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THE DEGREE OF ILL-POSEDNESS OF COMPOSITE LINEAR

ILL-POSED PROBLEMS WITH FOCUS ON THE IMPACT OF

THE NON-COMPACT HAUSDORFF MOMENT OPERATOR

BERND HOFMANN AND PETER MATHÉ

Abstract. We consider compact composite linear operators in Hilbert space,
where the composition is given by some compact operator followed by some
non-compact one possessing a non-closed range. Focus is on the impact of the
non-compact factor on the overall behaviour of the decay rates of the singu-
lar values of the composition. Specifically, the composition of the compact
integration operator with the non-compact Hausdorff moment operator is con-
sidered. We show that the singular values of the composition decay faster
than the ones of the integration operator, providing a first example of this
kind. However, there is a gap between available lower bounds for the decay
rate and the obtained result. Therefore we conclude with a discussion.

1. Introduction

We consider the following composite linear ill-posed operator equation Ax = y
with

(1) A : X
D−−−−→ Z

B−−−−→ Y

where A = B ◦ D : X → Y denotes the compact linear operator with infinite
dimensional range R(A). This forward operator A is a composition of a compact
linear operator D : X → Z with infinite dimensional range R(D) and a bounded

non-compact linear operator B : Z → Y with non-closed range R(B) 6= R(B)
Y
.

Here X,Y and Z denote three infinite dimensional separable real Hilbert spaces.
In the nomenclature of Nashed [14], the inner problem is a linear operator equation

(2) Dx = z ,

which is ill-posed of type II due to the compactness ofD, whereas the outer problem

(3) B z = y

is ill-posed of type I, since B is non-compact.
Operator equations with non-compact operators possessing a non-closed range

are often assumed to be less ill-posed (ill-posedness of type I), and we refer to
M. Z. Nashed in [14, p. 55] who states that “. . . an equation involving a bounded
non-compact operator with non-closed range is ‘less’ ill-posed than an equation
with a compact operator with infinite-dimensional range.” For compact operator
equations it is common to measure the degree of ill-posedness in terms of the decay
rate of the singular values, and the above composite operator (1) is of this type
despite of the non-compact factor B.

In our subsequent analysis we will mainly analyze and compare the following
cases, which are of the above type and seemingly should have similar properties.
The compact factor D is given either
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– as the simple integration operator

(4) [Jx](s) :=

∫ s

0

x(t)dt (0 ≤ s ≤ 1)

mapping in L2(0, 1), or
– as the natural (compact) embedding

(5) E(k) : Hk(0, 1) →֒ L2(0, 1)

from the Sobolev space Hk(0, 1) of order k ∈ N to L2(0, 1).

This will be composed with B being either

– a bounded linear multiplication operator

(6) [B(M)x](t) := m(t)x(t) (0 ≤ t ≤ 1)

with a multiplier function m ∈ L∞(0, 1) possessing essential zeros, or
– the Hausdorff moment operator B(H) : Z = L2(0, 1) → Y = ℓ2 defined as

(7) [B(H)z]j :=

∫ 1

0

tj−1z(t)dt (j = 1, 2, ...).

The inner operators (4) and (5) are known to be compact, even Hilbert-Schmidt,
and the decay rates of their singular values σi(J) and σi(E(k)) to zero are available.
Both the above outer operators (6) and (7) are known to be non-compact with
non-closed range.

The composition B(M) ◦ J was studied in [6, 10, 11, 22]. Recent studies of the
Hausdorff moment problem, which goes back to Hausdorff’s paper [8], have been
presented in [7]. In particular, we refer to ibid. Theorem 1 and Proposition 13,
which yield assertions for the composition of type B(H) ◦ E(k).

The question that we are going to address is the following: What is, in terms of
the decay of the singular values σi(B ◦ D) of the composite operator B ◦ D from
(1), the impact of the non-compact outer operator B?

In the case of B := B(M) and D := J results are known. For several classes
of multiplier functions m, including m(t) = tθ for all θ > 0, it was seen that the
singular values of the composite operator A obey the equivalence

(8) σi(A) = σi(B
(M) ◦ J) ≍ 1 σi(J) ≍

1

i
as i→ ∞,

which means that B(M) does not ‘destroy’ the degree of ill-posedness of J by com-
position.

Remark 1. The right-hand inequalities σi(B ◦ J) ≤ c σi(J), for example required
in (8), are trivially satisfied if B is bounded. We have σi(B

(M) ◦ J) ≤ C σi(J)
with C := ‖B(M)‖L2(0,1)→L2(0,1). Clearly, the same reasoning applies to the com-

position operator B(H) ◦J , and we have with C := ‖B(H)‖L2(0,1)→ℓ2 =
√
π (cf. [12])

the upper estimate σi(B
(H) ◦ J) ≤ √

π σi(J) (i = 1, 2, ...).

To the best of our knowledge, by now no examples are known that show a
violation of σi(B ◦D) ≍ σi(D). In the present study we shall show that σi(B

(H) ◦
J)/σi(J) ≤ C i−1/2 (i = 1, 2, ...) with some positive constant C, and the non-
compact Hausdorff moment operator B(H) enlarges the degree of ill-posedness of J
by a factor 1/2, at least.

