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Abstract. In this paper, we deal with nonlinear ill-posed problems involving
monotone operators and consider Lavrentiev’s regularization method. This ap-
proach, in contrast to Tikhonov’s regularization method, does not make use of
the adjoint of the derivative. There are plenty of qualitative and quantitative
convergence results in the literature, both in Hilbert and Banach spaces. Our
aim here is mainly to contribute to convergence rates results in Hilbert spaces
based on some types of error estimates derived under various source condi-
tions and to interpret them in some settings. In particular, we propose and
investigate new variational source conditions adapted to these Lavrentiev-type
techniques. Another focus of this paper is to exploit the concept of approximate
source conditions.

1. Introduction. For an infinite dimensional and separable real Hilbert space X
with norm ‖ · ‖ and inner product 〈·, ·〉, we consider the ill-posed operator equation

F (x) = y (1)

with the nonlinear forward operator F : D(F ) ⊆ X → X and assume that only
noisy data yδ ∈ X are available such that the deterministic noise model

‖y − yδ‖ ≤ δ (2)

with noise level δ > 0 applies. In this context, let x† ∈ D(F ) denote an exact
solution to equation (1) and x̄ ∈ X a reference element (initial guess). Throughout
this work we suppose that F is a monotone operator, i.e. we have

〈F (x) − F (x̃), x− x̃〉 ≥ 0 for all x, x̃ ∈ D(F ). (3)

Then the operator equation (1) is well-posed if

〈F (x) − F (x̃), x− x̃〉 ≥ ‖x− x̃‖ θ(‖x− x̃‖) for all x, x̃ ∈ D(F )
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holds for some index function θ. A function θ : (0,∞) → (0,∞) is called index func-
tion if it is continuous, strictly increasing and moreover satisfies the limit condition
limt→+0 θ(t) = 0.

If well-posedness of (1) fails, a regularization approach is required in order to
find stable approximate solutions to the ill-posed equation (1). We are going to
construct regularized solutions xδα to x† by solving the equation

F (xδα) + α(xδα − x̄) = yδ. (4)

This approach, which was originally suggested in [27], is often called Lavrentiev’s
regularization method. Alternatively, it is called perturbation method (cf. [28]) in
order to refer to the manner of obtaining regularized solutions as singular pertur-
bations. It can be shown that equation (4) has a unique solution xδα, under various
types of assumptions. We refer below to two variants of such assumptions, namely
(i) in the context of a globally monotone operator F defined on the whole space X
and (ii) when the domain of F might be smaller than X and F is locally monotone
there.

(i) If F : X → X is globally monotone, i.e. (3) is valid with D(F ) = X , and F is
a hemicontinuous operator then, by the Browder-Minty theorem, (4) has a unique
solution xδα for all x̄ ∈ X and yδ ∈ X .

(ii) If there is a ball Br(x
†) ⊂ D(F ) around a solution x† to equation (1) with

radius r = ‖x†− x̄‖+ δ
α and F : D(F ) ⊂ X → X is a Fréchet differentiable operator

monotone and hence hemicontinuous operator in the ball, then (4) has a unique
solution xδα in Br(x

†) for all x̄ ∈ X and yδ ∈ X (cf. [37, Theorem 1.1]).
In both cases, xδα depends continuously on yδ.
Note that we will work under assumptions (i), for simplicity of exposition. A

comprehensive study of Lavrentiev’s regularization method for nonlinear equations
in Hilbert spaces with monotone operators, even in a more general setting, can
be found in the book [2], for modifications of the method see also [8, 9, 14, 25].
Nevertheless, for completeness of exposition and since some of the estimates will be
needed later on, in Section 2 we provide a short summary of the arguments leading
to convergence of xδα from (4) to x† (see also [1, 6]).

As in the case of Tikhonov’s regularization method (cf., e.g., [35, Section 3.2] and
[20]), also for Lavrentiev’s regularization method a certain additional smoothness
of x† with respect to the forward operator is required in order to derive convergence
rates. At the origin of such studies, source conditions (range conditions) of Hölder-
type (cf., e.g., [25, 28, 37, 38]) were under consideration, however attaining here the
specific form

x† − x̄ ∈ R(Ap), 0 < p ≤ 1. (5)

Extensions of type

x† − x̄ ∈ R(ϕ(A)), (6)

with index functions ϕ, can also be found in the literature (cf., e.g., [29] and [5, 36]).
In this context, A ∈ L(X,X) denotes a bounded linear operator related to some
derivative F ′(x†) of the forward operator at the solution point. If these conditions
exceed the present solution smoothness, some weaker forms of source conditions
might be of interest.

Recent developments regarding convergence rates theory involve variational in-
equalities as source conditions for Tikhonov regularization, as introduced by [22].
One focus of this work is to investigate in case of Lavrentiev regularization not only
the already known conditions in a Tikhonov-type context, but also new conditions
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adapted to the Lavrentiev’s techniques - see Section 3 in this respect. Another focus
is to exploit the concept of approximate source conditions in the sense of [17, 19] in
Section 4. Finally, we provide some illustrative examples in Section 5.

2. Convergence. Similarly to the Tikhonov regularization for nonlinear operator
equations in a Hilbert space setting (cf. [12, Sect. 10.2], also for Lavrentiev regu-
larized solutions xδα convergence is global, in the sense that no sufficient closeness
between x̄ and x† needs to be required. Also a general condition which is well-
known from Tikhonov regularization occurs again here, namely we assume that F
is weak-to-norm sequentially closed, which means that

xn ⇀ x̃ and F (xn) → z0 ⇒ x̃ ∈ D(F ) and F (x̃) = z0. (7)

Monotonicity and hemicontinuity of F are together sufficient for (7) in the case
D(F ) = X (cf., e.g., Lemma 1.4.5 and Theorem 1.4.6 in [2]).

We assume that the set L of solutions to equation (1) for given y ∈ X is not
empty. We derive below formulas for handling the error of regularized solutions xδα
with respect to exact solutions x† ∈ L in order to show convergence for appropriate
choices of the regularization parameter α, where in particular x̄-minimum-norm

solutions are targeted. As usual, we say that a solution x†min ∈ L is the x̄-minimum-

norm solution if ‖x†min − x̄‖ = min
x†∈L

‖x† − x̄‖.
Under condition (7), the set L is weakly closed and hence such a minimum-

norm solution x†min exists (see, e.g., [35, Prop. 3.14]). If in addition L is convex and

closed, then x†min is uniquely determined. This is actually the case throughout this
paper, as the context (i) that we work with, namely D(F ) = X , monotonicity and
hemicontinuity of the operator, implies maximal monotonicity of F and is sufficient
for the convexity and closedness of L (cf. Th. 1.4.6 and Corollary 1.4.10 in [2]).

Testing (4) with xδα − x† and moreover with F (xδα)− F (x†) leads to

〈F (xδα)− F (x†), xδα − x†〉+ 〈y − yδ, xδα − x†〉
+α‖xδα − x†‖2 + α〈x† − x̄, xδα − x†〉 = 0 (8)

and

‖F (xδα)− F (x†)‖2 + 〈y − yδ, F (xδα)− F (x†)〉
+α〈F (xδα)− F (x†), xδα − x†〉+ α〈x† − x̄, F (xδα)− F (x†)〉 = 0 ,

respectively. By using the monotonicity condition (3) of F in combination with the
Cauchy-Schwarz inequality this implies the following three basic estimates, which
will be required below.

