+
(
βhn
f†,g†

)2
)

(4.17)

which implies from (4.16) that limn→∞ J hnδn (fn) = 0 and, by the assumption (4.15),

lim sup
n→∞

‖fn − f∗‖2L2(Ω) ≤
∥∥f† − f∗∥∥2

L2(Ω)
. (4.18)

So that the sequence (fn) is bounded in the L2(Ω)-norm. A subsequence not relabelled and an element

f̂ ∈ L2(Ω) exist such that (fn) converges weakly in L2(Ω) to f̂ and∥∥f̂ − f∗∥∥2

L2(Ω)
≤ lim inf

n→∞
‖fn − f∗‖2L2(Ω). (4.19)

For any f ∈ L2(Ω) we denote by J0(f) :=
∫

Ω
Q∇

(
Nf j† −Dfg†

)
· ∇
(
Nf j† −Dfg†

)
. By (1.7), we have∥∥∥Nf̂ j† −Df̂g†∥∥∥2

H1(Ω)
≤ 1+CΩ

CΩq
J0

(
f̂
)
≤ 1+CΩ

CΩq
lim infn→∞ J hnδn (fn) = 0, here we used Lemma 4.6. Thus,

Nf̂ j
† = Df̂g

† which infers f̂ ∈ I
(
j†, g†

)
. Now we show f̂ = f† and the sequence (fn) converges to f̂ in the

L2(Ω)-norm. By the definition of the f∗-minimum-norm solution and (4.18)–(4.19), we get that∥∥f† − f∗∥∥2

L2(Ω)
≤
∥∥f̂ − f∗∥∥2

L2(Ω)
≤ lim inf

n→∞
‖fn − f∗‖2L2(Ω) ≤ lim sup

n→∞
‖fn − f∗‖2L2(Ω) ≤

∥∥f† − f∗∥∥2

L2(Ω)

and so that
∥∥f† − f∗∥∥2

L2(Ω)
=
∥∥f̂ − f∗∥∥2

L2(Ω)
= limn→∞ ‖fn − f∗‖2L2(Ω). By the uniqueness of the minimum-

norm solution and the sequence (fn) weakly converging in L2(Ω) to f̂ , we conclude that f̂ = f† and the

sequence (fn) in fact converges in the L2(Ω)-norm to f̂ . Finally, we show the sequences (N hn
fn
jδn) and

(Dhnfn gδn) converge to Φ† = Nf†j† = Df†g† in the H1(Ω)-norm. Indeed, by Lemma 4.5, we obtain that∥∥∥N hn
fn
jδn −Nf†j†

∥∥∥
H1(Ω)

≤
∥∥∥N hn

fn
jδn −N

hn
f†
j†
∥∥∥
H1(Ω)

+
∥∥∥N hn

f†
j† −Nf†j†

∥∥∥
H1(Ω)

≤ C
(∥∥jδn − j†∥∥H−1/2(∂Ω)

+
∥∥fn − f†∥∥L2(Ω)

+ αhn
f†,j†

)
→ 0 as n→∞.

Similarly, we also get
∥∥∥Dhnfn gδn −Df†g†∥∥∥H1(Ω)

≤ C
(∥∥gδn − g†∥∥H1/2(∂Ω)

+
∥∥fn − f†∥∥L2(Ω)

+ βhn
f†,g†

)
→ 0 as

n tends to ∞, which finishes the proof.

5 Convergence rates for the discretized problem

We are now in a position to state the main theorem on convergence rates for the general case of finite element
discretized regularized solutions with noise level (δ > 0 and h > 0). The source condition (3.5) will play a
prominent role in this context.