1We shall measure the decay rates of the singular values asymptotically; thus for decreasing
sequences si ≥ 0 and ti ≥ 0 we say that si ≍ ti as i → ∞ if there are constants 0 < c ≤ c < ∞

such that the inequalities

c si ≤ tj ≤ c si (i = 1, 2, ...)

are valid.
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We shall start in Section 2 with some results for general operators, relating
conditional stability estimates to the decay of the singular numbers of the composi-
tion B ◦D. Conditional stability estimates for the composition with the Hausdorff
moment operator are given in Section 3, both for the embedding operator and the
integration operator. According to Theorem 1 we derive lower bounds for the decay
rates of the compositions B(H) ◦ E(k) and B(H) ◦ J , respectively.

The composite operators, both, A∗A for A = B(H)◦J , and Ã∗Ã for Ã = B(M)◦J
are Hilbert-Schmidt operators, because the factor J is such. In particular these may
be expressed as linear Fredholm integral operators acting in L2(0, 1) with symmetric

positive kernels k and k̃, respectively. There are well-known results which state that
certain type of kernel smoothness yields a minimum decay rate of the corresponding
singular values of the integral operator. Therefore, in Section 4 we establish the

form of the kernels k and k̃, and we study their smoothness. In particular, for the
composition B(H)◦J we shall see that the known results are not applicable, whereas
in case B(M)◦J these known results are in alignment with σi(B

(M)◦J) ≍ σi(J) ≍ 1
i .

Finally, in Section 5, we improve the upper bounds for the decay of the singular
values of the composition B(H)◦J , giving the first example that violates σi(B◦D) ≍
σi(D) as i→ ∞ in the context of a non-compact outer operator B. This approach
bounds the singular values by means of bounds for the Hilbert-Schmidt norm of
the composition ‖

(
B(H) ◦ J

)
(I − Qn)‖HS , where Qn is a projection on the n-

dimensional subspace of adapted Legendre polynomials in L2(0, 1). We continue to
discuss the obtained result in Section 6. An appendix completes the paper.

2. Results for general operators

We start with a general theorem explaining the interplay of conditional stability
estimates and upper bounds for the degree of ill-posedness. To this end we shall
use results from the theory of s-numbers, and we refer to the monograph [16,
Prop. 2.11.6]. In particular, for a compact operator, say T : X → Y the singular
values σi(T ) coincide with the corresponding (linear) approximation numbers ai(T ),
and hence the identities

(9) σi(T ) = ‖T (I − Pi−1)‖X→Y = inf{‖T − L‖X→Y : dim(R(L)) < i}
hold for all i = 1, 2, . . . . Above, we denote by {σi(T ), ui, vi}∞i=1 with Tui =
σi(T )vi, (i = 1, 2, ...) the well-defined (monotonic) singular system of the com-
pact operator T , and Pn : X → X (n = 1, 2, ...) the orthogonal projection
onto span(u1, ..., un), the n-dimensional subspace of X , where we assign P0 = 0 :
X → X .

The main estimate is as follows:

Theorem 1. Let D : X → Z and A : X → Y be compact linear operators between
the infinite dimensional Hilbert spaces X, Y and Z with non-closed ranges R(D)
and R(A). Suppose that there exists an index function Ψ : (0,∞) → (0,∞) such
that for 0 < δ ≤ ‖A‖X→Y the conditional stability estimate

(10) sup{ ‖Dx‖Z : ‖Ax‖Y ≤ δ, ‖x‖X ≤ 1} ≤ Ψ(δ)

holds. Then we have

(11) σi(D) ≤ Ψ(σi(A)) (i = 1, 2, ...)

and also

(12) Ψ−1(σi(D)) ≤ σi(A) (i = 1, 2, ...).

If the operators D∗D : X → X and A∗A : X → X commute, and if the index
function t 7→ Ψ2(

√
t), t > 0 is concave then the converse holds true in the sense

that (11) implies the stability estimate (10).
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Proof. Suppose that (10) holds true. Then for every u ∈ X, ‖u‖X ≤ 1, we see that

(13) ‖Au‖Y ≤ δ implies that ‖Du‖Z ≤ Ψ(δ) (δ > 0).

Consider the singular projections Pi for the operator A. For arbitrarily chosen x ∈
X with ‖x‖X ≤ 1 we see that

‖A(I − Pi−1)x‖Y ≤ ‖A(I − Pi−1)‖X→Y ‖x‖X ≤ σi(A).

Applying (13) with u := (I − Pi−1)x and δ := σi(A) yields ‖D(I − Pi−1)x‖Z ≤
Ψ(σi(A)). Since x ∈ X with ‖x‖X ≤ 1 was chosen arbitrarily, we even arrive at
‖D(I − Pi−1)‖X→Y ≤ Ψ(σi(A).

By virtue of (9) we find for

σi(D) = inf{‖D − L‖X→Z : dim(R(L)) < i}
that

(14) σi(D) ≤ ‖D(I − Pi−1)‖X→Z ≤ Ψ(σi(A),

which proves (11). Since the inverse of an index function exists and is also an
index function, hence monotonically increasing, the estimate (12) is a consequence
of (11).

