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ABSTRACT. The authors study Tikhonov regularization of linear
ill-posed problems with a general convex penalty defined on a
Banach space. It is well known that the error analysis requires
smoothness assumptions. Here such assumptions are given in form
of inequalities involving only the family of noise-free minimizers
along the regularization parameter and the (unknown) penalty-
minimizing solution. These inequalities control, respectively, the
defect of the penalty, or likewise, the defect of the whole Tikhonov
functional. The main results provide error bounds for a Bregman
distance, which split into two summands: the first smoothness-
dependent term does not depend on the noise level, whereas the
second term includes the noise level. This resembles the situation
of standard quadratic Tikhonov regularization in Hilbert spaces.
It is shown that variational inequalities, as these were studied re-
cently, imply the validity of the assumptions made here. Several
examples highlight the results in specific applications.

1. INTRODUCTION

As a mathematical model for a linear inverse problem, we consider
the ill-posed operator equation

(1) Az =y,

where A is a bounded linear operator from an infinite-dimensional Ba-
nach space X to an infinite-dimensional Hilbert space H such that
R(A), the range of A, is a non-closed subset of H. Let 27 € X de-
note an exact solution of (1) with properties to be particularized later.
Unlesss specified otherwise, the norm || - || in this study always refers
to that in H. We assume that instead of the exact right-hand side
y € R(A) only noisy data y° € H satisfying

(2) Iy’ —yl| <6
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with noise level § > 0 are available. Based on ° we try to recover z' in
a stable approximate manner by using variational regularization with
general conver penalty functionals J.

Precisely, we are going to analyze convergence conditions for mini-
mizers of the Tikhonov functional

1
T.(z;v) = 5 |Az —v|| 2+ aJ(x), =€ X,

with regularization parameter o > 0, for exact right-hand sides v :=y

and noisy data v := 3°. In this context, we distinguish regularized
solutions
(3) T, € argmin T, (z;y)
rzeX
and
(4) 2 € argmin T, (z; 1),
reX

respectively. In case of multiple minimizers we select any family of
regularized solutions z, and z° for a > 0. As will be seen from the
subsequent results, in particular from the discussion in Remark 1, the
specific choice has no impact on the convergence rate results.

We are interested in estimates of the error between x% and z' and

in proving corresponding convergence rates. In a Hilbert space X, the
error norm is a canonical measure in this context, in particular if the
penalty J is of norm square type. For Banach spaces X and general
convex penalties J, however, norms are not always appropriate mea-
sures, and the study [5] introduced alternatively the Bregman distance
(5)
Bi(z;z) = J(x) = J(2) = ((,x —2) >0, ze€X, (e€dJ(z)C X",
with some subgradient ¢ from the subdifferential 0.J(z) of J at the
point z € X, as a powerful error measure for regularized solutions of
ill-posed problems in Banach spaces, see also, e.g., [17, 25, 28, 29]. We
stress the fact that the subgradient ( is taken at the first argument in
the Bregman distance, and we recall that the Bregman distance is not
symmetric in its arguments. Therefore, we highlight in (5) the base
point z, by indicating the corresponding subgradient, say (.

It is a classical result that convergence rates for ill-posed problems
require a regularity condition (abstract smoothness condition) for xf
as otherwise convergence can be arbitrarily slow. Within the present
study we shall propose regularity conditions based on the penalty or
overall Tikhonov functionals.

A common regularity assumption, often called source condition, as
these are usually employed for linear problems in Hilbert space, is to
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assume that 0.J(z") NR(A*) # 0, i.e., there are a subgradient &' and a
source element w € H such that

¢heolz’)  with & =Aw, |uw| <R

As we will highlight in Section 3, such source conditions yield varia-
tional inequalities of the form

(6) J(ah) — J(z) < R||Ax’ — Az|| forall z€ X.

This represents a benchmark variational inequality. If otherwise &7 ¢
R(A*), then a variational inequality

(7) J(z") — J(x) §<I>(HA$T—A93||) forall z € X,

with a sub-linear index function® ® holds, and the quotient function
®(t)/t is strictly decreasing. Under a more restrictive assumption on @
(concavity instead of sub-linearity) and for a more general setting this
condition was introduced as formula (2.11) in [21].

Under such regularity conditions, as e.g. (7), it is known from ibid.
that convergence rates

Bes (22;27) = O(®(8)) as §—0.

can be established.

In the past years, convergence rates under variational source con-
ditions (cf., e.g., [8, 15, 19]) were expressed in terms of the Bregman
distance Bt (z';29), and hence using the base point 2. In this context
it is not clear whether a subgradient ' € 9.J(27) exists, for instance
if 2™ is not in the interior of dom(J) := {x € X : J(z) < oco}. Taking
as base point the minimizer 2%, this cannot happen and the set 9.J(z?)
is always non-empty (cf., e.g., [9, Lemma 2.2]). This may be seen as an
advantage of the present approach, following the original study [21].

Without further notice we follow the convention from that study: if
the subdifferential 0.J(2) is multi-valued, then we take for Bs (22; x')
a subgradient £ that satisfies the optimality condition

(8) A* (A — ") +agl =0,

A remarkable feature of the error bounds under smoothness assump-
tions (7) is the splitting of the error, see also in a more general set-
ting [21, Thm. 3.1], as

52
(9) Be (20;21) < %0 + V(a) forall a>0,
@ a

'Throughout, we call a function ¢: [0,00) — [0,00) index function if it is con-
tinuous, strictly increasing and obeys the boundary condition ¢(0) = 0.
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where the function W is related to ®, and typically it will also be an
index function.