Theorem 5.1. Assume that the condition (3.5) is fulfilled. Then, we have the error estimate and convergence
rate ∥∥∥N h

fhjδ −D
h
fhgδ

∥∥∥2

H1(Ω)
+ ρ
∥∥fh − f†∥∥2

L2(Ω)

= O
(
δ2 +

(
αhf†,j†

)2

+
(
βhf†,g†

)2

+ ρ%hNwj† + ρ%hN
f† j
† + ρ%hD0γNwj†−g† + δρ+ ρ2

)
, (5.1)

where fh := fhρ,δ is the unique minimizer of
(
Phρ,δ

)
and D0γNwj† − g† is the unique weak solution to the

Dirichlet problem

−∇ · (Q∇v) = 0 in Ω and v = γNwj† − g† on ∂Ω

and αhf†,j† , β
h
f†,g† , %

h
Nwj† , %

h
N
f† j
† and %hD0γNwj†−g† come from (4.8) and (4.10).
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Remark 5.2. In case (cf. Remark 4.8) Nf†j†,Nwj†,D0γNwj† − g† ∈ H2(Ω), by (4.9) and (4.11), we have

0 ≤ αhf†,j† , β
h
f†,g† , %

h
Nwj† , %

h
N
f† j
† , %

h
D0γNwj†−g† ≤ Ch

and so that the following convergence rate is obtained∥∥∥N h
fhjδ −D

h
fhgδ

∥∥∥2

H1(Ω)
+ ρ
∥∥fh − f†∥∥2

L2(Ω)
= O

(
δ2 + h2 + hρ+ δρ+ ρ2

)
.

Remark 5.3. Let Φ† = Φ†
(
f†, j†, g†

)
be the weak solution of (1.1)–(1.3). Then the convergence rate∥∥∥N h

fhjδ − Φ†
∥∥∥2

H1(Ω)
+
∥∥∥Dhfhgδ − Φ†

∥∥∥2

H1(Ω)

= O
(
δ2ρ−1 +

(
αhf†,j†

)2

ρ−1 +
(
βhf†,g†

)2

ρ−1 + %hNwj† + %hN
f† j
† + %hD0γNwj†−g† + δ + ρ+ αhf†,j† + βhf†,g†

)
is also established. Indeed, the desired equation directly follows from (5.1) and the following inequalities∥∥∥N h

fhjδ −Nf†j
†
∥∥∥
H1(Ω)

≤ C
(∥∥jδ − j†∥∥H−1/2(∂Ω)

+
∥∥fh − f†∥∥

L2(Ω)
+ αhf†,j†

)
≤ C

(
δ +

∥∥fh − f†∥∥
L2(Ω)

+ αhf†,j†
)

and
∥∥∥Dhfhgδ −Df†g†∥∥∥

H1(Ω)
≤ C

(
δ +

∥∥fh − f†∥∥
L2(Ω)

+ βhf†,g†

)
, here we used Lemma 4.5.

Proof of Theorem 5.1. In view of (4.17) we first have that J hδ
(
f†
)
≤ C

(
δ2 +

(
αhf†,j†

)2

+
(
βhf†,g†

)2
)
. The

optimality of fh yields J hδ
(
fh
)

+ ρ
∥∥fh − f∗∥∥2

L2(Ω)
≤ J hδ

(
f†
)

+ ρ
∥∥f† − f∗∥∥2

L2(Ω)
. This gives

J hδ
(
fh
)

+ ρ
∥∥fh − f†∥∥2

L2(Ω)
≤ J hδ

(
f†
)

+ ρ
(∥∥f† − f∗∥∥2

L2(Ω)
−
∥∥fh − f∗∥∥2

L2(Ω)
+
∥∥fh − f†∥∥2

L2(Ω)

)
≤ C

(
δ2 +

(
αhf†,j†

)2

+
(
βhf†,g†

)2
)

+ 2ρ
(
f† − f∗, f† − fh

)
. (5.2)

Since Nf†j† = Df†g†, it follows that(
f† − f∗, f† − fh

)
=
(
f† − fh,Nwj† −Nf†j†

)
+
(
f† − fh,Df†g† −Dwg†

)
. (5.3)

From (1.10), we infer

(
f†,Nwj† −Nf†j†

)
=

∫
Ω

Q∇Nf†j† · ∇
(
Nwj† −Nf†j†

)
−
〈
j†, γ

(
Nwj† −Nf†j†

)〉
,

and (
fh,Nwj† −Nf†j†

)
=

∫
Ω

Q∇Nfhj† · ∇
(
Nwj† −Nf†j†

)
−
〈
j†, γ

(
Nwj† −Nf†j†

)〉
.