Next, suppose that the operators D∗D and A∗A commute, and hence they share
the same singular functions u1, u2, . . . Clearly, for x = 0 we have that ‖Dx‖Z =
0 ≤ Ψ(δ), so we may and do assume that x 6= 0. Assume that (11) holds. We
abbreviate f(t) := Ψ2(

√
t), t > 0. First, if ‖x‖X = 1 then we bound

‖Dx‖2Z =

∞∑

i=1

σ2
i (D) |〈x, ui〉|2 ≤

∞∑

i=1

f
(
σ2
i (A)

)
|〈x, ui〉|2

≤ f

(
∞∑

i=1

σ2
i (A) |〈x, ui〉|2

)
= f

(
‖Ax‖2Y

)
,

where we used Jensen’s Inequality for f . Hence ‖Dx‖Z ≤ Ψ(‖Ax‖Y ). Conse-
quently, for x ∈ X, ‖x‖X > 0 this extends to

(15)
‖Dx‖Z
‖x‖X

≤ Ψ

(‖Ax‖Y
‖x‖X

)
, x 6= 0.

For the concave index function f we see that f(at) ≥ af(t), t > 0 whenever a ≤ 1.

Thus for a := ‖x‖2X ≤ 1 and t :=
(

‖Ax‖Y

‖x‖X

)2
we find that

‖Dx‖Z ≤ Ψ(‖Ax‖Y ), x 6= 0,

which in turn yields the validity of (10), and this completes the proof. �

Remark 2. If the conditional stability estimate (10) is not valid for all δ > 0, but
for sufficiently small δ > 0, then the estimates (11) and (12) are not valid for all
i ∈ N, but for i sufficiently large. Hence, the corresponding assertions about the
singular value asymptotics do not change.

Remark 3. We mention here that the term

sup{ ‖Dx‖Z : ‖Ax‖Y ≤ δ, ‖x‖X ≤ 1},
occurring in formula (10), is a special case of the modulus of continuity

(16) ωM (δ) := sup{ ‖Dx‖Z : ‖Ax‖Y ≤ δ, x ∈M}
with some closed and bounded set M ⊂ X such that DM represents a compact
set of Z. This is due to the compactness of the operator D : X → Z. Note that
ωM (δ) is increasing in δ > 0 with the limit condition limδ→0 ωM (δ) = 0. Moreover,
we have for constants E > 1 and centrally symmetric and convex sets M that
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ωEM (δ) = E ωM (δ/E). For further details of this concept we refer, for example,
to [4, 9]. In general, one is interested in bounding the modulus of continuity by a
majorant index function Ψ as in formula (10), which leads to conditional stability
estimates. Precisely in (10) we have the situation of a centrally symmetric and
convex M = {x ∈ X : ‖x‖X ≤ 1} under consideration with associated majorant
index function Ψ. Consequently, this also yields for E > 1

sup{ ‖Dx‖Z : ‖Ax‖Y ≤ δ, ‖x‖X ≤ E} ≤ EΨ(δ/E).

It is known from approximation theory, and it was highlighted in [4, Prop. 2.9],
that there is always a concave majorant for the modulus of continuity, such that
without loss of generality we may assume Ψ to be concave.

Remark 4. It is shown in [4, Thm. 4.1] that the required concavity of the func-
tion t 7→ Ψ2(

√
t), t > 0 automatically holds true whenever D∗D is a function

of A∗A, i.e., D∗D = ϕ(A∗A) for an index function ϕ. For power type functions Ψ
the concavity assertion holds true if and only if Ψ is concave, see the end of Re-
mark 3.

3. Compositions with the Hausdorff moment operator

In order to apply Theorem 1 to compositions with the integration operator B(H)

from (7), we formulate appropriate conditional stability estimates.

Theorem 2. There are constants Ck > 0 depending on k = 0, 1, 2, ... such that

(a) For the composite problem B(H) ◦ E(k) the bound

(17) sup{ ‖x‖L2(0,1) : ‖B(H)(E(k)x)‖ℓ2 ≤ δ, ‖x‖Hk(0,1) ≤ 1} ≤ Ck

(ln(1/δ))k

holds for sufficiently small δ > 0.
(b) For the composite problem B(H) ◦ J the bound

(18) sup{ ‖Jx‖L2(0,1) : ‖B(H)(Jx)‖ℓ2 ≤ δ, ‖x‖L2(0,1) ≤ 1} ≤ C0

ln(1/δ)

holds for sufficiently small δ > 0.

The proof will be along the lines of [20], and we shall state the key points
here. The analysis will be based on the (normalized) shifted Legendre polynomi-
als {Lj}∞j=1 with the explicit representation

(19) Lj(t) =

√
2j − 1

(j − 1)!

(
d

dt

)j−1

tj−1(1− t)j−1 (t ∈ [0, 1], j = 1, 2, ...)

The system {Lj}∞j=1 is the result of the Gram-Schmidt orthonormalization process

of the system {tj−1}∞j=1 of monomials. Consequently, we have

(20) span(1, t, ..., tN−1) = span(L1, L2, ..., LN).