In this study, see Section 2, we analyze the regularity condition
(10) J(x") — J(z,) < ¥(a) forall a>0

(cf. Assumption 2, and its alternative, Assumption 2’). Under these
conditions a similar error splitting as in (9) is shown as the main result.
Notice, that these bounds are required to hold only for the minimiz-
ers x, of the noise-free Tikhonov functional T, (x; Az'). This resem-
bles the situation for linear ill-posed problems in Hilbert spaces, where
the error is decomposed into the noise propagation term, usually of
the form 6/+/c, and some noise-free term depending on the solution
smoothness, say ¢(«), which is called profile function in [18]. We refer
to a detailed discussion in Section 2. The error bounds will be comple-
mented by some discussion on the equivalence of Assumptions 2 and 2.
Also, a discussion on necessary conditions for an index function ¥ to
serve as an inequality (10) is given. We mention that the existence of
an index function W satisfying (10) is an immediate consequence of [10,
Thm. 3.2] (see also [9, Remark 2.6]) in combination with the results
of Section 3. Precisely, we highlight that the variational inequality (7)
implies the validity of (10) for some specific index functions W related
to ® by some convex analysis arguments. Then, in Section 4 we present
specific applications of this approach.

In an appendix we give detailed proofs of the main results (Appen-
dix A) and some auxiliary discussion concerning convex index functions

(Appendix B).

2. ASSUMPTIONS AND MAIN RESULTS

In the subsequent analysis, conver index functions will be of partic-
ular interest, i.e., index functions ¢ which obey

¢(8+t><1(@(8)+¢(t)), 5650,

2 — 2
The inverse of a convex index function is a concave index function,
and hence the above inequality is reversed. We mention that concave
index functions are sub-linear, which means that these functions have
the property that the quotients ¢(\)/A are non-increasing,.
In the sequel, it will be useful to employ convex duality. For any
convex function ¢, we may define its Fenchel conjugate

(11) O (t) := i;l}g (st —(s)), t>0.
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Clearly, both functions ¢ and its conjugate ¢* obey the Fenchel-Young
Inequality

(12) st < p(s)+¢*(t), s,t>0.

Additional considerations concerning convex index functions are col-
lected in Appendix B.

The proofs of the results in this section are technical, and hence they
are postponed to Appendix A.

2.1. Assumptions. Throughout this study we impose, e.g., along the
lines of [29], the following standard assumptions on the penalty.

Assumption 1 (Penalty). The function J : X — [0,00] is a proper,
convex functional defined on a Banach space X, which is lower semi-
continuous with respect to weak (or weak*) sequential convergence. Ad-
ditionally, we assume that J is a stabilizing (weakly coercive) penalty
functional, i.e., the sublevel sets M, = {x € X : J(zx) < ¢} of J
are for all ¢ > 0 weakly (or weak®) sequentially compact. Moreover,
we assume that at least one solution x¥ of (1) with finite penalty value
J(2) < oo exists.

Consequently, for all « > 0 and v € H, the sublevel sets of T, (., v) are
weakly (or weak™) sequentially compact. This ensures the existence and
stability of regularized solutions x, and 2% which are the corresponding
minimizers for v = y and v = y°, respectively. In the sequel, we use
the symbol ' only for the always existing J-minimizing solutions of
(1), ie J(z') = min J(z).

zeX:Az=y
The fundamental regularity condition is given as follows. To this end,
let =, be defined as in (3). This assumption controls the deviation of the
penalty at the minimizers from the one at the J-minimizing solution z7.

Assumption 2 (Defect for penalty). There is an index function W
such that

(13) J(z') = J(za) < ¥(a) forall o> 0.

It is not difficult to conclude from the minimizing property of z,,
(14) % |Azq — AmTH +ad(z,) < ad(ah),
that the left-hand side of (13) is nonnegative and hence that

1
(15)  lim J(ea) = J() and || Aze — y||* < J(ah) = J(xa),

a—0
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such that Assumption 2 also yields the estimate
1

(16) %0 |Az, —y]|? < ¥(a) forall a>0.
o

Instead of controlling the defect for the penalty J one might control
the defect for the overall Tikhonov functional as follows.

Assumption 2’ (Defect for Tikhonov functional). There is an index
function U such that

(17) é (To (2" Axt) — Ty (24; Azl)) < U(a) forall o> 0.

By explicitly writing the left-hand side in (17) we see that

1 1
— (Tala®; Axt) = To(wa; Aa")) = J(27) = J(20) = o [|Aza — 3%,
and hence Assumption 2 is stronger than Assumption 2/, as stated
above. One advantage of Assumption 2’ is that it is invariant with
respect to the choice of the minimizers x,. This is not clear for As-
sumption 2. As a remarkable fact we state that both assumptions are

basically equivalent.

Proposition 1. Assumption 2’ yields that

(18) J(z") — J(z) < 2¥(a) for all a > 0.
Hence Assumption 2 is fulfilled with ¥ replaced by 2.

Remark 1. The above result has an important impact, and we return
to the choice of the minimizers x,, 2% from (3) and (4), respectively.
As mentioned before, the functional on the left-hand side of (17) is
independent of the choice of the minimizers z,, due to the uniqueness
of the value of the Tikhonov functional at the minimizers (cf., e.g., [20,
Sec. 3.2]). Thus, if Assumption 2’ is fulfilled for one selection z,, a >
0, then this holds true for arbitrary selections. Since Assumption 2’
implies Assumption 2 (at the expense of a factor 2) the latter will be
fulfilled for any selection. Conversely, if Assumption 2 holds for some
selection x,, a > 0, then this yields the validity of Assumption 2/, but
then extends to any other choice of minimizers. Again, by the above
proposition this implies that any other choice of minimizers will obey
Assumption 2, by losing a factor 2 at most.