This in turn implies(
f† − fh,Nwj† −Nf†j†

)
=

∫
Ω

Q∇
(
Nf†j† −Nfhj†

)
· ∇
(
Nwj† −Nf†j†

)
=

∫
Ω

Q∇
(
Nf†j† −Dfhg†

)
· ∇
(
Nwj† −Nf†j†

)
+

∫
Ω

Q∇
(
Dfhg† −Nfhj†

)
· ∇
(
Nwj† −Nf†j†

)
. (5.4)

Since γ
(
Df†g† −Dwg†

)
= 0, it follows from (1.11) that

(
f† − fh,Df†g† −Dwg†

)
=

∫
Ω

Q∇
(
Df†g† −Dfhg†

)
· ∇
(
Df†g† −Dwg†

)
(5.5)
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holds. We thus infer from (5.3)–(5.5) the identity(
f† − f∗, f† − fh

)
=

∫
Ω

Q∇
(
Dfhg† −Nfhj†

)
· ∇
(
Nwj† −Nf†j†

)
+

∫
Ω

Q∇
(
Nf†j† −Dfhg†

)
· ∇
(
Nwj† −Nf†j†

)
+

∫
Ω

Q∇
(
Df†g† −Dfhg†

)
· ∇
(
Df†g† −Dwg†

)
. (5.6)

We note again that Nf†j† = Df†g† and γ
(
Df†g† −Dfhg†

)
= 0. Then, together with (1.10) and (1.11), the

last two terms on the right hand side of (5.6) satisfy∫
Ω

Q∇
(
Nf†j† −Dfhg†

)
· ∇
(
Nwj† −Nf†j†

)
+

∫
Ω

Q∇
(
Df†g† −Dfhg†

)
· ∇
(
Df†g† −Dwg†

)
= 0.

Thus, we obtain from (5.6)(
f† − f∗, f† − fh

)
=

∫
Ω

Q∇
(
Dfhg† −Nfhj†

)
· ∇
(
Nwj† −Nf†j†

)
.

Next, we abbreviate W = Nwj† −Nf†j† and note

γW = γNwj† − g†. (5.7)

Then we get(
f† − f∗, f† − fh

)
=

∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇W −

∫
Ω

Q∇
(
Nfhj† −N h

fhj
†
)
· ∇W

+

∫
Ω

Q∇
(
Dhfhg

† −Dhfhgδ
)
· ∇W −

∫
Ω

Q∇
(
N h
fhj
† −N h

fhjδ

)
· ∇W

+

∫
Ω

Q∇
(
Dhfhgδ −N

h
fhjδ

)
· ∇W := I1 + I2 + I3. (5.8)

To prepare the estimation of those three addends we start with writing∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇W

=

∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇D0γW +

∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇Πh

� (W −D0γW )

+

∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇
(
W −D0γW −Πh

� (W −D0γW )
)
.

Since Dfhg† −Dhfhg
† ∈ H1

0 (Ω), we then get∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇D0γW =

∫
Ω

Q∇D0γW · ∇
(
Dfhg† −Dhfhg

†
)

= 0.