These polynomials form an orthonormal basis in L2(0, 1), and we denote Qn the
orthogonal projections onto the span D(Qn) ⊂ L2(0, 1) of the first n Legendre
polynomials, and Pn the projection onto the first n unit basis vectors in ℓ2.

Lemma 1. For the Hausdorff moment operator B = B(H) from (7) the following
holds true.

(I) PnBQn = PnB,
(II) PnBB

∗Pn = Hn with Hn : ℓ
2
n → ℓ2n being the n-dimensional segment of the

Hilbert matrix,

(III) ‖Qnx‖L2(0,1) ≤ ‖PnBx‖
ℓ2

σn(PnB) , and

(IV) σn(PnB) = ‖H−1
n ‖1/2ℓ2n→ℓ2n

.
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Consequently we have that ‖Qnx‖L2(0,1) ≤ ‖H−1
n ‖1/2ℓ2n→ℓ2n

‖PnBx‖ℓ2 .

Proof. The first assertion (I) is easily checked and it results from the fact that the
Gram-Schmidt matrix for turning from the monomials to the Legendre coefficients,
see (20), is lower triangular. The second assertion (II) was shown in [7, Prop. 4].
The final assertion (IV) is a re-statement of

σn(PnB) ≤ ‖PnBx‖ℓ2
‖Qnx‖L2(0,1)

, x 6= 0.

In view of the first item (I) it is enough to prove that

σn(PnB) ≤ inf
06=z∈D(Qn)

‖PnBz‖ℓ2
‖z‖L2(0,1)

.

It is well known from approximation theory that

σn(PnB) = inf
Xn: dim(Xn=n)

inf
06=z∈D(Qn)

‖PnBz‖ℓ2
‖z‖L2(0,1)

.

Indeed, the right-hand side above corresponds to the definition of the Bernstein
numbers, which constitute an s-number, see [15, Thm. 4.5], and this proves item
(III). The last item (IV) follows from

σ2
n(PnB) = σn(PnBB

∗Pn) = σn(PnHPn) = σn(Hn) =
1

‖H−1
n ‖ℓ2n→ℓ2n

,

which in turn yields the final assertion. The proof is complete. �

The next result concerns the approximation power of smooth functions by Le-
gendre polynomials.

Lemma 2. For functions x ∈ Hk(0, 1) there is a constant Kk such that

(21) ‖(I −Qn)x‖L2(0,1) ≤ Kk
1

nk
(n ∈ N).

For k = 1 and hence x ∈ H1(0, 1) this my be specified as

‖(I −Qn)x‖L2(0,1) ≤
‖x′‖L2(0,1)

2n
(n ∈ N).

Remark 5. In [2, Thm. 4.1] the proof of (21) is given for k = 1. In ibid. Re-
mark 4.1 the extension for other values of k is stated without explicit proof. In [23,
Thm. 2.5] a proof is given for the Legendre polynomials on the interval (−1, 1),
based on ibid. Theorem 2.1 which describes the decay rates of the expansions in
terms of Legendre polynomials for functions with Sobolev type smoothness. The
specification in the second bound is taken from [20, Eq. (27)].

Based on the above preparations we turn to the

Proof of Theorem 2. For both assertions (a) and (b) we are going to use a decom-
position of the form

(22) ‖z‖L2(0,1) ≤ ‖Qnz‖L2(0,1) + ‖(I −Qn)z‖L2(0,1)

where Qn is the orthogonal projection on the span of the first n Legendre polyno-
mials.

For the first assertion (a) we let z := x, and we bound each summand. Recall
that here E(k) is the natural embedding with E(k)x = x for all x ∈ Hk(0, 1). Thus,
by Lemma 1 the first summand is bounded as

‖Qnx‖L2(0,1) ≤ δ‖H−1
n ‖1/2ℓ2n→ℓ2n

.
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From [21, 24] and [3] we know that there is a constant Ĉ, independent of n, for
which

‖H−1
n ‖ℓ2n→ℓ2n

≤ Ĉ exp(4 ln(1 +
√
2)n) ≤ Ĉ exp(4n).

This yields

(23) ‖Qnx‖L2(0,1) ≤
√
Ĉ exp(2n) δ.

The second summand in (22) is bounded in Lemma 2, and altogether we find that

(24) ‖x‖L2(0,1) ≤
√
Ĉ exp(2n) δ +Kk

1

nk
,

We choose an integer N = n(δ) such that the two terms on the right-hand side of
the estimate (24) are equilibrated. This is achieved by letting N be given from

N = ⌊1
4
ln(1/δ)⌋+ 1, 0 < δ ≤ exp(−4).

Substituting n := N in (24) yields for sufficiently small δ > 0 the final estimate

‖x‖L2(0,1) ≤
Ck

(ln (1/δ))
k
,

with some positive constant Ck depending on k.
For proving the second assertion (b) we assign z := Jx. Then the first summand

in (22) allows for an estimate of the form

‖Qn(Jx)‖L2(0,1) ≤
√
Ĉ exp(2n) δ,

again for some constant Ĉ > 0. For bounding ‖(I − Qn)(Jx)‖L2(0,1) we use the
second estimate in Lemma 2 which gives, for ‖x‖L2(0,1) ≤ 1, the bound

‖(I −Qn)(Jx)‖L2(0,1) ≤
‖x‖L2(0,1)

2n
≤ 1

2n
.