We finally discuss which index functions may serve as upper bounds
in either of the assumptions 2 or 2, respectively. We formulate this as
follows.
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Proposition 2. Suppose Assumption 2 holds with index function .
Then the following is true:
Either J(z') = m1)r(1 J(z),

Tre

and then J(x,) = J(z') for each a > 0, and any index function V is a
valid bound in (13),
or J(x) > m1)r{1 J(x),

TE

and then ¥ increases near zero at most linearly.

We shall call the first case singular. In this case, where J(zT) =
min,ey J(z), the choice of the regularization parameter loses impor-
tance, which is also the case if the phenomenon of exact penalization
occurs (see [5] and more recently in [3]).

2.2. Main results. We turn to stating the main results, which high-
light the impact of Assumption 2 and Assumption 2’ on the overall
error, measured by the Bregman distance.

Theorem 1. Under Assumption 2 we have that

52
Be (205 21) < % + V() forall o>0.
¢ «Q

The proof of Theorem 1 is a simple consequence of the following
result, which may be also of its own interest.

Theorem 1’. Suppose that Assumption 2' is satisfied with an index
function W. Then an error estimate of the type

62
(19) Bes (20;27) < 2 T V() forall a>0

holds.

Since, as mentioned above, Assumption 2 is stronger than Assump-
tion 2’ it is enough to prove Theorem 1’.

2.3. Discussion. Resulting from Theorems 1 and Theorem 1’; the
best possible bound for the Bregman distance between the regular-
ized solutions and z' as a function of § > 0 takes place in both cases
if @ = a, > 0 is chosen such that the right-hand side % + ¥(a) is
minimized, i.e.,

52
20 B b ial) <infd— 40
which determines, from this perspective, the best possible convergence
rate of Bes (xi*; xT) to zero as 6 — 0. Consequently, this convergence

rate is the higher, the faster the decay rate of V(o) — 0 asa — 01is. As
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expressed in the non-singular case of Proposition 2, the function ¥ can-
not increase from zero super-linearly, and the limiting case is obtained
for U(a) ~ «, @« — 0. From this perspective, the maximally described
rate is Bgs (xi*;xf) ~ ¢ as 6 — 0, which is obtained whenever for
example the regularization parameter is chosen as a, = «(d§) ~ 0.
For linear ill-posed equations in Hilbert spaces and using the standard
penalty J(x) = ||z||% (see Section 4.1), this results in the error rate

Bes (28, 21) = [|2, — a:'TH?X = O(0). However, resulting from The-

orems 1 and Theorem 1’ the overall best possible convergence rate
|22, — :UT”i = O(§*3) attainable for Tikhonov regularization cannot
be obtained, and indeed our analysis is confined to the low rate case
expressed be the range-type source condition zf € R(A*). This is also
the case for all other approaches which are based on the minimizing
property T, (22;4°) < T,(x";y°) only, including approaches using vari-
ational source conditions (see Section 3 below). For alternative tech-
niques leading to enhanced convergence rates we refer to [24, 25, 26,
29, Sect. 4.2.4] and references therein.

Now we return to the error estimate (19) for general convex penal-
ties J. Since the upper bound with respect to a > 0 is decomposed into
a sum of a continuous decreasing function 6%/(2a) and an increasing
continuous function W¥(«a), the minimizer always exists. Given ¥, let
us assign the companion O(«) := y/a¥(a), a > 0. If we then let .
be obtained from calibrating both summands as

@ a—am =@ (3) -0 ().

then we find that

(22) B (ah.io) < 20 (07 (55)).

and the optimality of this bound will be discussed in the examples
presented below in Section 4.

It is interesting to separately discuss the singular case, i.e., when
J(z") = Inl)I(l J(z). We claim that then B (2%;2") = 0 when the
Te @

subdifferential £ = 9.J(x%) obeys the optimality condition (8), i.e., we
have a&® = A* (y5 — Axi). If we now look at the minimizing property
of 2% then we see that

% Az — o ||” + aJ (23) < aJ(ah),
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which, in the singular case, requires to have that HAmg —q° H =0, and
hence that £ = 0. This yields for the Bregman distance that

Bgs (wg;2") = J(a') = J(22) + (€5, 20 — 2T) <0,

«

such that the Bregman distance equals zero in the singular case.

We already emphasized that the upper estimate of the error measure
Bes (25;27) in (19) consists of two terms, the first d-dependent noise
propagation, and the second d-independent term which expresses the
smoothness of the solution #! with respect to the forward operator A.
In the study [18] such a decomposition was comprehensively analyzed
for general linear regularization methods applied to (1) in a Hilbert
space setting, i.e., for linear mappings »° + 22, and for the norm as
an error measure the d-independent term was called profile function
there, because this term completely determines the error profile. For
the current setting, the index function ¥ plays a similar role, although
the mapping y° + 22 is nonlinear for general convex penalties .J differ-
ent from norm squares in Hilbert space X. This shows the substantial
meaning of the right-hand function ® in the inequality (13) of Assump-

tion 2.

3. RELATION TO VARIATIONAL INEQUALITIES

In this section we shall exhibit that other regularity conditions, such
as source conditions or variational inequalities yield bounds as required
in Assumptions 2 and 2’, respectively. As already mentioned in the
introduction source conditions yield a variational inequality, and we
recall the following result.

Lemma 1 (see [9, Lemma 3.2]). Suppose that 0J(x") N R(A*) # 0.
Then there is R > 0 such that

(23) J(a") — J(z) < R||Azt — Az||  for all z € X.

If otherwise £ & R(A*), then a variational inequality

(24) J(z") — J(x) S(I)(HA.TT—A(EH) forall e X

with a sub-linear index function ® holds, and the quotient function

O(t)/t is strictly decreasing.