‖xδα − x†‖2 ≤ 〈x† − x̄, x† − xδα〉+
δ

α
‖xδα − x†‖, (9)

‖xδα − x†‖ ≤ ‖x† − x̄‖+ δ

α
, (10)

‖F (xδα)− F (x†)‖ ≤ α‖x† − x̄‖+ δ. (11)

Taking into account these estimates one can conclude convergence with a priori or
a posteriori parameter choice by standard arguments of regularization theory.
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A priori parameter choice. We choose α∗ = α∗(δ) a priori such that it satisfies
the limit conditions

α∗(δ) → 0 and
δ

α∗(δ)
→ 0 as δ → 0. (12)

Inserting this into (10) we obtain that ‖xδα∗(δ)
− x†‖ is uniformly bounded as δ →

0. Thus, for any sequence δn → 0 there exists a weakly convergent subsequence

x
δnk

α∗(δnk
) with weak limit x̃. On the other hand, (11) and (12) yield F (xδnα∗(δn)

) → y

and hence, from the weak sequential closedness (7), we conclude that x̃ solves (1).
Thus, we have weak subsequential convergence to a solution. Convergence is even
strong since by (9), (10), which remain valid for any solution x̃ of (1), we have

lim sup
k→∞

‖xδnk

α∗(δnk
) − x̃‖2

≤ lim sup
k→∞

{

〈x̃− x̄, x̃− x
δnk

α∗(δnk
)〉+

δnk

α∗(δnk
)
‖xδnk

α∗(δnk
) − x̃‖

}

= 0 ,

where we have used weak convergence, (12) and uniform boundedness of ‖xδnk

α∗(δnk
)−

x̃‖. Along the lines of the proof of [2, Theorem 2.1.2], we show that every such limit
x̃ is the x̄-minimum-norm solution. Let x† be an arbitrary element of L. From (9)
we have

〈x† − x̄, x† − x
δnk

α∗(δnk
)〉+

δnk

α∗(δnk
)
‖xδnk

α∗(δnk
) − x†‖ ≥ 0 for all x† ∈ L

and hence, under (12) with x
δnk

α∗(δnk
) → x̃ ∈ L as k → ∞, the following holds:

〈x† − x̄, x† − x̃〉 ≥ 0 for all x† ∈ L.

Due to the convexity of L, one has xt := tx̃+(1− t)x†min ∈ L, for all 0 ≤ t < 1. By
setting x† := xt

〈xt − x̄, (1− t)(x†min − x̃)〉 ≥ 0 for all 0 ≤ t < 1,

one has

〈xt − x̄, x†min − x̃〉 ≥ 0

which yields, for the limit t→ 1,

〈x̃− x̄, x†min − x̃〉 ≥ 0 and 〈x̃ − x̄, x†min − x̄〉 ≥ ‖x̃− x̄‖2.

This, however, provides us with the inequality ‖x̃− x̄‖ ≤ ‖x†min − x̄‖ which shows
that x̃ is the x̄-minimum-norm solution. By a subsequence-subsequence argument,

the whole sequence converges to x†min. The discussion above proves the following
proposition.

Proposition 1. For an a priori parameter choice α∗ = α∗(δ) satisfying (12) and a

sequence δn → 0, the sequence of associated regularized solutions xδnα∗(δn)
converges

strongly to the x̄-minimum-norm solution x†min of (1).
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A posteriori parameter choice: a variant of discrepancy principle. By in-
spection of the detailed considerations in the previous paragraph concerning the
convergence for a priori choices of the regularization, we immediately find the fol-
lowing extension to a posteriori parameter choices.

Proposition 2. For an a posteriori parameter choice α∗ = α∗(δ, yδ), well-defined
for sufficiently small δ > 0 and satisfying the conditions

δ

α∗(δ, yδ)
→ 0 as δ → 0 (13)

as well as

‖F (xδα∗(δ)
)− y‖ → 0 as δ → 0, (14)

the sequence of regularized solutions xδnα∗(δn)
associated with a sequence δn → 0

converges strongly to the x̄-minimum-norm solution x†min of (1).

Now we are going to apply Proposition 2 to a variant of the discrepancy principle
(compare to the residual principle in Chapter 3 of [2]) and assume in this context
that

‖F (x̄)− y‖ > 0, i.e. x̄ does not solve (1). (15)

Given a sufficiently small noise level δ > 0 and data yδ ∈ X satisfying (2), we fix
0 < κ < 1, τ > 1 and α0 > 0 such that

‖F (xδα0
)− yδ‖ > τδκ. (16)

Under (15), the existence of such an α0 for sufficiently small δ > 0 is due to the
limit condition

lim
α→∞

‖F (xδα)− yδ‖ = ‖F (x̄)− yδ‖

and ‖F (x̄)− yδ‖ ≥ ‖F (x̄)− y‖− δ > τδκ for δ < min(1,
(

‖F (x̄)−y‖
τ+1

)1/κ

). Moreover,

we know that there is some α > 0 such that

‖F (xδα)− yδ‖ ≤ τδκ for all 0 < α ≤ α.

This is a consequence of (4),(10) and the estimate

‖F (xδα)− yδ‖ = α‖xδα − x̄‖ ≤ α
(

‖xδα − x̄‖+ ‖x† − x̄‖
)

≤ 2α‖x† − x̄‖+ δ,

which yields α = (τ−1)δκ

2‖x†−x̄‖ .

In the following we choose α∗ = α∗(δ, yδ) along a fixed geometrically decaying
sequence αk = qkα0 for some q ∈ (0, 1) according to

α∗ = max{αk ≥ 0 : ‖F (xδαk
)− yδ‖ ≤ τδκ}. (17)

This is a variant of the sequential discrepancy principle, see also [4]. Well-definedness
and strict positivity of α∗ follow from the existence of positive values α0 and α. Es-
timate (11) together with (17) yields, for δ < 1,

τδκ < ‖F (xδα∗
q
)− yδ‖ ≤ α∗

q
‖x† − x̄‖+ δ ≤ α∗

q
‖x† − x̄‖+ δκ,

and thus, the following lower bound for α∗

α∗ ≥ q(τ − 1)

‖x† − x̄‖δ
κ.
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Consequently, for sufficiently small δ > 0 one has

δ

α∗
≤ δ1−κ ‖x† − x̄‖

q(τ − 1)
→ 0 as δ → 0,

implying (13). To see (14) from (17), we use the triangle inequality as

‖F (xδα∗
)− y‖ ≤ ‖F (xδα∗

)− yδ‖+ δ ≤ (τ + 1)δκ → 0 as δ → 0 .

Hence, Proposition 2 applies for this specific variety of a discrepancy principle and
arbitrary choices of the exponent 0 < κ < 1. Note that one can show only weak

convergence xδnα∗(δn)
⇀ x†min as n→ ∞ if the exponent is κ = 1.

As an alternative a posteriori choice of the regularization parameter for Lavren-
tiev’s method we can also exploit the Lepskĭı or balancing principle (cf., e.g., [30]),
which even yields convergence rates (see Theorem 5).

3. Convergence rates under variational source conditions. As mentioned
in the introduction, we investigate below error estimations under several types of
source conditions on solutions of (1). Actually, the solution x† referred to in all these
source conditions has to be the x̄-minimum-norm solution in the current setting of
globally monotone operators F defined on Hilbert spaces. However, we prefer the
x† notation in order to anticipate the more general situations when the solution set
L of (1) is not necessarilty convex and closed.

3.1. Variational source condition from Tikhonov regularization. First we
consider the variational source condition

〈x† − x̄, x† − x〉 ≤ β‖x† − x‖2 + ψ(‖F (x) − F (x†)‖) for all x ∈ M, (18)

which up to some factor 2 on the left-hand side coincides (for ψ(t) = t) with the
variational source condition originally developed in [22] for obtaining convergence
rates in Tikhonov regularization. Here we use a constant β ∈ [0, 1), some index
function ψ and a solution x† of (1). The set M ⊂ X in (18) must contain all
regularized solutions xδα of interest for δ > 0 sufficiently small and α > 0 chosen
appropriately. For instance, the results in Section 2 guarantee that, under condition
(7) and with an appropriate choice of α in dependence of δ and a fixed but possibly
small radius ρ > 0, the set M = Bρ(x

†) contains all xδα for δ > 0 sufficiently small.
By homogeneity argument in the case of a linear operator F = A ∈ L(X,X), we
conclude that (18) is realistic only for index functions decaying to zero not faster
than ψ(t) ∼ t as t → +0. Precisely, taking x := x† + ε(x̄ − x†) with ε > 0 in (18)
implies

ε‖x† − x̄‖2 ≤ βε2‖x† − x̄‖2 + ψ(ε‖A(x† − x̄)‖),
i.e., unless the trivial case x†− x̄ ∈ N (A) holds, we can divide by t := ε‖A(x†− x̄)‖
to conclude that

lim
t→+0

ψ(t)

t
≥ c > 0 (19)

for c = ‖x†−x̄‖2

‖A(x†−x̄)‖ > 0.