Then we can proceed as for the first assertion in order to complete the proof of the
second assertion, and of the theorem. �

The proof formulated above is an alternative to the proof of [7, Theorem 1] for
k = 1 and an extension to the cases k = 2, 3, .... Consequences of Theorems 1 and
2 for the singular value decay rate of the Hausdorff moment composite operator
A := B(H) ◦ E(k) are summarized in the following corollary.

Corollary 1. For the composite Hausdorff moment problem B(H) ◦E(k) there exist
positive constants Ck, C and C such that

exp(−C i) ≤ exp

(
−
(

Ck

σi(E(k))

) 1
k

)
≤ σi(B

(H) ◦ E(k)) ≤
√
π σi

(
E(k)

)
≤ C

ik

is valid for sufficiently large indices i ∈ N.

Proof. Taking into account the well-known singular value asymptotics σi
(
E(k)

)
≍

i−k as i → ∞ (cf. [13, §3.c]) and the norm ‖B(H)‖L2(0,1)→ℓ2 =
√
π, we simply find

for the composition A = B(H) ◦ E(k) the estimates from above

σi(B
(H) ◦ E(k)) ≤

√
π σi

(
E(k)

)
≤ C

ik
,

with some positive constant C.
We need to show the lower bounds, and we are going to apply Theorem 1 in

combination with the estimate (17) from Theorem 2. To do so we setX := Hk(0, 1),
Z := L2(0, 1), Y := ℓ2, as well as D := E(k), A := B(H) ◦ E(k), and Ψ(δ) :=

Ck

(ln(1/δ))k for sufficiently small δ > 0. This function has the inverse Ψ−1(t) =
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exp
(
−
(
Ck

t

)1/k)
. Then the conditional stability estimate (10) attains the form (17),

and we derive from (12) that

exp

(
−
(

Ck

σi(D)

)1/k
)

= Ψ−1(σi(E(k))) ≤ σi

(
B(H) ◦ E(k)

)

for sufficiently large indices i ∈ N. This completes the proof. �

Theorem 1 also applies to the composition B(H) ◦ J , and yields along the lines
of the proof of Corollary 1 the following result.

Corollary 2. For the composite Hausdorff moment problem B(H) ◦ J there exist
positive constants C and C such that

(25) exp(−C i) ≤ σi

(
B(H) ◦ J

)
≤ C

i

is valid for sufficiently large indices i ∈ N.

The gap between the lower and upper bounds for the singular values σi
(
B(H) ◦ E(k)

)

and σi
(
B(H) ◦ J

)
expressed in Corollaries 1 and 2, respectively, is quite large.

4. Discussion of kernel smoothness

The composite operators that were considered so far are Hilbert-Schmidt op-
erators, because its factors J and E(k), respectively, have this property. Hilbert-
Schmidt operators acting in L2(0, 1) are integral operators, and hence these can be

given in the form of a Fredholm integral operator [G(x)](s) :=
1∫
0

k(s, t)x(t)dt (0 ≤

s ≤ 1) with kernel k = k(s, t) ∈ L2((0, 1)× (0, 1).
It is well-known that decay rates of the singular values grow with the smoothness

of the kernel k, and we refer in this context to the following result.

Lemma 3 (see [5]). Consider in L2(0, 1) the Fredholm integral operator [G(x)](s) :=
1∫
0

k(s, t)x(t)dt (0 ≤ s ≤ 1) and assume that the kernel k, and the derivatives ∂k
∂s ,...,

∂l−1k
∂sl−1

exist and are continuous in s for almost all t. Moreover, assume that there ex-
ist g ∈ L2((0, 1)× (0, 1)) and V ∈ L1(0, 1) such that

(26)
∂lk(s, t)

∂sl
=

s∫

0

g(τ, t) dτ + V (t),

Then we have

(27) σi(G) = o
(
i−l−1.5

)
as i→ ∞.

We emphasize that Lemma 3 provides us with upper rate bounds, corresponding
to a minimum speed of the decay to zero of the singular values. If, in particular,
the kernel is infinitely smooth on the whole unit square, then the decay rate of
the associated singular values is faster than O(i−η) for arbitrarily large η > 0.
Consequently an exponential-type decay of the singular values can take place.
Lower bounds cannot be expected in general, as shows the simple rank-one exam-
ple k(s, t) = (s− 1/2)+ × (t− 1/2)+ (0 ≤ s, t ≤ 1), which exhibits low smoothness,
but the sequence of singular values with σ1 = 1 and σi = 0 (i = 2, 3, ...) decays at
any rate. However, non-smoothness aspects like non-differentiability, non-Lipschitz
and occurring poles in the kernel give limitations for the decay rate of the singular
values. So we are not aware of examples of exponentially ill-posed linear problems
with kernel k that does not belong to C∞([0, 1]× [0, 1]).
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Below, we shall determine the kernels k and k̃ of the self-adjoint companions A∗A

and Ã∗Ã of the compositions A := B(H) ◦ J : L2(0, 1) → ℓ2 (with the Hausdorff

moment operator), and Ã := B(M) ◦ J : L2(0, 1) → L2(0, 1) (with a multiplication
operator), respectively.