Proof. For the convenience of the reader we briefly sketch the proof.
First, the non-negativity of the Bregman distance from (5) is an im-
mediate consequence of the definition of the subgradient. Hence, for
all convex functionals J we have for £ € 9.J(2") and for all x € X the
inequality

J(z") — J(x) < (€h 2" — 1),
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If in addition £7 € R(A*), then we can find a source element w € H
with ¢F = A*w and ||w|| < R such that we conclude from the above
bound that

J(z') — J(x) < (€l 2" —2) = (w, A(2" —2)) <R ||A33T — Az

If such linear bound fails then by the method of approximate variational
source conditions (cf. [12] and more comprehensively [8]), we consider
the strictly positive and decreasing distance function

d(R) := sg; {J(") —J(x)-R ||A:10Jr — Az||}, R>o0.

We find that limg ., d(R) = 0, and the decay rate to zero as R — oo
measures the degree of violation of the benchmark variational inequal-
ity (6). Plainly, with this function we find that

J(z') — J(z) < Ii%r;fo{d(R) + R|| Az’ — Az}, zeX.

It is readily seen that the function

P(t) := zl?gfo {d(R) + Rt}, t>0,

being the infimum of affine functions, constitutes a (concave) sub-linear
index function. Then, following [9, Lemma 3.2] a variational inequality
of type (24) holds with

(25) ®(a) =2d(©7 (), where O(R):=d(R)/R.
Also, this function ® is a sub-linear index function such that the quo-

tient function ®(a)/« is decreasing for all a > 0. O

From the estimates above, it is not difficult to verify that a source
condition R(A*) N dJ(x") # 0 also implies Assumptions 2 and 2’ with
V(o) ~ . Indeed, as the source condition yields (23), we have by
Young’s inequality and (15) that

1

Nz
< R’a + % (J(z") = J(za))

Ta) = J(ra) < RVa— || Ax' — Ave]| < Rat o [|Aat — x|

which implies Assumption 2 (and consequently also Assumption 27)
with W(a) = 2R?*a.  The obtained rate for the total error
Bes (2°;2T) ~ § agrees with the classical results for this case.

Now, similarly to Proposition 2 we highlight that the choice of func-
tions ® in (24) is not arbitrary.
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Proposition 3. Suppose that a variational inequality (24) holds with
an index function ®. The following is true:
Either J(z') = m1)r(1 J(z),

e

and then any indez function ® is a valid bound in (24),
or J(z') > m1)r<1 J(x),
Te

and then ® increases near zero at most linearly.
Proof. First, if J(zT) = ml)I(l J(z) then the left-hand side in (24) is non-
xE

positive, and hence any non-negative upper bound is valid. Otherwise,
suppose that ®(t)/t decreases to zero as t — 0. The inequality (24)
taken at the point 7 + ¢(z — z'), 0 <t < 1, attains the form

J(zV) = J(1 = t)a' + tz) < d(t|| Az — Az'|]),
where we can estimate from below the left-hand side as
J(a = J(1=t)aT+tz) > J(a") = (1—t)J (V) —tJ (2) = t(J (z") = J(2)),
because J is a convex functional. From this we directly derive

< O(t]|Ax — Azt O(t|| Az — Az'))
- t t|| Az — Azt
where under the assumption of the lemma the right-hand side tends to

zero as t — 0. Consequently, we have J(z') < J(z) for all x € X. This
completes the proof. O

J(ZET) — J(x) = ||Ax — AxTH

The main result in this section reads as follows:

Proposition 4. Suppose that a variational inequality (24) holds for
some index function ®. Let us consider the related index function
(t) := ®(Vt), t > 0. Then the following assertions hold true.

(1) The condition (17) is valid with a function

t2
26 U(a) =sup |D(t) — — |,
(26) (@) =sup [2(0) — 1|
which is increasing for all o > 0 but that may take values +oo.
(2) If the function ® is concave then the function ¥ from (26) has
the representation

(2
U(a) := %, a>0,

where d~* is the Fenchel conjugate to the conver index function
Ot (cf. its definition in (11)).
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(3) Finally, if moreover the quotient function s*/®(s), is an index
function and hence strictly increasing for all0 < s < oo, then ¥
also constitutes an index function. Theorem 1’ yields the error
estimate (19).

Proof. For the first assertion we find that
1 1
o (Ta(IT§y) - Ta(%;y)) = J(z") = J(x4) - %”Axa — Azt|?
1
< O(|| Az — Azl||) — —||Azq — Az
2c0

Setting ¢ := HAxi — AZET” yields the function ¥ as stated.

Now suppose that the function ® is a concave index function. Then
its inverse is a convex index function, and by the definition of the
Fenchel conjugate, see (11), we find

t? N
sup [®(t) — — | =sup |P(t*) — —
t>%)) { ( ) 20&] t>%)) { ( ) 20&]

1 - d*(20)
— 2005 — ! ] S S
q b 205 = 27 (s)] = =5 =,

which proves the second assertion. It remains to establish that this
function is an index function with the property as stated. To this end
we aim at applying Corollary B.1 with f(¢) := ®~'(t), t > 0. We
observe, after substituting ¢ := ®(s?), that

Ot 2
®) =0 , >0,
t ® (s)
which was supposed to be strictly increasing from 0 to co. Thus Corol-
lary B.1 applies, and the proof is complete. O

Under the conditions of item (2) of Proposition 4 we can immediately
derive a convergence rate for the Bregman distance as error measure.