As a matter of fact, if 0 ≤ β ≤ 1
2 and M contains an x̄-minimum-norm solution,

then all solutions x† satisfying (18) have to be x̄- minimum-norm solutions. Namely,

using (18) with x = x†min implies

−1

2
‖x†min−x̄‖2+

1

2
‖x†−x̄‖2+1

2
‖x†−x†min‖2 = 〈x†−x̄, x†−x†min〉 ≤ β‖x†−x†min‖2 ,
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i.e., with 0 ≤ β ≤ 1
2 , we get ‖x† − x̄‖2 ≤ ‖x†min − x̄‖2.

Theorem 3. Let F : X → X be a hemicontinuous and monotone operator and M
be a subset of the Hilbert space X such that (18) is satisfied. Moreover, let α be
chosen such that all regularized solutions xδα from (4) belong to M for sufficiently
small δ > 0. Then one has the estimate

‖xδα − x†‖2 ≤ 1

(1− β)2
δ2

α2
+

2

1− β
ψ(δ + cα), (20)

with c = ‖x† − x̄‖ for δ > 0 as above. For the a priori choice

α(δ) ∼ Φ−1(δ2) (21)

with the index function Φ(α) := α2ψ(α) which satisfies (12), this yields the conver-
gence rate

‖xδα(δ) − x†‖ = O

(

δ

Φ−1(δ2)

)

= O
(

√

ψ(Φ−1(δ2))
)

. (22)

The best possible rate under condition (18) occurs for ψ(t) ∼ t as

‖xδα(δ) − x†‖ = O(δ
1
3 ) if α(δ) ∼ δ

2
3 . (23)

Proof. Let γ := 〈F (xδα)− F (x†), xδα − x†〉. Note that xδα ∈ M for sufficiently small
δ > 0, whenever the a priori parameter choice α = α(δ) satisfies condition (12)
guaranteeing (due to Section 2) convergence of xδα to x† and if M = Bρ(x

†) for
some ρ > 0.

From (8), (18) and (2) it follows that

γ + α‖xδα − x†‖2 = 〈yδ − y, xδα − x†〉+ α〈x† − x̄, x† − xδα〉 (24)

≤ δ‖xδα − x†‖+ α(β‖xδα − x†‖2 + ψ(‖F (xδα)− F (x†)‖)).

The monotonicity (3) of F implies γ ≥ 0 and thus we can neglect γ and estimate
further as

(1 − β)‖xδα − x†‖2 ≤ δ

α
‖xδα − x†‖+ ψ(‖F (xδα)− F (x†)‖). (25)

By monotonicity of ψ and (11) this yields

‖xδα − x†‖2 ≤ 1

1− β

δ

α
‖xδα − x†‖+ 1

1− β
ψ(δ + cα).

Since for any d, c1, c2 ≥ 0

d2 ≤ 2c1d+ c2 ⇒ d2 ≤ 4c21 + 2c2 (26)

holds, one obtains (20). Since Φ is an index function, the same is valid also for Φ−1,

as well as for the compositions Φ−1(δ2) and
√

ψ(Φ−1(δ2)) = δ
Φ−1(δ2) . Consequently,

the a priori regularization parameter choice (21) satisfies δ = O(α(δ)) and moreover
the limit conditions (12), which are relevant for convergence (cf. Section 2). Then
the convergence rate (22) can be derived from (20) for the choice (21). Due to (19),
we have the inequality α3 ≤ c1Φ(α), hence Φ−1(δ2) ≤ c2δ

2/3 and δ
Φ−1(δ2) ≥ c3δ

1/3,

for some positive constants c1, c2 and c3. This shows that O(δ
1/3) is the best possible

rate attained for ψ(t) ∼ t.
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Remark 4. The classical ‘adjoint’ source condition x†− x̄ ∈ R(A∗) (which implies
(18) with β = 0 and ψ(t) = t in the linear operator case) yields the convergence
rate O(δ1/3). Thus, the rate O(δ1/2) mentioned with no proof by Theorem 6 in
[28] seems to be a typo. However, the ‘no adjoint’ source condition x† − x̄ ∈ R(A)
occurring in (5) for p = 1 implies the better rate O(δ1/2) (cf. [37]). This is due to
the higher rate O(α) for the approximation error (the exact data case), as compared
to O(α1/2) derived from x† − x̄ ∈ R(A∗) (see, e.g., Theorem 5 in [28]), while the
propagated data error is the same in both situations: O(δ/α).

3.2. Variational source condition specific to Lavrentiev regularization. In
this section we propose a variational source condition which seems to naturally fit
the setting of Lavrentiev’s method.

Recently, results in [3] regarding Tikhonov regularization in the linear case point
out connections between the standard source condition x† ∈ R((A∗A)ν/2) for ν ∈
(0, 1] and several types of variational source conditions along with the one

2〈x†, x〉 ≤ β1‖x‖2 + β2‖Ax‖
2ν

ν+1 for all x ∈ X, (27)

with constants β1 ∈ [0, 1) and β2 ≥ 0, which is very similar to (18) for power-type
functions ψ. Searching for an adaption to the Lavrentiev setting, it makes sense
however to consider (28) instead of (27),

〈x†, x〉 ≤ β1‖x‖2 + β2〈Ax, x〉µ for all x ∈ X, (28)

with µ > 0 and constants β1, β2 as above. Actually, we will deal with the more
general version with respect to the nonlinear case

〈x†− x̄, x†−x〉 ≤ β‖x−x†‖2+ϕ(〈F (x)−F (x†), x−x†〉) for all x ∈ M, (29)

with β ∈ [0, 1) and ϕ an index function. Again, no condition additional to mono-
tonicity needs to be imposed on F . As in Section 3.1, there is a natural upper
bound on the decay rate of ϕ as t tends to zero. To this end, consider again the
linear case F = A ∈ L(X,X) and x := x† + ε(x̄ − x†) with ε > 0 in (29). This
implies

ε‖x† − x̄‖2 ≤ βε2‖x† − x̄‖2 + ϕ(ε2〈A(x† − x̄), x† − x̄〉),
which by division to

√
t = ε

√

〈A(x† − x̄), x† − x̄〉 and by letting ε→ 0 enforces

lim
t→0

ϕ(t)√
t

≥ c > 0 (30)

with the constant c = ‖x†−x̄‖√
〈A(x†−x̄),x†−x̄〉

> 0, unless the trivial case

〈A(x† − x̄), x† − x̄〉 = 0 holds, so that the best rate obtainable here is the one
associated with ϕ(t) =

√
t.

To quantify convergence rates, we introduce the index function Ψ as follows.
Let f be an index function such that its antiderivative f̃(s) :=

∫ s

0 f(t)dt satisfies

the condition f̃(ϕ(s)) ≤ s for s > 0 and let G(α) ≥
∫ α

0 f−1(τ)dτ . Then we set

Ψ(α) := G(α)
α .