For the first composition we have the following proposition, the proof of which
is given in the appendix.

Proposition 1. The kernel k of the Fredholm integral operator A∗A mapping
in L2(0, 1) with A = B(H) ◦ J attains the form

(28) k(s, t) =

∞∑

j=1

(1− sj)(1 − tj)

j2
(0 ≤ s, t ≤ 1).

The second composition Ã := B(M) ◦ J with multiplier function m(t) = tθ for
θ > 0 constitutes a linear Volterra integral operator. However, it can be rewritten
as a linear Fredholm integral operator

(29) [Ãx](s) =

1∫

0

κ(s, t)x(t)dt, with κ(s, t) =

{
sθ (0 ≤ t ≤ s ≤ 1)
0 (0 ≤ s < t ≤ 1)

.

and we refer to [6, 10] for further investigations. Taking into account that κ(t, s)

with switched variables is the kernel of the adjoint integral operator Ã∗, we have

that the kernel k of the operator Ã∗Ã mapping in L2(0, 1) is given as

k̃(s, t) =

∫ 1

0

κ(τ, s)κ(τ, t)dτ.

This yields the following proposition for the second composition case.

Proposition 2. The kernel k̃ of the Fredholm integral operator Ã∗Ã mapping in

L2(0, 1) with Ã from (29) attains the form

(30) k̃(s, t) =

1∫

max(s,t)

τ2θdτ = 1− max(s, t)2θ+1

2θ + 1
(0 ≤ s, t ≤ 1).

We are going to discuss the implications of Lemma 3 on the decay rates of the

singular values of both A∗A and Ã∗Ã. We start with the latter.
The kernel k̃ from (30) is continuous and satisfies for all θ > 0 the Lipschitz

condition k̃ ∈ Lip1([0, 1]× [0, 1]), which means that there is a constant L > 0 such
that for all s, ŝ, t, t̂ ∈ [0, 1]

|k̃(s, t)− k̃(ŝ, t̂)| ≤ L (|s− ŝ|+ |t− t̂|).

The author in [19] proves that in this case we can guarantee the decay rate

σi(Ã
∗Ã) = O

(
i−2
)

as i→ ∞.

The kernel k̃ from (30), containing a maximum term, is not differentiable at the
diagonal of the unit square. If it were continuously differentiable on [0, 1] × [0, 1]

then the decay rate would even be improved to σi(Ã
∗Ã) = o

(
i−2
)
, and we refer

to [18]. Indeed, the exact asymptotics σi(Ã
∗Ã) ≍ i−2 for all θ > 0 was shown

in [10] .
We turn to discussing the singular values of the operator A∗A with kernel k

from (28). Since the series
∑∞

j=1
(1−sj)(1−tj)

j2 of continuous functions is uniformly
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absolutely convergent the kernel k actually belongs to the space C([0, 1]× [0, 1]) of
continuous functions. This allows for partial differentiation with respect to s as

(31) ks(s, t) =

∞∑

j=1

−sj−1(1− tj)

j
.

Figure 1 presents a plot of the kernel k and its first partial derivative ks.

Figure 1. Plot of the kernel k and its derivative ks

The right picture shows that the partial derivative has a pole at the right boundary
with s = 1 of the unit square. This pole implies that k /∈ Lip1([0, 1]× [0, 1]). On
the other hand, ks is smooth elsewhere and allows for further partial differentiation
with a second partial derivative

(32) kss(s, t) =

∞∑

j=2

−(j − 1)sj−2(1− tj)

j
,

which has also a pole at s = 1. We note that the order of the pole there is growing
by one for every higher partial differentiation step with respect to s.

Based on (32) one can derive, in light of formula (26) from Lemma 3, that

∂k(s, t)

∂s
=

s∫

0

g(τ, t) dτ + V (t)

with g(τ, t) =
∑∞

j=2
−(j−1)sj−2(1−tj)

j and V (t) = t− 1. Notice, that g /∈ L2((0, 1)×
(0, 1)), which prevents the application of Lemma 3, even in the case l = 1. Thus,
Lemma 3 is not applicable, and we may not make inference on the decay rates of
the singular values by means of considering kernel smoothness.

Remark 6. We have not found assertions in the literature, which handle the sit-
uation of such poles in light of decay rates of singular values.

In summary, the smoothness of the kernel k from (28) is strongly limited. In
particular we have k /∈ C∞([0, 1]× [0, 1]). This makes an exponential decay rate of
the singular values σi(A) appear rather unlikely. However, at present we have no
analytical approach to check this in more detail.