Proposition 5. If the function ® in (24) is such that ®(t) := ®(\/1)
15 a concave index function, and with an appropriately selected o, the
following convergence rate holds

(27) Bes (20;21) = O(®(8)) as 6 — 0.
Proof. In the Fenchel-Young inequality (12), used for f := &1, assign-
ing s := ®(6%) and t := 2a we obtain

02 d*(2a)

D) = () < o+~
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Taking 2a € d®~1(62), which exists by continuity of ®!, yields equal-
ity in the Fenchel-Young and in the above inequality, thus, with such
a choice and by (19)

52 N d*(20)

Bes (22;21) < —
e (T ') < 200 200

= (6).
O

We highlight the previous findings in case that the function ® in (24)
is a monomial.

Ezxample 1. Let us prototypically consider the case that the function ®
is of power type, i.e., ®(t) :=t*, ¢t > 0 for some 0 < p < co. Then the
function ® is ®(t) = #/2. This function is concave whenever 0 < u < 2.
In that range also the quotients s?/®(s), s > 0 are strictly increasing.
For 1 > 2 the function V¥ is infinite for all @ > 0 and for p =2 it is a
positive constant. For 0 < pu < 2, however, ¥ is an index function.
Namely, the inverse of ® equals ®~'(t) = t¥#, ¢t > 0. By using the
simple identity that (c¢f)*(t) = cf*(t/c), t > 0, for a convex function f
and ¢ > 0 we see that the Fenchel conjugate function is for all 0 < pu < 2

- 2 _
O () = T“ (ut/2)? %" ¢ >0,

Then the quotient

d*(20) 2—p
200 2
is a strictly increasing index function as predicted by the proposition.
This function is sub-linear for p/(2 — u) < 1, ie., for 0 < p < 1, and
hence may serve as a bound in Assumption 2, including the benchmark
case ®(t) = ct, t > 0, in which case the corresponding function W is
also linear.

(,ua)ﬁ , a>0,

Remark 2. We know from Proposition 3 that in the non-singular case
the function ® is at most linear, i.e., the function ®(s)/s is bounded
away from zero. In particular this holds for concave index functions.
In this particular case the function s/®(s) is non-decreasing, and hence
the function s(s/®(s)) = s*/®(s) is an index function. Thus item (3)
of Proposition 4 applies and yields that Assumption 2’ holds. Hence
Theorem 1’ applies and gives a convergence rate.

Let us point out that the stated conditions not only imply rates in
the Bregman distance but also in the strict metric. In [14], the strict
metric

det(u,v) = [[Au — Ao +[J (u) — J(v)|
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was proposed as an alternative to the Bregman distance to measure
convergence. Especially for ¢!- and BV-regularization, the strict metric
has preferable properties compared to B¢(u;v).

We state the following result, from which bounds and convergence
rates for the strict metric can easily be derived.

Proposition 6. Suppose that Assumptions 2 or 2" are satisfied. Then
we have with some constant C,

‘J(xi)—J(zWSC(%QnL\I’(a)) Yo >0
Az, — Azf||? < C (6% + a¥(a)) Va >0
Proof. At first we prove
(28) |Az, — Azl < 6.

From the optimality conditions and the fact that the subgradient is a
monotone operator, it follows with £ € 8J(29),&, € 0J(z,) that
|Azy — Azl ||? = (A*A(zq — 2°), 20 — 2°) = (A* Az — 20), 20 — 20)

[0}

= <A*(y - y(s)?xa - [L’i) - a(ga - iaxoc - xi>
< (y— v’ Ava — Azy) < [ly° — ylll| Aza — Azg]],

which proves (28).
By definition of the Bregman distance and &) = 2A*(y° — Ax?), we
obtain

J(z") — J(20) = Bes (2;27) + 1 (y° — Aa?, Ax’ — Az))
< Bes (20;2") + Ly’ — ylllly — Azl + L]y — Azl |?
2

1)
< B (xd;2h) + 2t 2y — Az |?,

where we used the Cauchy-Schwarz inequality in the last step. This
bound and (16) yields

1 2 2 252
~lly = Axl* < ~lly — Aza|* + = || Aza — Az || < U(a) + —,
« (0% (0% «

from which (together with Theorems 1 and 1’) the second statement
in the theorem is obtained. Since J(2%) — J(zT) < % (cf. [19, Lemma
1]), the desired bound for |J(z?) — J(")| follows as well. O
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4. EXAMPLES

Here we shall highlight the applicability of the main results in spe-
cial situations. We start with the standard penalty in a Hilbert space
context and then analyze other penalties as these are used in specific
applications.

4.1. Quadratic Tikhonov regularization in Hilbert spaces. Sup-
pose we are in the classical context of Tikhonov regularization in Hilbert
spaces X and Y, where the penalty is given as J(z) := 3 [|z| %, = € X.
In this case, which has been comprehensively discussed in the literature
(cf., e.g., [7, Chap. 5] and [1, 2, 13, 16]), we can explicitly calculate the
terms under consideration.

First, let go(A) := 1/(a + A) be the filter from Tikhonov regulariza-
tion and its companion 7,(A) = a/(a + A). With these short-hands,
we see that z, — 27 = r,(A*A)x’, and also A(z, — 27) = Ar,(A*A)zt.
This yields

2

o Aza = Aat||® _ [lAra(a A)at]|? _ ||ralA™A) (A"4)" 2 ot
) 200 N 2c N 2c0
We also see that

To(4; Ax't) = % (

1 a? )\ a\?
— T2
2/ [(a+A)2 t (a+)\)2} dE 2|

1 a
—5 [ e,

(2

2
ra(A"A) (A7) | +oc]|xa|]2)

2) (a+X)
which in turn yields
1 1 o
~ (et - Tuloais)) =5 [ o dBallol P
(30) « ? (A +a)

=2 [ra/2(A% A)a||”

Finally, we bound
1

(117 = all?) = 56" = 7o +2.)