We will first of all obtain rates by choosing

αapri = α(δ) := Θ−1(δ2) (31)

with
Θ(α) := α2Ψ(α), (32)
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which also satisfies condition (12) for convergence without source condition.
The same rates are achieved with an a posteriori parameter choice αLep according
to the Lepskĭı principle, which does not require the knowledge of Ψ. In this context,
the regularization parameter αLep is determined as follows: For prescribed τ > 1
and 0 < q < 1 we consider the function

Σ(α, δ) :=

(√
3− 2β

1− β

)

δ

α

and the increasing geometric sequence

∆q := {αj : αj = α0/q
j, j ∈ N}

with α0 > 0 sufficiently small, such that ‖xδα0
− x†‖ ≤ Σ(α0, δ). Then we set

αLep = α(δ, yδ) :=

max{α ∈ ∆q : ‖xδα′ − xδα‖ ≤ 2Σ(α′, δ) for all α′ ∈ ∆q ∩ [α0, α]}.
(33)

Theorem 5. Let F : X → X be a hemicontinuous and monotone operator and M
be a subset of the Hilbert space X such that (29) is satisfied. Moreover, let α be
chosen such that all regularized solutions xδα from (4) belong to M for sufficiently
small δ > 0. Then one has the estimate

‖xδα − x†‖2 ≤ 1

(1− β)2
δ2

α2
+

2

1− β
Ψ(α), (34)

for δ > 0 as above. For the a priori choice (31), this yields the convergence rate

‖xδαapri
− x†‖ = O

(

δ

Θ−1(δ2)

)

= O
(

√

Ψ(Θ−1(δ2))
)

, (35)

with Θ as in (32). The best possible rate occurs for ϕ(t) ∼
√
t and Ψ(t) ∼ t as

‖xδαapri
− x†‖ = O(δ

1
3 ) if α(δ) ∼ δ

2
3 . (36)

The convergence rate (35) is also obtained with the Lepskĭı principle (33)

‖xδαLep
− x†‖ = O

(

δ

Θ−1(δ2)

)

.

Proof. Note that xδα ∈ M, for all δ > 0 sufficiently small, due to the convergence
results in the a priori parameter choice case. Let again γ := 〈F (xδα)− F (x†), xδα −
x†〉 ≥ 0. By (24) and (29) written for x := xδα one has

γ + α‖xδα − x†‖2 ≤ δ‖xδα − x†‖+ α(β‖xδα − x†‖2 + ϕ(γ)).

Now one can employ Young’s inequality

ab ≤
∫ a

0

f(t) dt+

∫ b

0

f−1(t) dt

for an index function f which will be specified later, for a = ϕ(γ) and b = α. Using
the settings

f̃(s) =

∫ s

0

f(t) dt, G(α) ≥
∫ α

0

f−1(t) dt,

one needs to find the function f such that f̃(ϕ(γ)) ≤ γ. Then one has

α(1 − β)‖xδα − x†‖2 ≤ δ‖xδα − x†‖+G(α),
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so with Ψ(α) = G(α)
α one gets

‖xδα − x†‖2 ≤ 1

1− β

(

δ

α
‖xδα − x†‖+ Ψ(α)

)

.

We use again the implication (26) to conclude (34). The a priori parameter choice
(31) yields the convergence rate (35). For showing the same rate for the a posteriori
parameter choice according to the Lepskĭı principle, we apply Proposition 1 from
[30] (see also [23, § 4.2.2]). Taking into account that Ψ is an increasing function,
we have from (34) that

‖xδα − x†‖2 ≤
δ2 + 2(1− β)α2

apriΨ(αapri)

(1− β)2 α2
=
δ2 + 2(1− β)δ2

(1− β)2 α2
= (Σ(α, δ))2,

for all α0 ≤ α ≤ αapri. This ensures the estimate ‖xδαLep
− x†‖ ≤ 3Σ(αapri, δ) =

O
(

δ
Θ−1(δ2)

)

(cf. [30, Proposition 1]).

Remark 6. The construction of f,G and Ψ in Theorem 5 is straightforward if
ϕ is smooth enough and we can use f(t) := (ϕ−1)′(t) and G(α) :=

∫ α

0 f−1(τ)dτ .
Obviously, Ψ in Theorem 5 plays a similar role as ψ did in Theorem 3.

3.3. The special case of Hölder and logarithmic source conditions.

Hölder-type variational source conditions. Taking into account exponents µ ∈ (0, 12 ],
we consider (29) with

ϕ(t) = tµ, f(t) =
1

µ
t
1−µ
µ , f−1(t) = (µt)

µ
1−µ , f̃(s) = s

1
µ ,

G(α) = (1− µ)µ
µ

1−µα
1

1−µ , Ψ(α) = (1 − µ)µ
µ

1−µα
µ

1−µ , Θ(t) ∼ t
2−µ
1−µ ,

or correspondingly (18) with

ψ(t) ∼ t
µ

1−µ .

According to Theorems 3 and 5 this yields in both cases the Hölder rate

‖xδα(δ) − x†‖ = O(δ
µ

2−µ ) if α(δ) ∼ δ
2(1−µ)
2−µ .

Logarithmic-type variational source conditions. We consider (29) with

ϕ(t) =
1

− ln t
, f(t) = e−

1
t ≤ 1

t2
e−

1
t = ϕ−1′(t), f−1(t) =

1

− ln t
,

G(α) = α
1

− lnα
≥
∫ α

0

1

− ln t
dt, Θ(t) ∼ t2

1

− ln t
,

for α, t ∈ (0, 1) or correspondingly (18) with

ψ(t) ∼ 1

− ln t
.

According to Theorems 3 and 5, this yields again in both cases the same logarithmic

rate O
(

√

Ψ(Θ−1(δ2))
)

.

Since the a priori choice α(δ) ∼ Θ−1(δ2) can not be determined explicitly in this

logarithmic case, a more convenient choice is α(δ) ∼
√
δ which implies

‖xδα(δ) − x†‖ = O

(

1
√

− ln(δ)

)

.

For other results concerning logarithmic rates based on variational source conditions
we also refer, for example, to [10, 18, 40].
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Remark 7. At the moment we cannot present convergence rates for the Lavrentiev
regularization under variational source conditions with the variant of a discrepancy
principle, for which the convergence was shown in Section 2. Perhaps this is due to
an intrinsic deficit of discrepancy principles in Lavrentiev regularization. Thus, we
have considered the balancing principle (33) as an alternative a posteriori rule for
proving rates, see Theorem 5.

4. Convergence rates under approximate source conditions. We assume
that F locally satisfies an approximate range invariance condition, which means that
there exist a bounded monotone (accretive) linear operator A ∈ L(X,X) satisfying
the condition

〈Ax, x〉 ≥ 0 for all x ∈ X (37)

and a ball Bρ(x
†) ⊆ D(F ) of positive, but maybe small, radius ρ > 0 and a uniform

constant 0 < c < 1, such that for all points x ∈ Bρ(x
†) there are bounded linear

operators M(x), N(x) ∈ L(X,X) satisfying the conditions

F (x)− F (x†) = AM(x)(x − x†) +N(x) and

‖M(x)− I‖ ≤ c < 1 , ‖N(x)‖ ≤ σ(‖x − x†‖)
(38)

with σ to be specified below (cf. (46)). If N does not vanish identically, we addi-
tionally assume that

∀x, x̃ ∈ Bρ(x
†), ‖M(x)−M(x̃)‖ ≤ LM ‖x− x̃‖ and AM(x) accretive

‖x† − x̄‖ ≤ (1− c)ρ , c+ ρLM < 1
(39)

holds. Note that by the convergence result from Section 2, there exists δ̄ > 0 such
that for all δ ∈ (0, δ̄] the regularized solution xδα∗(δ)

lies in Bρ(x
†).

Accretivity (37) of A has the consequence that (see, e.g., Proposition 2.1 in [37])

‖(A+ αI)−1‖ ≤ 1

α
and ‖(A+ αI)−1A‖ ≤ 1 for all α > 0. (40)

If the monotone operator F is differentiable at x̂ ∈ D(F ) with Fréchet derivative
F ′(x̂), then it is well-known that A := F ′(x̂) is accretive and thus satisfies conditions
(40).