Since γ (W −D0γW ) = γW − γD0γW = γW − γW = 0, we infer Πh
� (W −D0γW ) ∈ Vh1,0 = Vh1 ∩ H1

0 (Ω)

and then obtain from (1.11) and (4.3) that
∫

Ω
Q∇

(
Dfhg† −Dhfhg

†
)
· ∇Πh

� (W −D0γW ) = 0 holds. Hence

we have ∣∣∣∣ ∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇W

∣∣∣∣
=

∣∣∣∣∫
Ω

Q∇
(
Dfhg† −Dhfhg

†
)
· ∇
(
W −D0γW −Πh

� (W −D0γW )
)∣∣∣∣

≤ C
(∥∥fh∥∥

L2(Ω)
+
∥∥g†∥∥

H1/2(∂Ω)

)(
%hNwj† + %hN

f† j
† + %hD0γNwj†−g†

)
, (5.9)

where we use (5.7). Similarly, since Πh
�W ∈ Vh� and by (1.10) and (4.1), we get∣∣∣∣∫

Ω

Q∇
(
Nfhj† −N h

fhj
†
)
· ∇W

∣∣∣∣ ≤ C (∥∥fh∥∥L2(Ω)
+
∥∥j†∥∥

H−1/2(∂Ω)

)(
%hNwj† + %hN

f† j
†

)
. (5.10)
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Now we are in the position to estimate I1 − I3. Combining (5.9) with (5.10), we obtain

ρ|I1| ≤ C
(
δ2 +

(
αhf†,j†

)2

+
(
βhf†,g†

)2

+ ρ%hNwj† + ρ%hN
f† j
† + ρ%hD0γNwj†−g†

)
. (5.11)

Now, using Lemma 4.5, we arrive at

ρ|I2| ≤ Cρ
(∥∥gδ − g†∥∥H1/2(∂Ω)

+
∥∥jδ − j†∥∥H−1/2(∂Ω)

)
≤ Cδρ. (5.12)

Since for a.e. in Ω the matrix Q(x) is positive definite, the root Q(x)1/2 is then well defined. Thus, using
the Cauchy-Schwarz inequality and Young’s inequality, we estimate I3 as

ρ|I3| ≤ Cρ
(
J hδ
(
fh
))1/2 ≤ C2ρ2 +

1

4
J hδ
(
fh
)
≤ Cρ2 +

1

4
J hδ
(
fh
)
. (5.13)

It follows from (5.8) and (5.11)–(5.13) that

2ρ
(
f† − f∗, f† − fh

)
≤ C

(
δ2 +

(
αhf†,j†

)2

+
(
βhf†,g†

)2

+ ρ%hNwj† + ρ%hN
f† j
† + ρ%hD0γNwj†−g† + ρδ + ρ2

)
+

1

2
J hδ
(
fh
)

holds, which together with (5.2) implies

1

2
J hδ
(
fh
)

+ ρ
∥∥fh − f†∥∥2

L2(Ω)

≤ C
(
δ2 +

(
αhf†,j†

)2

+
(
βhf†,g†

)2

+ ρ%hNwj† + ρ%hN
f† j
† + ρ%hD0γNwj†−g† + ρδ + ρ2

)
. (5.14)

Since
∥∥∥Dhfhgδ −N h

fhjδ

∥∥∥2

H1(Ω)
≤ CJ hδ

(
fh
)
, (5.1) now directly follows from (5.14), which finishes the proof.

6 Conjugate gradient method and numerical test

In this section we will utilize the conjugate gradient (CG) method (see, for example, [21, 26]) to find the

minimizes of the strictly convex, discrete regularized problem
(
Phρ,δ

)
. Let ∇Υh

ρ,δ(f) = 2
(
N h
f jδ −Dhf gδ

)
+

2ρ(f − f∗) be the L2-gradient of the cost function Υh
ρ,δ at f (see Proof of Theorem 4.2), where f∗ ∈ Vh1 .

Then the sequence of iterates via this algorithm is generated by f0 ∈ L2(Ω)∩ Vh1 and fk+1 := fk + tkdk for
k ≥ 0, where

dk :=

{
−∇Υh

ρ,δ(f
k) if k = 0,

−∇Υh
ρ,δ(f

k) + βkdk−1 if k > 0
with βk :=

‖∇Υh
ρ,δ(f

k)‖2

‖∇Υh
ρ,δ(f

k−1)‖2
and tk := arg min

t≥0
Υh
ρ,δ(f

k + tdk).