(ra(A*A)z’, (I + (a+ A*A)"H A" A) 2f)

J(z") — J(za) =

— DN =

(31) — -
2

< [rat?(Ar A)at|)”

We observe that the right-hand sides in (30) and (31) differ by a factor

%, as predicted in Proposition 1.
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In the classical setup of Tikhonov regularization, a regularity condi-
tion is usually imposed by a source-condition. Thus, let us now assume
that the element 2' obeys a source-wise representation

(32) ol = (A" A, ol <1,
for an index function ¢. Then the estimate (31) reduces to bounding
[rat2 (A )t |" < rat (A" A)p(an )|

(33) 3
< |lra(ar4 ||

where we used the estimate ||[H'/?|| < ||H||1/2 for a self-adjoint non-
negative operator H.
Then, if the function ¢? is sub-linear, we find that

[ra(A*A)* (A" A)|| < ¥ (a).

Hence, in the notation of [22], ¢? is a qualification for Tikhonov regular-
ization, and Assumption 2 holds true with the index function ¥(a) =
©*(a). In particular, the rate (20), which is obtained by equilibrating
both summands by letting the parameter a, be given as solution to the
equation O(a,) = d/v/2, yields the convergence rate

ot — 2l || < 20 (67'(6/v2)) .

which is known to be optimal in the “low smoothness” case, i.e., zf €
R(A").

Under the same condition on ¢ we can also bound the right-hand

side in (29) as
ra(A*A) (A*A)Y? 2t 2 (o)
< (\/_§0< )) :1g02(04),

200 - 2a 2

which verifies (16).
We finally turn to discussing the maximal rate at which the func-

tion U may tend to zero as o — 0, provided that 2T # 0. Considering
the ratio ¥(«)/a we find

U(a) . ro(A*A) (A*A)1/2 xTH 2

1 a?\
= N
o 202 2a2 / (A + «a)? Al
1 1 iz 1 » o n-1/2 1%
> - ~dE)||2']* = < [[X[a00) (ATA) (ATA) "2l
Asa A 8

-8

This shows that either 21 € D (4*A)""/%, and hence that ! € R (A*),
in which case the right-hand side is bounded away from zero (if 2t # 0),
or we have that 27 ¢ R (A*), and the right-hand side diverges. Hence,
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for nonzero z' the best attainable rate near zero of the function ¥ is
linear as also predicted in Proposition 2.

4.2. ROF-Filter. We consider the celebrated ROF-filter in image pro-

cessing [27]: Let y° € L*(R?) represent an noisy image. Then a filtered
version z € L*(R?)N BV (R?) is computed by minimizing the Tikhonov
functional

1
Ta<x;y5) = 5 H.Z’ - y5||iZ(R2) + a‘x’TV7

where J(z) := |z|ry denotes the total variation of z on R2% Obvi-
ously, this can be put into our framework with A being the embedding
operator from BV (R?) to L*(R?).

For some special cases, where z' is the characteristic function of
simple geometric shapes, the minimizers can be computed explicitly.
Denote by B, r a ball with center  and radius R. Consider first the
case when z' is the characteristic function of a ball By r:

1 lf HSHRQ S 17
0 else.

xT(S) = XBO,R(S) = {

The minimizer z,, of T,(.;y) with exact data is given by, e.g., [23]

T = max{l — 22 0}xp, ().

Calculating the index function in Assumption 2 is now a simple task
as |XBO,R|TV =21R

J(z") — J(za) = ¥(a) = 2nR (1 — max{1l — 22,0})
= 2%Rmin{2§a, 1} =4ra  if a < R/2.

For a comparison, we may compute the Bregman distances. For the
asymptotically interesting case, o < % we find that

R
Be, (ta;2") = Be, (21;24) =0 Va < 2
which yields a trivial rate, but of course, does not violate the upper
bound ®(a) in (19) for § = 0. The squared norm of the residual for
a < % is given by
1Az, — y|I* = 4ma?,
hence, (16) clearly holds. We also observe that a variational inequality
of the form (7), or (24) below, holds with ®(s) ~ s.

For noisy data, 2° cannot be calculated analytically, but our results
suggest for such z' a suitable parameter choice of the form a = 6,
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which provides a convergence rate
1
Bes (20;27) < (4m + 5)5

A less simple situation appears when the exact solution is the char-
acteristic function of the unit square

1 ifsel0,1)2

0 else

z'(s) = Xpo2(s) = {

An explicit solution is known here as well [6]. For R > 0 define the
rounded square

CR = U Bx,Ra
z:By rC[0,1]2
which has the shape of a square with the four corners cut off and
replaced by circular arcs of radius R that meet tangentially the edges of

the square. The solution satisfies 0 < x, < 1 and can be characterized
by the level sets: for s € [0, 1]

0 if s >1— 3%
C._o ifsél—%.
1—s

{xa>s}:{

Here R* is a limiting value, which can be computed explicitly. Since
we are interested in the asymptotics o — 0, we generally impose the
condition o < R* as otherwise x, = 0. The index function ¥ can now
be calculated by the coarea formula

T = J(za) = U(a) =4 — /0

The value of |Cr|ry is its perimeter and can be calculated by elemen-
tary geometry to |Cr|ry = 4—2(4—m)R. Thus, evaluating the integral,
we obtain

¥(a) = %a +2(4 - ma (log (%)) 0 <R

Thus, in this case,

-3
|C&|Tvd8

U(a) ~ alog(l/a) as o — 0.
The residual norm is given by

1Aza = ylI* = llza — 277

2 R*
= % +2(4 — m)a? <log <E)) a< R
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Obviously, the bound (16) is satisfied. The approximation error in the
Bregman distance (with our choice of the subgradient element) is hence
given by

1
Be (va;a") = J(2") = J(ag) = [l Aza —y[* = a < R

3
7
We observe that, for the square, the parameter choice that minimizes
the upper bound (19) differs from that for the ball as we have that

o~ C%, which highlights the (well-known) dependence of the

(log(1/9))2
parameter choice on the regularity of the exact solution.