4.1. General convergence rates. The benchmark source condition for an accre-
tive linear operator A ∈ L(X,X) we consider here is

x† − x̄ = Aw, for some w ∈ X. (41)

Moreover, we can use for arbitrary R > 0 an approximate source condition of the
form

x† − x̄ = AwR + rR wR, rR ∈ X, ‖wR‖ = R, ‖rR‖ = d(R), (42)

with a distance function

d(R) = min{‖x† − x̄−Aw‖ : ‖w‖ ≤ R}. (43)

If the benchmark source condition (41) fails and hence ‖rR‖ > 0 for all R > 0 in
(42), then the method of approximate source conditions using the distance function
(43) applies. This method was developed for linear ill-posed operator equations in
[19] (see also [11, 21] and ideas in [7]). An extension to nonlinear operator equation
can be found in [17] and moreover in [10]. It yields convergence rates whenever
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d(R), R > 0, is continuous, positive, convex and strictly decreasing to zero as
R→ ∞. This is the case if

R(A)
X

= X. (44)

(see, e.g., [10, Lemma 3.2]). For accretive A this is equivalent to the injectivity of

A due to R(A)⊕N (A) = X (cf. [16, Prop. 2.1.1 h]).
Under the regularity conditions (41), (42), we will use the a priori parameter

choice α ∼ φ−1(δ) in the sense that there exists a sufficiently large constant τ > 1
such that

{

δ ≤ τφ(α) , and d(χ−1(α)) ≤ τd(χ−1(φ−1(δ)) if (41) is violated
1
τ δ ≤ α2 ≤ τδ if (41) is satisfied

(45)

and the assumption

σ(e) ≤ Cσeε
−1(e) (46)

holds for some constant Cσ > 0 in (38), with the auxiliary functions

φ(α) = αd(χ−1(α)) , (47)

χ(R) =
d(R)

R
, (48)

ε(α) =

{

(

2−c
1−c + τ)d(χ−1(α)

)

if (41) is violated

( ‖w‖
1−c + τ)α if (41) is satisfied.

(49)

Note that d is monotonically decreasing by definition and χ is strictly decreasing;
if the benchmark source condition (41) is violated, then d is strictly decreasing and
hence ε is invertible and σ is strictly monotonically increasing. Therewith, we arrive
at the following rates result.

Theorem 8. Let F : X → X be a hemicontinuous and monotone operator satisfying
(38) with (37), (44) and (46), and, if N 6≡ 0, additionally (39). Then with the choice
(45) we have

‖xδα − x†‖ =

{

O(d(χ−1(φ−1(δ)))) if (41) is violated,

O(
√
δ) if (41) is satisfied.

In particular, if F is Gâteaux differentiable with locally Lipschitz continuous deriv-
ative

‖F ′(x)− F ′(x†)‖ ≤ L ‖x− x†‖ for all x ∈ Bρ(x
†) (50)

and (41) holds with A = F ′(x†), then ‖xδα − x†‖ = O(
√
δ).

Proof. We first consider the case N ≡ 0 in (38), where the estimates are somewhat
simpler. We rewrite (4) as

xδα − x†

=− (A+ αI)−1
(

y − yδ + F (xδα)− F (x†)−A(xδα − x†) + α(x† − x̄)
)

=− (A+ αI)−1(y − yδ)− (A+ αI)−1A(M(xδα)− I)(xδα − x†)

− α(A + αI)−1AwR + α(A+ αI)−1rR ,

with wR = w and rR = 0 in case of (41). Taking into account the assumption (38)
(with N ≡ 0) and the inequalities (40), we obtain the estimate

‖xδα − x†‖ ≤ δ

α
+ c‖xδα − x†‖+ αR + d(R),
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i.e.,

‖xδα − x†‖ ≤ 1

1− c

( δ

α
+ αR + d(R)

)

, (51)

Considering the case that (41) is violated and equilibrating the terms containing R
we obtain the best R in dependence of α:

R = χ−1(α) , (52)

where χ is defined as in (48). Equilibrating now the two terms in the right hand
side of the resulting estimate

‖xδα − x†‖ ≤ 1

1− c

(

δ

α
+ 2d(χ−1(α))

)

yields the best a priori choice (45) (where φ is defined as in (47)) and thus, the rate
estimate

‖xδα − x†‖ = O(d(χ−1(φ−1(δ)))) as δ → 0 . (53)

If (41) holds, the estimate simplifies to

‖xδα − x†‖ ≤ 1

1− c

( δ

α
+ α‖w‖

)

≤ 1

1− c

(

τ + ‖w‖
)

α ≤ 1

1− c

(

τ + ‖w‖
)√

τδ

where we have used (45).
IfN does not vanish identically, we (as in [37]) introduce an intermediate quantity

z solving the equation

(AM(z) + αI)(z − x†) + α(x† − x̄) = 0 (54)

with A, M as in (38). Solvability of (54) follows from Banach’s Fixed Point Theo-
rem, applied to the reformulation

z = Φ(z) = x† + (A+ αI)−1
(

A(I −M(z))(z − x†) + α(x̄− x†)
)

(55)

of (54). Indeed, Φ is a self-mapping on Bρ(x†), since for any z ∈ Bρ(x†)

‖Φ(z)− x†‖ = ‖(A+ αI)−1A(I −M(z))(z − x†) + α(A+ αI)−1(x̄− x†)‖
≤ ‖(I −M(z)(z − x†)‖+ ‖x̄− x†‖
≤ cρ+ ‖x̄− x†‖ρ ≤ ρ,

due to (40) and (39). Contractivity of Φ follows from the estimate

‖Φ(z)− Φ(z̃)‖ = ‖(A+ αI)−1A
(

(I −M(z))(z − x†)− (I −M(z̃))(z̃ − x†)
)

‖

≤ ‖(I −M(z))(z − z̃)‖+ ‖(M(z)−M(z̃))(z̃ − x†)‖
≤ (c+ LMρ)‖z − z̃‖

for any z, z̃ ∈ Bρ(x†), where c+ LMρ < 1 by (39).
Using (54), we can rewrite (4) as

F (xδα)− F (z) + y − yδ + F (z)− F (x†)−AM(z)(z − x†) + α(xδα − z) = 0.

By testing it with xδα − z, by monotonicity of F and (38), we obtain

‖xδα − z‖ ≤ δ

α
+
σ(‖z − x†‖)

α
. (56)
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Here, by employing (40) and the approximate source condition (42) with
‖M(z)−1wR‖ ≤ R

1−c , ‖rR‖ ≤ d(R), we can estimate as follows,

‖z − x†‖ = α‖(AM(z) + αI)−1(x† − x̄)‖

= α‖(AM(z) + αI)−1(AM(z)M(z)−1wR + rR)‖ ≤ R

1− c
α+ d(R),

Using this and the triangle inequality in (56) we get

‖xδα − x†‖ ≤ δ

α
+

R

1− c
α+ d(R) +

σ( R
1−cα+ d(R))

α
,

since σ is monotonically increasing. By choosing the interdependence of R, α, and
δ in the best way as above, cf. (52), (45), we can achieve that

δ

α
+

R

1− c
α+ d(R) ≤ ε(α)

with ε according to (49). So in order to maintain the rate from the case N ≡ 0,
we assume the function σ : R+ → R

+ to be monotonically increasing and satisfying
(46). This gives the estimate

‖xδα − x†‖ ≤ ε(α) +
σ(ε(α))

α
≤ (1 + Cσ)ε(α),

which yields the claimed rates due to (45).

Remark 9. If (41) fails, it follows due to (44) that the function d(R), R > 0, given
by (43) is continuous, positive, convex and strictly decreasing to zero as R → ∞,
the rate function d(χ−1(φ−1(δ)) is strictly increasing for δ > 0 and satisfies the

limit conditions lim
δ→+0

d(χ−1(φ−1(δ))) = 0 and lim
δ→+0

√
δ

d(χ−1(φ−1(δ))) = 0. The latter

condition shows that we have a lower convergence rate if the exact source condition
(57) fails.

This approach also works if d(R) stands for a majorant function to the distance
function (43) which is strictly decreasing to zero as R → ∞.

If d is differentiable, then instead of equilibrating terms one can as well minimize
the right hand side of (51) with respect to α and R, which leads to the same result
at least in the Hölder case considered in Section 4.3.

4.2. Comparison to previous results. If the benchmark source condition

x† − x̄ = Aw, w ∈ X, ‖w‖ = R0 > 0, (57)

is valid, then (42) holds with wR0 = w and d(R) = 0, R0 ≤ R < ∞. In that case
we have the benchmark rate

‖xδα − x†‖ = O(
√
δ) as δ → 0, (58)

whenever α ∼
√
δ. This was already shown in [37] for the Fréchet derivative F ′(x†) ∈

L(X,X) as linear operator A, under the weaker nonlinearity condition (50) that we
also use in Theorem 8. Note that for accretive A ∈ L(X,X), condition (57) requires
that x† − x̄ is orthogonal to the nullspace N (A).