A short computation shows that

tk = −

∫
Ω
Q∇

(
N h
dk0−Dhdk0

)
· ∇
(
N h
fkjδ −D

h
fkgδ

)
+ ρ

(
dk, fk − f∗

)
∫

Ω
Q∇

(
N h
dk

0−Dh
dk

0
)
· ∇
(
N h
dk

0−Dh
dk

0
)

+ ρ ‖dk‖2L2(Ω)

= −1

2

(
dk,∇Υh

ρ,δ(f
k)
)

(
dk,N h

dk
0−Dh

dk
0
)

+ ρ ‖dk‖2L2(Ω)

.

Consequently, the CG method then reads as follows: giving an initial approximation f0 ∈ Vh1 , number of
iterations N and a positive constants τ1, τ2. Computing

∇Υh
ρ,δ(f

0) = 2
(
N h
f0jδ −Dhf0gδ

)
+ 2ρ(f0 − f∗), d0 = −∇Υh

ρ,δ(f
0), t0 =

1

2

∥∥d0
∥∥2

L2(Ω)(
d0,N h

d00−Dhd00
)

+ ρ ‖d0‖2L2(Ω)

and setting

f1 = f0 + t0d0 and k = 1, Tolerance :=
∥∥∇Υh

ρ,δ

(
fk
)∥∥
L2(Ω)

− τ1 − τ2
∥∥∇Υh

ρ,δ

(
f0
)∥∥
L2(Ω)

.
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while (Tolerance > 0) & (k ≤ N) do

r =
∥∥∇Υh

ρ,δ(f
k−1)

∥∥2

L2(Ω)
, r =

∥∥∇Υh
ρ,δ(f

k)
∥∥2

L2(Ω)
, βk =

r

r
,

dk = −∇Υh
ρ,δ(f

k) + βkdk−1, tk = −1

2

(
dk,∇Υh

ρ,δ(f
k)
)

(
dk,N h

dk
0−Dh

dk
0
)

+ ρ ‖dk‖2L2(Ω)

,

fk+1 = fk + tkdk,

k := k + 1, Tolerance :=
∥∥∇Υh

ρ,δ

(
fk
)∥∥
L2(Ω)

− τ1 − τ2
∥∥∇Υh

ρ,δ

(
f0
)∥∥
L2(Ω)

.

end
Algorithm 1: CG iteration

Below we illustrate the theoretical result with numerical examples. For this purpose we consider the the
boundary value problem

−∇ ·
(
Q∇Φ

)
= f† in Ω := (−1, 1)× (−1, 1), (6.1)

Q∇Φ · ~n = j† on ∂Ω and Φ = g† on ∂Ω. (6.2)

We assume that entries of the known symmetric diffusion matrix Q are discontinuous which are defined as
q11 = 3χΩ11

+ χΩ\Ω11
, q12 = χΩ12

, q22 = 4χΩ22
+ 2χΩ\Ω22

, where χD is the characteristic function of the
Lebesgue measurable set D and

Ω11 :=
{

(x1, x2) ∈ Ω
∣∣ |x1| ≤ 1/2 and |x2| ≤ 1/2

}
, Ω12 :=

{
(x1, x2) ∈ Ω

∣∣ |x1|+ |x2| ≤ 1/2
}

and

Ω22 :=
{

(x1, x2) ∈ Ω
∣∣ x2

1 + x2
2 ≤ 1/4

}
.

The identified source function f† ∈ L2(Ω) in (6.1) is assumed to be discontinuous and defined as

f† = 2χΩ1 − χΩ2 +
5π

7π − 192
χΩ\(Ω1∪Ω2),

where

Ω1 :=
{

(x1, x2) ∈ Ω
∣∣ 9(x1 + 1/2)2 + 16(x2 − 1/2)2 ≤ 1

}
and

Ω2 :=
{

(x1, x2) ∈ Ω
∣∣ (x1 − 1/2)2 + (x2 + 1/2)2 ≤ 1/16

}
.