5. Bounding the singular values of the composite operator B(H) ◦ J
Our aim of this section is to improve the upper bound in (25) for the singular

values σi(A) = σi
(
B(H) ◦ J

)
of the composite operator

(33) A : L2(0, 1)
J−−−−→ L2(0, 1)

B(H)

−−−−→ ℓ2
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We emphasize that this composition constitutes a Hilbert-Schmidt operator, since
its component J is Hilbert-Schmidt, and our argument will be based on bounding
the Hilbert-Schmidt norm

‖A‖HS =

(
∞∑

i=1

σ2
i (A)

)1/2

.

The main result will be the following.

Theorem 3. For the composite Hausdorff moment problem B(H) ◦ J with opera-
tors J from (4) and B(H) from (7), there exists a positive constant C such that

(34) σi

(
B(H) ◦ J

)
≤ C

i3/2
(i ∈ N),

Consequently, there is some constant K > 0 such that that

σi(B
(H) ◦ J)/σi(J) ≤

K

i1/2
(i ∈ N).

For its proof we make the following preliminary considerations. We recall the
definition of the shifted Legendre polynomials Lj (j = 1, 2, . . . ) from (19), as well
as Qn : L

2(0, 1) → L2(0, 1), being the orthogonal projection onto the n-dimensional
subspace of the polynomials up to degree n− 1.

For the further estimates the next result is important. Here, we denote by {σi(A), ui, vi)}∞i=1

the singular system of the compact operator A = B(H) ◦ J .
Proposition 3. Let Qn denote the projections onto span {L1, . . . , Ln} of the Le-
gendre polynomials up to degree n−1, and let Pn be the singular projection onto span {u1, . . . , un}
of the first n eigenelements of A. Then we have for A = B(H) ◦ J that

∞∑

i=n+1

σ2
i (A) = ‖A(I − Pn)‖2HS ≤ ‖A(I −Qn)‖2HS .

Proof. We shall use the additivity of the singular values, i.e., it holds true that

σn+i+1(K + L) ≤ σn+1(K) + σi+1(L), for all n ∈ N, i ≥ 1.

In particular we see that

σn+i+1(A) ≤ σn+1(AQn) + σi+1(A(I −Qn)) = σi+1(A(I −Qn)),

because σn+1(AQn) vanishes by definition of Qn. Consequently we can bound
∞∑

i=n+1

σ2
i (A) =

∞∑

i=0

σ2
n+i+1(A) ≤

∞∑

i=1

σ2
i (A(I −Qn))

= ‖A(I −Qn)‖2HS ,

with equality for Qn being the singular projections Pn. �

Finally we mention the following technical result, which is well-known. For the
sake of completeness we add a brief proof.

Lemma 4. Let si (i ∈ N) be non-increasing, and let κ > 0. Suppose that there is
a constant C1 < ∞ such that

∑∞
i=n+1 s

2
i ≤ Cn−2κ for n = 1, 2, . . . . Then there is

a constant C2 such that s2i ≤ C2i
−(1+2κ) for i = 1, 2, . . . .

Proof. We can estimate as

n s22n ≤
2n∑

i=n+1

s2i ≤ Cn−2κ,

which gives s22n ≤ Cn−(1+2κ) and proves the lemma. �
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Let us introduce the normalized functions

hi(s) :=
√
2i+ 1si ∈ L2(0, 1) (i = 0, 1, 2, . . . ).

Lemma 5. For each i ≥ 1, j ≥ 2 we have that

〈ALj , ei〉ℓ2 = − 1

i
√
2i+ 1

〈hi, Lj〉.

Proof. We have 〈ALj , ei〉ℓ2 = 〈B(H)(J Lj), ei〉ℓ2 . Using the formula (40) with x :=
Lj (j = 2, 3, . . . ), and since Lj ⊥ 1 for j ≥ 2, we see that

〈ALj , ei〉ℓ2 = −1

i

[∫ 1

0

si Lj(s) ds

]
= −1

i
〈si, Lj〉L2(0,1) = − 1

i
√
2i+ 1

〈hi, Lj〉L2(0,1).

This completes the proof. �

Proof of Theorem 3. Since the system {Lj}∞j=1 of shifted Legendre polynomials is

an orthogonal basis in L2(0, 1), we have by virtue of [17, Thm. 15.5.5] that

(35) ‖A(I −Qn)‖2HS =

∞∑

j=1

‖A(I −Qn)Lj‖2ℓ2 =

∞∑

j=n+1

‖ALj‖2ℓ2 ,

and we shall bound by using Lemma 5 that

‖A(I −Qn)‖2HS =

∞∑

i=n

1

i2(2i+ 1)

∞∑

j=n+1

∣∣〈hi, Lj〉L2(0,1)

∣∣2(36)

=

∞∑

i=n

1

i2(2i+ 1)
‖(I −Qn)hi‖2L2(0,1).(37)

The norm square within the above sum is less than or equal to one, such we arrive
at

‖A(I −Qn)‖2HS ≤
∞∑

i=n

1

i2(2i+ 1)
≤ 1

2

∞∑

i=n

1

i3

The sum on the right is known to be minus one half of the second derivative ψ(2)(n)
of the digamma function, see [1, (6.4.10)]. Thus we have

(38) ‖A(I −Qn)‖2HS ≤ −ψ(2)(n)

4
.