The range invariance condition (38) with N ≡ 0 (cf., e.g., [24, 26, 34, 39]) is
really a strong nonlinearity condition, but it has the advantage that A need not be
exactly equal to F ′(x†), but can be chosen from a wider variety of linear operators.
For example, the nonlinearity condition involving constants k0, ρ > 0 such that for
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all x, x̂ ∈ Bρ(x
†) ⊂ D(F ) and h ∈ X there exist elements k(x, x̂, h) ∈ X with the

property

[F ′(x) − F ′(x̂)]h = F ′(x̂) k(x, x̂, h) and ‖k(x, x̂, h)‖ ≤ k0‖x− x̂‖ ‖h‖, (59)

is frequently used (see, e.g., [34, conditions (10), (11)]). Due to the mean value
theorem, this implies the range invariance condition (38) with A = F ′(x†) provided
that the smallness condition k0 ‖F ′(x†)‖ < 1 holds. If the following inequality is
satisfied for some constants 0 < κ ≤ 1 and k1 > 0,

‖k(x, x†, h)‖ ≤ k1 ‖x− x†‖κ ‖h‖,
then the smallness condition is fulfilled whenever ρ is sufficiently small.

Condition (59) with fixed x̂ := x† occurs as Assumption A3 in [37]. Note that
the operators Ap, 0 < p ≤ 1, mentioned at (5) are fractional powers of the accretive
(sectorial) operator A, defined by a Dunford integral as

Apv :=
sin(pπ)

π

∞
∫

0

sp−1(A+ sI)−1Av ds, v ∈ X. (60)

This approach was used there to prove Hölder convergence rates

‖xδα − x†‖ = O
(

δ
p

p+1

)

as δ → 0, (61)

with A := F ′(x†) for Lavrentiev regularization and with an a priori parameter

choice α ∼ δ
1

p+1 , under the source condition

x† − x̄ = Ap w, w ∈ X, (62)

(see also [33, Chapt. 8] or [31, Chapt. 1]). We will obtain this rate result in Sec-
tion 4.3 under the range invariance condition (38) with a completely different proof.

If (59) holds for all center elements x̂ ∈ Bρ(x
†) and all x ∈ Bρ(x

†), then one even
has a range invariance condition (38) with A = F ′(x̂) for all such x̂ whenever

‖k(x, x̂, h)‖ ≤ k1 ‖x− x̂‖κ ‖h‖, ∀h ∈ X

and ρ is sufficiently small.
Extension of this type of conditions to (38) with N 6= 0 allows for situations in

which the ranges of the linearizations do not coincide exactly. Exact coincidence of
the ranges can be quite restrictive if these ranges are non closed (as relevant in ill-
posed problems). In the situation of dense but non-closed range, a small correction
N might often be sufficient to bridge the gap between ranges of linearizations at
different points.

4.3. More on Hölder convergence rates.

Proposition 10. Let F : X → X be a hemicontinuous and monotone operator
and suppose that a range invariance condition (38) holds for some accretive linear
operator A satisfying (44) (with additionally (39) if N 6≡ 0). Provided that the
benchmark source condition (57) fails for all R0 > 0, we have a Hölder convergence
rate (61) for Lavrentiev regularized solutions for an a priori parameter choice α ∼
δ

1
p+1 if there is some source element w ∈ X such that the fractional power source

condition (62) with Ap from (60) is satisfied with 0 < p < 1.
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Proof. Under the assumptions of the proposition, estimate (53) is applicable and
thus we only have to show that, for all 0 < p < 1 and under (62),

d(χ−1(φ−1(δ))) = O(δ
p

p+1 ) as δ → 0. (63)

In this context, we exploit the formulas

‖(AA∗ + λI)−1Ap‖ ≤ C1

λ1−
p
2

and ‖A∗(AA∗ + λI)−1Ap‖ ≤ C2

λ
1−p
2

, (64)

which are valid for all λ > 0 and constants C1, C2 > 0 depending on p ∈ (0, 1).
These formulas are a consequence of the moment inequality for sectorial operators
A (cf. [16, Prop. 6.6.4]).

The minimum problem (43) for verifying d(R) can be reformulated by the La-
grange multiplier method, where for any λ > 0 the element vλ ∈ X is the uniquely
determined minimizer to

‖x† − x̄−Av‖2 + λ‖v‖2 → min, subject to v ∈ X,

which can be written as

vλ = (A∗A+ λI)−1A∗(x† − x̄) = A∗(AA∗ + λI)−1(x† − x̄).

Since by (44) the range of A is dense in X and since the source condition (57)
fails, we have that the strictly decreasing function θ(λ) := ‖vλ‖2 = ‖A∗(AA∗ +
λI)−1(x† − x̄)‖2 satisfies the limit conditions

lim
λ→0

θ(λ) = +∞ and lim
λ→+∞

θ(λ) = 0.

Then there is a uniquely determined λR > 0 such that θ(λR) = R2 and d(R) =
‖x† − x̄ − AvλR

‖. Based on (62) and on the first inequality in (64), we derive the
estimate

d(R) ≤ ‖λR(AA∗ + λRI)
−1Apw‖ ≤ λR‖(AA∗ + λRI)

−1Ap‖‖w‖ ≤ C1λ
p
2

R ‖w‖.
We claim that the following decay rate can be established

d(R) ≤ KR
p

p−1 , 0 < R <∞, (65)

for some constant K > 0. Then by using the majorant function KR
p

p−1 as d(R) in

formula (53), one obtains the required condition (63) with χ(R) ∼ R
1

p−1 , φ(α) ∼
αp+1 and under the a priori parameter choice α ∼ δ

1
p+1 . Thus, it remains to show

(65). By the second inequality in (64) we have θ(λ) ≤ C2
2‖w‖2λp−1 and thus the

value λmaj =
(

R
C2‖w‖

)
2

p−1

> 0 solving the equation C2‖w‖λ
p−1
2

maj = R satisfies the

inequality λR ≤ λmaj . This implies the estimate (65) and completes the proof.

Remark 11. Due to the identity

R(Ap) = R((AA∗)p/2)

(cf., e.g., [32, Lemma 1]), which is valid for all 0 < p ≤ 1, the source condition (62)
is equivalent to

x† − x̄ = (AA∗)p/2 w, w ∈ X, (66)

and Proposition 10 remains true if (62) is replaced with (66). In that version the
proof can be found as a direct consequence of Theorem 3.2 in [11] (extendable also
to non-compact operators A) by using A instead of A∗, while taking into account
that A ∈ L(X,X). This also yields the decay rate (65) and hence the required
Hölder rate result.
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Remark 12. In order to provide a relation between the variational source con-
ditions from Subsection 3.2 as well as from Subsection 3.1 and Hölder source
conditions of range-type, we consider the special case of a monotone operator
F := A ∈ L(X,X) and we set for simplicity x̄ := 0.

Firstly, let A = A∗ be a self-adjoint operator and let the range-type source
condition (62) hold for some 0 < p ≤ 1, which implies the convergence rate (61).
Note that only for 0 < p ≤ 1/2 we have the inequality chain

〈x†, x〉 = 〈w,Apx〉 ≤ ‖w‖ ‖Apx‖
≤ ‖w‖ ‖x‖1−2p‖A 1

2x‖2p = ‖w‖ ‖x‖1−2p〈Ax, x〉p

based on the interpolation inequality. By using Young’s inequality

ab ≤ aξ

ξ + bη

η with a = ‖x‖1−2p, b = ‖w‖ 〈Ax, x〉p, ξ = 2
1−2p and η = 2

1+2p this

yields (for all 0 < p ≤ 1
2 ) the variational source condition

〈x†, x〉 ≤
(

1

2
− p

)

‖x‖2 +
(

1

2
+ p

)

‖w‖ 2
2p+1 〈Ax, x〉 2p

2p+1 (67)

of type (28) occurring in Subsection 3.2 with µ = 2p
2p+1 and valid for all x ∈ X .