For the discretization we divide the interval (−1, 1) into ` equal segments and so that the domain Ω = (−1, 1)2

is divided into 2`2 triangles, where the diameter of each triangle is h` =
√

8
` . In the minimization problem(

Phρ,δ
)

we take h = h` and ρ = ρ` = 0.01h`. We use Algorithm 1 which is described above for computing

the numerical solution of the problem
(
Ph`ρ`,δ`

)
. As an a-priori estimate and the initial approximation we

choose f∗ := 0 and f0(x) := χ(0,1]×[−1,1] − χ[−1,0]×[−1,1].

Example 6.1. In this first example j† ∈ H−1/2(∂Ω) is chosen to be the piecewise constant function defined
by

j† = χ(0,1]×{−1} − χ[−1,0]×{1} + 2χ(0,1]×{1} − 2χ[−1,0]×{−1}

+ 3χ{−1}×(−1,0] − 3χ{1}×(0,1) + 4χ{1}×(−1,0] − 4χ{−1}×(0,1).
(6.3)

Then g† ∈ H1/2
� (∂Ω) is defined as g† = γNf†j†. We mention that, to avoid a so-called inverse crime, we

generate the given data on a finer grid than those used in the computations. For this purpose we first
solve the problem (6.1) supplemented with the Neumann boundary condition in (6.2) on the very fine grid
with ` = 128, and then use this numerical approximation as substitute for (j†, g†) in our computational
considerations below.

For observations with noise we assume that

(jδ` , gδ`) =
(
j† + θ` ·Rj† , g† + θ` ·Rg†

)
for some θ` > 0 depending on `, (6.4)
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where Rj† and Rg† are ∂Mh`×1-matrices of random numbers on the interval (−1, 1) which are generated by
the MATLAB function “rand”, and ∂Mh` is the number of boundary nodes of the triangulation T h` . The
measurement error is then computed as δ` =

∥∥jδ` − j†∥∥L2(∂Ω)
+
∥∥gδ` − g†∥∥L2(∂Ω)

. To satisfy the condition

δ` · ρ−1/2
` → 0 as `→∞ in Theorem 4.7 we below take θ` = h`

√
ρ`.

We start with the coarsest level ` = 4. At each iteration k we compute

Tolerance :=
∥∥∇Υh`

ρ`,δ`

(
fk`
)∥∥
L2(Ω)

− τ1 − τ2
∥∥∇Υh`

ρ`,δ`

(
f0
`

)∥∥
L2(Ω)

,

where τ1 := 10−6h
1/2
` and τ2 := 10−4h

1/2
` . Then the iteration was stopped if Tolerance ≤ 0 or the number

of iterations reached the maximum iteration count of 600. After obtaining the numerical solution of the first
iteration process with respect to the coarsest level ` = 4, we use its interpolation on the next finer mesh ` = 8
as an initial approximation f0 for the algorithm on this finer mesh, and proceed similarly on the preceding
refinement levels.

Let f` be the function which is obtained at the final iterate of Algorithm 1 corresponding to the refinement
level `. Furthermore, let N h`

f`
jδ` and Dh`f` gδ` denote the computed numerical solution to the Neumann and

Dirichlet problem

−∇ · (Q∇u) = f` in Ω and Q∇u · ~n = jδ` on ∂Ω and −∇ · (Q∇v) = f` in Ω and v = g` on ∂Ω,

respectively. The notations N h`
f†
j† and Dh`

f†
g† of the exact numerical solutions are to be understood similarly.