Note also, that the decay of the Bregman distance By, (z4;z') alone
does not suit well as a measure of regularity for 2 since the logarithmic
factor that appears in the condition in Assumption 2 is not observed
for this Bregman distance. On the contrary, when using the strict
metric, this factor is included, which indicates that this metric might
be more appropriate for BV-regularization than the Bregman distance
(compare [14]).

4.3. On ('-regularization when sparsity is slightly missing. We
consider the injective continuous linear operator A: ¢! — (% and the
penalty J(z) := ||x|/. Notice that ¢! = ¢}, it thus has a predual, and
we assume that A is weak*-to-weak continuous, and the penalty J is
stabilizing in this sense.

The crucial additional assumption on the operator A is that the unit
elements e, with e,(ck) = 1 and egk) = 0 for i # k, satisfy source
conditions e®) = A*f®#) f®) ¢ YV for all k € N. Under these as-
sumptions (for overcoming such additional requirements see [11}), and

with 27 = (2])ren € X from (1), we assign the function

(34) —2}121§<Z |wk!+tZHf Hy>, t>0.

k=n+1

Notice that the function ® from (34) is a concave index function. It
was shown in [4] that then a variational inequality of the form

o — 2T x < ||lzllx = [|27]|x + @ (]|Az" — Az|) forall zeX

holds true. This immediately implies the validity of the condition (7)
with the same index function ®, and an application of item (3) of
Proposition 4 shows that the error estimate (19) is valid for that .
The behavior of the index function ® from (34) essentially depends
on the decay rate of the tail of xz — 0 of the solution element z'.
When sparsity is (slightly) missing, then the function ® will be strictly
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concave. However, if 2f is sparse, i.e., x,t =0 for k > Ny, then
the function ® reduces to the linear function

O(t) = <f||f(k)||y> t, t>0.
k=1

As Example 1 highlights, this results in a linear companion function W.
Thus Theorem 1’ applies, and the choice of o ~ ¢ yields a rate for the
Bregman distance Bgs (23;27) = O(0) as § — 0 in the sparse case.

5. OUTLOOK TO HIGHER ORDER RATES

There might be a way for overcoming the limitation of sub-linear
functions ¥ in the assumptions 2 or 2’. The underlying observation for
this is the identity

2
(35)  Be (va;a!) = ~(Ta(',y) = Ta(a,y) = (J(2T) = J(2a)).
The right-hand side above is again entirely based on noise-free quanti-
ties, and its decay could be used as smoothness assumption.

If one could prove that there were an inequality of the form

(36) Bes (20;2%) < C1 B, (zas2t) + C2 8%/, >0,

with positive constants C; and Cs, then this might open the pathway
for higher order rates. Indeed, in Hilbert space X and for the standard
penalty J(z) := %HxHi, cf. Section 4.1, we find that B (29;27) =
|28 — 27||%, and hence that the inequality (36) is satisfied with C} = 2
and Cy = 1. Moreover, one can easily verify that

2 (Tl ) — Tulra,9) — (J(a1) = J(r0)) = 5 [ra(4° A}

with 74(A*A) = a (ol + A*A)™", being the (squared) residual for (stan-
dard linear) Tikhonov regularization. This squared residual is known
to decay of order up to O(a?) as a — 0, which then allows for higher
rates Bgs (a:gé;:ﬂ) = O(§Y 3), attained under the limiting source con-
dition 2' = A*Aw, w € X, and for the a priori parameter choice
a ~ 6%/3. Tt is thus interesting to see whether and under which addi-
tional assumptions an inequality of the form (36) holds.

2
)

APPENDIX A. PROOFS
Let us define the noisy and exact residuals, and the noise term as
(37) p° := Ax® —1°, po = Azy —y = A(zq —2') and A =y’ —y.

Notice that all quantities p,,p° as well as A belong to the Hilbert
space H. The subsequent analysis will be based on the optimality
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conditions (recall our convention on the choice of £ € 9J(z%) and
£o € 0J(x,))

(38) (Ax® — 9%, Aw) + (&, w) = 0, Yw € X,
(39) (Azy — Azt Aw) 4 o€y, w) = 0, Yw € X.

In particular, the optimality conditions lead to the following formulas,
by

(1) subtracting (38) from (39) using w = x, — z,

(2) using (38) with w = z, — 2%, and
(3) using (39) with w = x, — T,
respectively:
1
(40) <€O¢ - (oSmmT - .’L'a> = _a<p6a - paapa>
1
(41) _< a,xa—dfi) = a<pgwpa_pi_A)>
1
(42) — (6o 7" = 7a) = == Ipal*

The following bounds will be the key for proving Theorem 1’.

Lemma 2. Under Assumption 2 we have
2
(1) Be,(ani o) < W) = 3 [
(2) Beg(2h:2a) < 55 = 55 Il + 5 (2 pa)

Proof. Using the optimality condition (42) we find that
Be, (aia!) + 5l
o\ 2 o
1
= J(2") = J(wa) = {€ar 2" = 2a) + = [|pal®

(@) = J(za) — 5 Il

<

(Ta(ﬂ§y> - Ta(xcdy)) < ¥(a),

Q| mr

which proves the first assertion.

For proving the second assertion we use the definition of Bgs (23; 24)
and (41) to find

(43)  Byglalira) = J(ra) — J() + -

«

(P2, pa — P — A)).
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The minimizing property of x, also yields
1 2
J(wa) = J(@d) < o |[Aeh = y]|* = I Ava — ]

1
= o= [Pl + A = lIpal?