Evidently, from (67) we derive in the sense of Subsection 3.3 the Hölder convergence
rate

‖xδα(δ) − x†‖ = O(δ
µ

2−µ ) = O(δ
p

p+1 ) if α(δ) ∼ δ
2(1−µ)
2−µ = δ

1
p+1 , (68)

which coincides with (61) for all 0 < p ≤ 1/2.
Secondly, consider an accretive A which is not necessarily self-adjoint, and let

for some 0 < p ≤ 1 the source condition

x† = (A∗)p w, w ∈ X, (69)

hold. According to [16, Proposition 7.0.1 (e)], one has (A∗)p = (Ap)∗ and the
inequality chain

〈x†, x〉 = 〈(A∗)pw, x〉 = 〈w,Apx〉
≤ ‖w‖ ‖Apx‖ ≤ c ‖w‖ ‖x‖1−p‖Ax‖p,

for some c > 0, which is a consequence of the moment resp. interpolation inequality
for monotone operators, see [31, Corollary 1.1.19] or [16, Proposition 6.6.4]. Then
Young’s inequality yields, for all 0 < p ≤ 1, the variational source condition

〈x†, x〉 ≤
(

1− p

2

)

‖x‖2 +
(

1 + p

2

)

c
2

p+1 ‖w‖ 2
p+1 ‖Ax‖ 2p

p+1

of type (18) occurring in Subsection 3.1 with ψ(t) = 2p
p+1 and valid for all x ∈ X .

This gives for 0 < p ≤ 1

‖xδα(δ) − x†‖ = O(δ
p

2p+1 ) if α(δ) ∼ δ
p+1
2p+1 . (70)

From [32, Theorem 1 and Lemma 1] it can be seen that under the source condi-
tion (69) the obtained rate (70) is not optimal for 0 < p < 1/2 and can be improved
to O(δp/(p+1)) as in (68), because R(Ap) = R((A∗)p) for 0 < p < 1

2 . On the other
hand, for 1/2 ≤ p ≤ 1 the ranges R(Ap) and R((A∗)p) are in general different for
non-self-adjoint accretive operators A as the Volterra operator shows (see Subsec-
tion 5.1). From [32] one can also see that for 1/2 ≤ p ≤ 1 and under the source
condition (69) the rate (70) is only optimal in the special case p = 1.

5. Examples.
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5.1. Applying Lavrentiev-type variational source condition to linear prob-

lems with Volterra operator. This subsection provides an example where a
Lavrentiev-type variational source condition does provide the desired convergence
rate. We consider X = L2(0, 1) and the linear Volterra operator (simple integration
operator) A : X → X , defined by

[Ax](s) :=

∫ s

0

x(t) dt, 0 ≤ s ≤ 1,

which is accretive (monotone), but not self-adjoint. For our study let us focus on
the specific solution x† ≡ 1. This violates the source condition x† = A∗v required

for the rate ‖xδα−x†‖ = O
(

δ
1
3

)

in [28], as for this purpose x† would have to vanish

at the right boundary point. Moreover, x† ≡ 1 does not fulfill x† = A
1
2 v which

would imply the same estimate along the lines of [37]. In fact, we have that x† ≡ 1
satisfies x† ∈ R(Ap) = R((A∗)p) for any p ∈ (0, 1/2), but we have x† /∈ R(Ap)
and x† /∈ R((A∗)p) for p ∈ [1/2, 1]. This can be derived from the explicit structure
of the ranges of the fractional powers of the Volterra operator given in [15], and
one can simply see that the corresponding ranges R(Ap) and R((A∗)p) are different
for all 1/2 ≤ p ≤ 1. Indeed, according to [16, p.234, Prop. 8.5.5] we can rewrite
x† = Apv as the Abel-type integral equation

x†(s) = (Apv)(s) =
1

Γ(p)

∫ s

0

(s− t)p−1v(t) dt , 0 ≤ s ≤ 1.

Due to the identity Γ(p)Γ(1− p) = π
sin(pπ) the well-known explicit solution formula

for the Abel integral equation attains the form

v(t) =
1

Γ(1− p)

d

dt

∫ t

0

(t− s)−px†(s) ds , 0 ≤ t ≤ 1,

which yields v(t) = 1
Γ(1−p) t

−p for x† ≡ 1 so that v ∈ L2(0, 1) iff p < 1
2 .

However, a variational source condition (28) resp. (29) is satisfied, as shown
below.

Let z(s) := [Ax](s), 0 ≤ s ≤ 1. Integration by parts yields

〈Ax, x〉 =
∫ 1

0

z(t)x(t) dt =

∫ 1

0

z(t) dz(t)

= (z(1))2 −
∫ 1

0

z(t) dz(t) = (z(1))2 − 〈Ax, x〉.

This implies for all x ∈ X

〈Ax, x〉 = 1

2

(
∫ 1

0

x(t) dt

)2

and hence we have for x† ≡ 1 and all x ∈ X

〈x†, x〉 =
∫ 1

0

x(t) dt ≤
√
2〈Ax, x〉 1

2 ,

thus (28) holds with β1 = 0, β2 =
√
2 and µ = 1

2 . Then Theorem 5 implies the
convergence rate

‖xδα − x†‖ = O
(

δ
1
3

)

for α ∼ δ
2
3 .

The same result is also a consequence of Theorem 8 using approximate source condi-
tions. Namely, we have d(R) ∼ 1

R for the distance function
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d(R) = inf{‖x† − Aw‖ : ‖w‖ ≤ R}, which immediately follows from the argu-

ments of [13, Example 5] by replacing there the function
√
2 cos(i − 1/2)πt) with√

2 sin(i−1/2)πt) in order to execute the transfer from A∗ to A in the eigenfunctions
of the singular system. Then we have from Theorem 8

‖xδα − x†‖ = O
(

χ−1(Φ−1(δ))
)

= O
(

δ
1
3

)

.

5.2. A parameter identification problem in an elliptic PDE satisfying the

local range invariance condition. Consider identification of the source term q
in the elliptic boundary value problem

−∆u+ ξ(u) = q in Ω

u = 0 on ∂Ω
(71)

from measurements of u in Ω, where ξ : R → R is some Lipschitz continuously
differentiable monotonically increasing function and Ω ⊆ R

3 a smooth domain.
The corresponding forward operator F : L2(Ω) → H2(Ω) ⊆ L2(Ω), q 7→ u, is indeed
monotone, since

〈F (q) − F (q̃), q − q̃〉 =
∫

Ω

(u − ũ)(q − q̃) dx

=

∫

Ω

(u − ũ)
(

−∆(u− ũ) + ξ(u)− ξ(ũ)
)

dx

=

∫

Ω

(

|∇(u− ũ)|2 + (ξ(u)− ξ(ũ))(u − ũ)
)

dx

≥ ‖∇(u− ũ)‖2L2(Ω) ≥ 0

(72)

(which by the way still does not imply strong monotonicity of F , since this would
require a lower bound in terms of ‖q − q̃‖2L2(Ω)). Lipschitz continuity of F follows

from the fact that w = F (q)− F (q†) can be written as the solution of

−∆w + ξ̃qw = q − q† in Ω

w = 0 on ∂Ω
(73)

where

ξ̃q =

∫ 1

0

ξ′(u† + t(F (q)− u†)) dt ≥ 0 (74)

with u† = F (q†). Indeed, by testing with w, integration by parts and using Poincaré-
Friedrichs’ as well as Cauchy-Schwarz inequalities we get

1

CPF
‖w‖2L2(Ω) ≤ ‖∇w‖2L2(Ω) ≤

∫

Ω

(

|∇w|2 + ξ̃q w
2
)

dx

=

∫

Ω

w(q − q†) dx ≤ ‖w‖L2(Ω)‖q − q†‖L2(Ω) .