We use the following abbreviations for the errors

L2
f =

∥∥f` − f†∥∥L2(Ω)
, L2
N =

∥∥N h`
f`
jδ` −N

h`
f†
j†
∥∥
L2(Ω)

, H1
N =

∥∥N h`
f`
jδ` −N

h`
f†
j†
∥∥
H1(Ω)

and

L2
D =

∥∥Dh`f` gδ` −Dh`f†g†∥∥L2(Ω)
, H1

D =
∥∥Dh`f` gδ` −Dh`f†g†∥∥H1(Ω)

.

The numerical results are summarized in Table 1 and Table 2, where we present the refinement level `, mesh
size h` of the triangulation, regularization parameter ρ`, measured noise δ`, number of iterations, value of
tolerances and errors L2

f , L2
N , L2

D, H1
N and H1

D. Their experimental order of convergence (EOC) is presented

in Table 3, where EOCΘ :=
ln Θ(h1)− ln Θ(h2)

lnh1 − lnh2
and Θ(h) is an error function of the mesh size h.

All figures presented correspond to ` = 64. Figure 1 from left to right shows the computed numerical solution

f` of the algorithm at the final 579th-iteration, and the differences N h`
f†
j† − N h`

f`
jδ` , D

h`
f†
g† − Dh`f` gδ` and

Dh`f` gδ` −N
h`
f`
jδ` .

Convergence history
` h` ρ` δ` Iterate Tolerance

4 0.7071 0.7071e-2 0.1916 312 -3.0822e-5
8 0.3536 0.3536e-2 9.3172e-2 387 -1.2739e-6
16 0.1766 0.1766e-2 4.1174e-2 461 -1.4029e-6
32 8.8388e-2 0.8839e-3 2.0932e-2 505 -1.8559e-7
64 4.4194e-2 0.4419e-3 7.2765e-3 579 -7.3540e-9

Table 1: Refinement level `, mesh size h` of the triangulation, regularization parameter ρ`, measurement
noise δ`, number of iterates and value of Tolerance.
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Convergence history
` L2

f L2
N L2

D H1
N H1

D

4 0.5215 2.0441e-2 2.0396e-2 6.9952e-2 6.9713e-2
8 0.3309 6.3175e-3 6.3083e-3 3.1374e-2 3.1311e-2
16 0.1915 2.0132e-3 2.0122e-3 1.7276e-2 1.7243e-2
32 0.1073 5.5434e-4 5.5426e-4 8.9136e-3 8.9130e-3
64 5.2568e-2 1.4669e-4 1.4666e-4 3.9352e-3 3.9347e-3

Table 2: Errors L2
f , L2

N , L2
D, H1

N and H1
D.

Experimental order of convergence
` EOC

L2
f

EOC
L2
N

EOC
L2
D

EOC
H1
N

EOC
H1
D

4 – – – – –
8 0.6563 1.6940 1.6930 1.1568 1.1548
16 0.7891 1.6499 1.6485 0.8608 0.8607
32 0.8357 1.8606 1.8601 0.9547 0.9520
64 1.0294 1.9180 1.9181 1.1796 1.1797

Mean of EOC 0.8276 1.7806 1.7799 1.0380 1.0368

Table 3: Experimental order of convergence between finest and coarsest level for L2
f , L2

N , L2
D, H1

N and H1
D.

Figure 1: Computed numerical solution f` of the algorithm at the final iteration, and the differences N h`
f†
j†−

N h`
f`
jδ` , D

h`
f†
g† −Dh`f` gδ` and Dh`f` gδ` −N

h`
f`
jδ` .

Example 6.2. In present example we assume that multiple measurements are available, say
(
jiδ, g

i
δ

)
i=1,...,I

.