Moreover, from the series expansion of the digamma function, see [1, (6.4.13)], we
see that lim

n→∞
n2 ψ(2)(n) = −1, which implies

(39) ‖A(I −Qn)‖2HS ≤ 1

3.999n2

for sufficiently large n. Finally, applying Proposition 3 and Lemma 4 (with κ = 1
and si = σi(A) (i ∈ N)) we see that σi(A) ≤ C

i1.5 for some constant C > 0. This
completes the proof. �

6. Discussion

We extend the previous discussions in a few aspects. As it is seen from Corollary 2
and Theorem 3 there is a gap for the composition B(H) ◦ J between the obtained
decay rate of the order i−3/2 of the singular values and the available lower bound
of the order exp(−C i) as i→ ∞. We shall dwell on this further, and we highlight
the main points that are responsible for the lower and upper bounds, respectively.

The overall results are entirely based on considering the Legendre polynomi-
als Lj as means for approximation. Clearly, these play a prominent role in our
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handling of compositions that contain the operator B(H). In particular, the nor-
malized polynomials Lj constitute an orthonormal basis in L2(0, 1), and the upper
bounds from Lemma 2 show that these are suited for approximation. However, as
a consequence of using the Legendre polynomials we arrive at the n-sections of the
Hilbert matrix Hn, see Lemma 1. As emphasized in the proof of Theorem 2, the
condition numbers of the Hilbert matrix Hn are of the order exp(4n), and this in
turn yields the lower bound, after applying Theorem 1. Despite of the fact that this
general result may not be sharp for non-commuting operators in the composition,
we may argue that using n-sections Hn is not a good advice for obtaining sharp
lower bounds. So, it may well be that the lower bounds could be improved by using
other orthonormal bases than the Legendre polynomials.

The obtained upper bound is based on the approximation of B(H)◦J by Legendre
polynomials in the Hilbert-Schmidt norm, and we refer to the inequality (39). There
are indications in our analysis, for example in the context of (37), that this bound
cannot be improved, but what when using other bases?

Another aspect may be interesting. While we established an improved rate for
the composition B(H) ◦ J , this is not possible for the composition B(M) ◦ J , see the
discussion in Section 1. In the light of the spectral theorem, and we omit details, the
operator B(M) is orthogonally equivalent to a multiplication operatorMf mapping
in L2(0, 1) with a multiplier function f and possessing zero as accumulation point,
and isometries U : ℓ2 → L2(0, 1) and V : L2(0, 1) → L2(0, 1), for which we have
B(H) = U∗MfV . This implies that

B(H) ◦ J = U∗ ◦Mf ◦ V ◦ J.
Clearly we have that σi(U

∗ ◦ Mf ◦ V ◦ J) = σi(Mf ◦ V ◦ J), which looks very

similar to the problem of the composition B(M) ◦ J , where σi(B(M) ◦ V ◦ J) ≍
σi(B

(M) ◦ J), but with the intermediate isometry V . Therefore, we may search for
isometries V : L2(0, 1) → L2(0, 1) such that we arrive at

σi(B
(H) ◦ V ◦ J) ≍ σi(B

(H) ◦ J).
Clearly, this holds true for the identity, and this does not hold true for V from above
connected with the Hilbert matrix. Because isometries turn orthonormal bases onto
each other, we are again faced with the problem, which approximating orthonormal
basis is best suited as means of approximation in the composition B(H) ◦ J . Thus,
the results presented here are only a first step for better understanding the problem
of approximating a composition of a compact mapping followed by a non-compact
one.
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Appendix A. Proof of Proposition 1

To prove the series representation (28) for the kernel k of A∗A, we start with

[B(H)Jx]j =

[∫ 1

0

(∫ t

0

x(τ)dτ

)
tj−1dt

]

j

(j = 1, 2, . . . , x ∈ L2(0, 1)).
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Integration part parts yields

(40) [B(H)Jx]j =

[
1

j

∫ 1

0

(1− tj)x(t)dt

]

j

(j = 1, 2, . . . ).

Taking into account the well-known structure of the adjoint operator (B(H))∗

of B(H) (see, e.g., [7, Proposition 3]), we can further write

[(B(H))∗B(H)Jx](η) =
∞∑

j=1

ηj−1

j

∫ 1

0

(1− tj)x(t)dt (0 ≤ η ≤ 1).

Applying the operator J∗ from the left, for which the analytical structure is also
well-known, and we find again using integration by parts the formulas

[A∗Ax](s) = [J∗(B(H))∗B(H)Jx](s) =

∞∑

j=1

∫ 1

s

ηj−1

j

(∫ 1

0

(1 − tj)x(t)dt

)
dη

=

∞∑

j=1

1

j2

∫ 1

0

(1 − tj)x(t)dt−
∞∑

j=1

sj

j2

∫ 1

0

(1− tj)x(t)dt (0 ≤ s ≤ 1).

We can rewrite this as

[A∗Ax](s) =

∫ 1

0




∞∑

j=1

(1 − sj)(1− tj)

j2


 x(t)dt (0 ≤ s ≤ 1),

which shows the representation (28), and this completes the proof.
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