According to Theorem 1.4.6 in [2], the operator F is actually maximal monotone,
since it is monotone, continuous (hence hemicontinuous) and its domain is the space
L2(Ω). We define the linear operator A : L2(Ω) → L2(Ω) as h 7→ Ah = v with v
solving

−∆v + ξ′(u†)v = h in Ω

v = 0 on ∂Ω
(75)

where u† solves (71) with q = q†.
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We claim that F satisfies the range invariance condition (38) with N ≡ 0. In
order to show this, we use the representation of w = F (q) − F (q†) (73), (74) from
above, as well as (75), which yields that F (q)− F (q†) = AM(q)(q − q†) holds with

M(q) : L2(Ω) → L2(Ω) , M(q) = (−∆+ ξ′(u†) id)(−∆+ ξ̃q id)−1 .

Note that for any a ∈ L2(Ω), a ≥ 0 a.e., the linear operator

(−∆+ a id) : H2(Ω) ∩H1
0 (Ω) → L2(Ω) , u 7→ −∆u+ au

is well-defined and continuously invertible and both A and AM(q) are accretive

since for any a ∈ L2(Ω), a ≥ 0 a.e., (so e.g., a = ξ′(u†) or a = ξ̃q), h ∈ L2(Ω) and
v := (−∆+ a id)−1h, we have

〈(−∆+ a id)−1h, h〉 =
∫

Ω

(|∇v|2 + av2) dx ≥ 0.

The difference of M(q) to the identity can be estimated as follows:

‖M(q)− I‖ = ‖
(

(−∆+ ξ′(u†) id)− (−∆+ ξ̃q id)
)

(−∆+ ξ̃q id)−1‖

= ‖(ξ′(u†)− ξ̃q) id(−∆+ ξ̃q id)−1‖

= sup
06=f∈L2(Ω)

‖(ξ′(u†)− ξ̃q)(−∆+ ξ̃q id)−1f‖L2

‖f‖L2

= sup
06=w∈H2(Ω)∩H1

0 (Ω)

‖(ξ′(u†)− ξ̃q)w‖L2

‖ −∆w + ξ̃qw‖L2

≤ C∆ sup
06=w∈H2(Ω)∩H1

0 (Ω)

‖ξ′(u†)− ξ̃q‖L2 ‖w‖L2

‖w‖H2

≤ C∆C
Ω
H2→L∞ ‖ξ′(u†)− ξ̃q‖L2 ,

where we have used elliptic regularity, i.e., the above mentioned mapping properties
of (−∆ + a id), and continuity of the embedding H2(Ω) → L∞(Ω) with norm
CΩ

H2→L∞ . Here one has

‖ξ′(u†)− ξ̃q‖2L2 =

∫

Ω

(

∫ 1

0

ξ′(u†)− ξ′(u† + t(u − u†)) dt
)2

dx

≤ L2
ξ′

∫

Ω

(

∫ 1

0

t(u− u†) dt
)2

dx

≤ L2
ξ′

∫

Ω

(

∫ 1

0

t2 dt

∫ 1

0

(u− u†)2 dt
)

dx

=
L2
ξ′

3
‖u− u†‖2L2 ≤

L2
ξ′L

2
PF

3
‖q − q†‖2L2 ,

for some constant Lξ′ > 0. Consequently, we obtain

‖M(q)− I‖ ≤ C∆C
Ω
H2→L∞

Lξ′LPF√
3

‖q − q†‖L2 ≤ c

for all q ∈ Bρ(q
†), where c = C∆C

Ω
H2→L∞

Lξ′LPF√
3

ρ is smaller than one, provided

that ρ is sufficiently small.
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We now verify the Lavrentiev specific source condition (29) for the special case
of Hölder rates ϕ(t) ∼ tµ, µ ∈ [0, 12 ]. More precisely, we will show that

q† − q̄ ∈ H2µ
0 (Ω)

(which in case µ < 1
4 is equivalent to q† − q̄ ∈ H2µ(Ω), hence does not impose

any boundary conditions on q† − q̄) is sufficient for this variational source condi-
tion, provided the domain is sufficiently smooth to admit the elliptic regularity and
embedding bounds

‖(−∆)µ‖H2µ(Ω)→L2(Ω) =: C∆
2µ <∞ , ‖(−∆)1−µ‖H2−2µ(Ω)→L2(Ω) =: C∆

2−2µ <∞ ,

‖(−∆)−1‖L2(Ω)→H2(Ω) =: C∆ <∞ , ‖id‖H−2µ(Ω)→L2(Ω) =: CΩ
2µ <∞ ,

where −∆ is the Laplace operator equipped with homogeneous Dirichlet boundary
conditions. For this purpose we use the fact that by (72), for any q ∈ M := Bρ(q

†)
we have

γ := 〈F (q)− F (q†), q − q†〉 ≥ ‖∇(u− u†)‖2L2(Ω) ≥
1

1 + CPF
‖u− u†‖2H1(Ω)

as well as

‖ξ(u)− ξ(u†)‖H−2µ(Ω) ≤ CΩ
2µ‖ξ(u)− ξ(u†)‖L2(Ω) = CΩ

2µ

√

∫

Ω

(ξ(u)− ξ(u†))2 dx

≤ CΩ
2µ

√

∫

Ω

Lξ(ξ(u)− ξ(u†))(u − u†) dx ≤ CΩ
2µ

√

Lξ
√
γ .

The first of these two estimates can be further made use of in the interpolation
estimate

‖ −∆(u† − u)‖H−2µ(Ω) = sup
v∈C∞

0 (Ω)\{0}

〈(−∆)(u† − u), v〉
‖v‖H2µ(Ω)

= sup
v∈C∞

0 (Ω)\{0}

〈(−∆)1−µ(u† − u), (−∆)µv〉
‖v‖H2µ(Ω)

≤ C∆
2µC

∆
2−2µ ‖u† − u‖H2−2µ(Ω)

≤ C∆
2µC

∆
2−2µ ‖u† − u‖1−2µ

H2(Ω)‖u† − u‖2µH1(Ω)

≤ C∆
2µC

∆
2−2µ(C

∆ ‖ −∆(u† − u)‖L2(Ω))
1−2µ((1 + CPF )γ)

µ ,

where we can further estimate

‖ −∆(u† − u)‖L2(Ω) = ‖q† − q − (ξ(u†)− ξ(u))‖L2(Ω) ≤ ρ+
√

Lξ
√
γ .

This altogether yields

〈q† − q̄, q† − q〉 = 〈q† − q̄,−∆(u† − u) + ξ(u†)− ξ(u)〉

≤ ‖q† − q̄‖H2µ
0 (Ω)

(

‖ −∆(u† − u)‖H−2µ(Ω) + ‖ξ(u)− ξ(u†)‖H−2µ(Ω)

)

≤ ‖q† − q̄‖H2µ
0 (Ω)

·
(

C∆
2µC

∆
2−2µ(C

∆(ρ+
√

Lξ
√
γ))1−2µ((1 + CPF )γ)

µ + CΩ
2µ

√

Lξ
√
γ
)

=: ϕ(γ) = O(γµ).
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6. Conclusions and further work. In this paper, we have shown convergence
rates for Lavrentiev’s regularization method under variational and approximate
source conditions for linear and nonlinear inverse problems with monotone forward
operators. In particular, we have proposed a new variational source condition that
seems to be quite appropriate for the Lavrentiev setting.

To compare the capability of the different source conditions, we present in the
following table the best possible rates in the linear case.

condition rate

(a) x† = Aw for some w ∈ X O(δ
1
2 )

(b) x† = A∗w for some w ∈ X O(δ
1
3 )

(c) 〈x†, x〉 ≤ β1‖x‖2 + β2〈Ax, x〉 1
2 for all x ∈ X O(δ

1
3 )

As the example from Section 5.1 shows, (c) implies neither (a) nor (b). However,

(c) is implied by a fractional source condition x† = A
1
2w in case of a self-adjoint

operator A, cf. Remark 12. The question of rates beyond those stated above
appears to be a challenging one, which we intend to investigate further on.

Note that no additional restriction on the nonlinearity of F is needed as regards
variational source conditions– not even differentiability – as already observed in [22]
for Tikhonov regularization. On the other hand, we had to impose some local range
invariance condition in order to prove rates with approximate source conditions.

Lavrentiev’s method in Banach spaces will be subject of further research in light
of the few aspects considered in this Hilbertian setting.
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