Then, problem
(
Phρ,δ

)
in Section 4 is given by

min
f∈L2(Ω)

Ῡh
ρ,δ(f) := min

f∈L2(Ω)


1

I

I∑
i=1

∫
Ω

Q∇
(
N h
f j

i
δ −Dhf giδ

)
· ∇
(
N h
f j

i
δ −Dhf giδ

)
︸ ︷︷ ︸

:=J̄ hδ (q)

+ρ ‖f − f∗‖2L2(Ω)


(
P̄hρ,δ

)
,

which also attains a solution f̄hρ,δ. The Neumann boundary condition in the equation (6.2) is chosen in the
same form as (6.3), i.e.

j†(A,B,C,D) = A · χ(0,1]×{−1} −A · χ[−1,0]×{1} +B · χ(0,1]×{1} −B · χ[−1,0]×{−1}

+ C · χ{−1}×(−1,0] − C · χ{1}×(0,1) +D · χ{1}×(−1,0] −D · χ{−1}×(0,1),
(6.5)

and depends on the constants A,B,C and D. Let g†(A,B,C,D) := γNf†j
†
(A,B,C,D) and assume that noisy

observations are given by(
j

(A,B,C,D)
δ`

, g
(A,B,C,D)
δ`

)
=
(
j†(A,B,C,D) + θ ·Rj†

(A,B,C,D)
, g†(A,B,C,D) + θ ·Rg†

(A,B,C,D)

)
, (6.6)
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where Rj†
(A,B,C,D)

and Rg†
(A,B,C,D)

denote ∂Mh` × 1-matrices of random numbers on the interval (−1, 1).

Different from (6.4), the constant θ appeared in the equation (6.6) is now independent of the grid level `.

In the case (A,B,C,D) = (1, 2, 3, 4) we have a single noisy measurement couple, i.e. I = 1. We now
fix D = 4, and let (A,B,C) take all permutations S3 of the set {1, 2, 3}. Then, the equations (6.5)–(6.6)
generate I = 6 measurements. Similarly, if (A,B,C,D) takes all permutations S4 of {1, 2, 3, 4} we get I = 16
measurements. With θ = 0.1 and ` = 64 we compute the noise level

δ̄` =


∥∥j(1,2,3,4)
δ`

− j†(1,2,3,4)

∥∥
L2(∂Ω)

+
∥∥g(1,2,3,4)
δ`

− g†(1,2,3,4)

∥∥
L2(∂Ω)

if (A,B,C,D) = (1, 2, 3, 4),
1

6

∑
(A,B,C)∈S3

∥∥j(A,B,C,4)
δ`

− j†(A,B,C,4)

∥∥
L2(∂Ω)

+
∥∥g(A,B,C,4)
δ`

− g†(A,B,C,4)

∥∥
L2(∂Ω)

if D = 4,

1

16

∑
(A,B,C,D)∈S4

∥∥j(A,B,C,D)
δ`

− j†(A,B,C,D)

∥∥
L2(∂Ω)

+
∥∥g(A,B,C,D)
δ`

− g†(A,B,C,D)

∥∥
L2(∂Ω)

.

The corresponding numerical results for the multiple measurement case are presented in the Table 4.

Numerical results for ` = 64, θ = 0.1 with multiple observations
I Iterate Tolerance δ̄` L2

f L2
N L2

D H1
N H1

D

1 531 -3.2313e-8 0.3292 0.3280 5.9096e-3 5.9090e-3 0.1225 0.1221
6 517 -7.1620e-9 0.3331 0.2583 4.3125e-3 4.3122e-3 7.9322e-2 7.9320e-2
16 536 -6.4706e-8 0.3289 0.1747 2.8465e-3 2.8461e-3 5.2318e-2 5.2314e-2

Table 4: Numerical results for ` = 64, θ = 0.1, and with multiple measurements I = 1, 6, 16.

Finally, in Figure 2 from left to right we show the interpolation Ih`1 f† of the exact source and the computed
numerical solution q` of the algorithm at the final iteration for ` = 64, θ = 0.1, and I = 16, 6, 1, respectively.

Figure 2: Interpolation Ih`1 f†, computed numerical solution f` of the algorithm at the final iteration for
` = 64, θ = 0.1, and with multiple measurements I = 16, 6, 1, respectively.
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