We rewrite
2
(Do pa — Do — A)) = =[R2 + (2. pa — A).
Using this and plugging the above estimate into (43) gives

1
ngui;xa)é—[||pi+AH2—Hpa||2} NI+ hp - )

1
= —IIAII ——Ilpall ——HpaH pa,pa>

52 1
< o— = ||pa|| <Piapa>,

completing the proof of the second assertion and of the lemma. O

We are now in a position to give detailed proofs of the results in
Section 2.

Proof of Proposition 1. From item (1) of Lemma 2 we know that, for
all > 0,
2
[Aza —ylI* _ |lpal
2c0 2c
Therefore, Assumption 2" implies that

< U(a).

2
Az = yI* | [Ipal

J(ah) = J(xa) = J(2") — J(z4) — 20 20

< V(o) +
which completes the proof. 0
Proof of Proposition 2. First, if inf,cy J(z) = J(z') then
aJ(x) = Ty (zh; AxT) > T, (24; AxT) > ad(x) > aJ(zh),

and for all & > 0 we have J(z,) = J(x'). This allows us to prove the
assertion in the first (singular) case. Otherwise, assume to the contrary
that there is an index function ¥, and for a decreasing sequence of
regularization parameters (o), with limy_,o ap = 0 the limit condition

lim (o)

k—oo Qg

=0
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holds. Consequently, we find from (16) that limy_, ., a—lk |Aza, —yl| =0,
with y = Az,
Due to the optimality condition (39) for z, we have that

A (Azy, —y) + agéa, =0 for some &, € 0J(z,,) C X7
This yields
1 *
gak =—-——A (Al‘ak - y)

A

Since A* : H — X* is a bounded linear operator, we get

1€

1 *
x0 S A erx [ Aza, —yll =0 as k= oo,
k

Since &,, € 0J(z,,), and after taking the limit, we find for all z € X
that

J(2) > limsup {J(z4,) + (Eaps 2 — Ta, )} = limsup J(z,,) = J(z1),

k—o0 k—o0

where we used Assumption 2 and limy o W(ay) = 0. Thus, we con-
clude that inf,ex J(z) = J(z'). This contradicts the assumption,
and hence the function ¥ cannot decrease to zero super-linearly as
a — 0. U

Proof of Theorem 1'. Here we recall the three-point identity (see, e.g.,
29]). For w,v,w € X and & € 0J(w), n € 0J(v), we have that

(44) Be(w;u) = By(v;u) + Be(w;v) + (n — &, u — v),

and this specifies with u := 27, v := 2, and w := 2%, to

(15) By (al:a") = Be,(za2) + Beg (2%50) + (€0 — €, 27 — 2,),
Inserting (40) into (45) gives

1
B£g<xi; xT> = BEa(‘TQ; xT> + Bﬁg (wéa; xa) - a<p6a _pa7pa>

An application of the bounds in Lemma 2 provides us with the estimate

52 1 1 1
B 5T<\I/ R a2 _604__ 6_o¢o¢
s (T 2') < (a)+2a a||p | +a<pa,p> a(m Pas Pa)
52
— hal
(a)+2a,

and the proof is complete. U
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APPENDIX B. SOME CONVEX ANALYSIS FOR INDEX FUNCTIONS

We shall provide some additional details for convex index functions.
First, it is well known that for convex index function f we have that 0 <
s < tyields f(s)/s < f(t)/t. Indeed, we let 0 < 0 := s/t < 1 and
obtain that

s

fs) = f0t + (1= 0)0) < 0f(t) + (1 = 0)f(0) = 2./ (1),

which allows us to prove the assertion. This implies that the limit g :=
lim; o f(t)/t > 0 exists. If g > 0 then f is linear near zero, and this
case is not interesting in this study. Otherwise, we assume that g = 0.
In this interesting (sub-linear) case the following result is relevant.

Lemma 3. Suppose that [ is a convex index function. The following
assertions are equivalent.
(1) The quotient f(t)/t, t > 0 is a strictly increasing index func-
tion.
(2) There is a strictly increasing index function @, and the compan-
ion O(t) := Vto(t), t > 0 such that the representation f(t) =

0’ ((<p2)‘1 (t)) Lt >0 s valid.

Proof. Clearly, if f has a representation as in (2) then we find, with
letting ?(s) = t, that
ft) _ ©%(s)

)

as s — 0.
For the other implication we observe that by assumption we can
(implicitly) define the strictly increasing index function ¢ by

(46) ¢(m): =Vt, t>0.

t
This yields that

fO =t =0 ()" ®), t>0
which completes the proof. 0

As an interesting consequence we mention the following result for
the Fenchel conjugate function f* to the convex (index) function f.

Corollary B.1. Suppose that [ is a conver index function such that
the quotient f(t)/t, t > 0 is a strictly increasing index function. Then
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the Fenchel conjugate function f* is an index function, and there is a
strictly increasing index function ¢ such that

[ ()

10 <),
Proof. First, by Lemma 3 there is a strictly increasing index function ¢
such that f(t) = ©2 ((902)71 (t)) , t > 0. Now we use the “poor man’s
Young Inequality” of the form

t > 0.

P (z)y < @*(z)x + ©*(y)y, =,y >0,

which is easily seen by considering the cases © < y and y < z, sepa-
rately. This in turn, by letting s := ¢*(x) and t := y, implies

st < ©? ((@2)_1 (s)) +0%(t), s,t>0.
For the Fenchel conjugate f* this yields
() = sup {st = f(s)} < O%(t).

From this bound we conclude that f* will be an index function for
which the quotient f*(¢)/t has the desired bound. O
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