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Abstract

Solving an autoconvolution equation is a nonlinear ill-posed inverse
problem. Besides standard methods for general nonlinear problems
several customized methods for deautoconvolution are available. Re-
cently, a new decomposition approach for solving ill-posed quadratic
equations, e.g. autoconvolutions, has been proposed.

In this article we compare the new approach to the TIGRA method
of Ramlau and to the local regularization method of Dai and Lamm.
Numerical tests show that the new method yields better approxima-
tions to the unknown true solution than existing methods in compara-
ble computation time.

1 Introduction

Autoconvolution equations appear in different fields of mathematics and nat-
ural sciences. Examples can be found in stochastics, where the probability
density of the sum of two independent and identically distributed random
variables is the autoconvolution of the density of the two random variables,
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and in physics, where the method of appearance potential spectroscopy leads
to autoconvolution equations [1].

In this article we consider the simplest form of autoconvolution problems.
We search for approximate solutions of

F(z) =y (L1)

where the autoconvolution operator for functions x on R is formally defined
as

[F(x)](s) = /x(s —t)x(t) dt.
R

If now z is zero almost everywhere outside [0, 1] and its restriction to [0, 1]
belongs to L?(0,1) then F(x) is well-defined and zero outside [0, 2], so we
may consider F' as an operator F : L%(0,1) — L?(0,2) with

fsx(t)x(s —t)dt, s€(0,1),
(F(2))(s) =< ) (1.2)
[ z@®)z(s—t)dt, se€[l1,2).
s—1

The exact right-hand side ° in (1.1) is not accessible due to measurement
errors and ill-posedness of deautoconvolution problems forces us to appropri-
ately handle this data error. Available measurement data will be denoted
by 3° and we assume that the data error is bounded in L?(0,2) by some
nonnegative noise level J, that is,

ly° — 47| < 6.

Ill-posedness of autoconvolution equations is investigated in [4,5, 8].

In addition to the original autoconvolution problem (1.1) more sophis-
ticated problems can be found in its vicinity. Of particular interest to the
authors is a complexvalued version of autoconvolution which also has an
additional kernel function in the integral. Such autoconvolution-type prob-
lems appear in the SD-SPIDER method for characterizing ultra-short laser
pulses [7,12]. As a first step in this direction we look at algorithms for the
original problem.

Autoconvolution problems are of quadratic structure, that is, we may
write F(z) as Bp(z,z) with a symmetric bounded bilinear mapping Bp :
L?(0,1) x L?(0,1) — L*(0,2), see Section 2 for details. But standard algo-
rithms for solving ill-posed nonlinear equations (see [3,11]) do not care about



this structure and thus maybe do not yield best possible results. Only few
numerical methods adapted to autoconvolution or other quadratic problems
can be found in the literature. Basically two methods are available:

e TIGRA method by Ramlau [13] (nonlinear Tikhonov regularization
with gradient-based minimization),

e local regularization by Dai and Lamm [2] (data smoothing and explicit
inversion).

A third approach based on decomposition of the autoconvolution operator
F'into a well-posed quadratic and an ill-posed linear part has been proposed
by the second author in [6].

The aim of this article is to further develop the new decomposition ap-
proach and to compare it to the TIGRA method and to local regularization.

In the next section we present the new decomposition approach. Therefor
we summarize the results from [6] and provide an extension of the method
described there. In Section 3 we outline the TIGRA method and the local
regularization approach. The fourth section contains numerical tests and
their results, and in Section 5 we discuss those results and look at the time
complexity of all three methods.

2 Regularization of quadratic mappings by decom-
position

In [6] the second author proposed a decomposition approach for solving
quadratic equations. As already mentioned in the introduction a mapping
F' is quadratic if there is a symmetric bounded bilinear mapping Br such
that F(z) = Bp(z,x) for all z. In case of autoconvolution we have

(Br(z,w))(s) ::/m(t)u(s—t)dt, s€(0,2). (2.1)

R

In this article we only summarize the principle ideas of [6] and provide a
concrete solution of an issue only broached in [6].

Choosing an orthonormal basis (€;);en in X and defining mappings @ :
X — (?(N) and A: D(A) C *(N) = Y by

- {ﬂ<$,ei><x,ej>, j <i,

(. e0)?, i (2.2)

(Q(.T))j+i(i2—1) :



for (7,7) in Nx N with 1 < j <iand z in X and by

0o i—1
AZ = Z \/§Zj+i(i2*1) BF(ei) 6]) + Zi+i(i;1) BF(eia 67;) (23)
i=1 \j=1

for all z which yield a convergent series one easily verifies
F=AQ. (2.4)

Note that (i,7) — j+ @ defines a bijection between {(i,j) e NxN:1 <
j <i} and N.

The mapping @ is a quadratic isometry, that is, (Q(z), Q(u)) = (z,u)
for all  and u. In [6] the interested reader finds more details on quadratic
isometries. The most important fact in view of inverse problems is that @)
is in a slightly generalized sense continuously invertible. In other words,
solving the equation Q(x) = z is a well-posed problem. In addition the
minimization problem

2

1Q(z) — 2| — min (2.5)

has a solution and each global minimizer attains the form v Az where \ is
the largest eigenvalue of a certain Hilbert-Schmidt operator and z is a cor-
responding normalized eigenelement. With respect to the basis (e;);en used
for defining @ the mentioned Hilbert-Schmidt operator has the symmetric
matrix representation C, € RNN given by

1 . .
=2, iG-1), J <41,
2 e Y
(Co)ig =S V2= (2.6)
Zj+¢(¢71), ] =1

2

The mapping A from (2.3) is a densely defined linear operator. Due to ill-
posedness the corresponding equation Az = y° has to be regularized. Note
that A might be unbounded. Regularization of unbounded linear operators
is handled in [10], for instance.

As we have seen, the decomposition approach results in two steps for
solving a quadratic equation (1.1): at first solve the ill-posed linear equation
Az = y° with the help of some regularization method for linear equations,
then solve the minimization problem (2.5) by finding the largest eigenvalue
and a corresponding eigenelement of a certain Hilbert-Schmidt operator.

The problem with this decomposition technique is, that the regularized
solution 20 of Az = y° with regularization parameter o typically lies in



(ker A)J-, the orthogonal complement of the nullspace, and we cannot guar-
antee that (ker A)* is a subset of R(Q), the range of Q. This problem was
already encountered in [6] and two rough sketches for handling this issue
were given there. In the following we give more details on one of them.

The basic idea is to use a kind of iterated Tikhonov regularization. The
method calculates a regularized solution z° to (1.1) as follows:

0. Choose g =0 and k = 0.
1. Set z, = Q(l‘k)

2. Calculate z{ as the minimizer of z — || Az —1°||? + |z — Zx||?, where o
is chosen according to some parameter choice rule (standard Tikhonov
regularization).

3. Calculate 741 as a minimizer of z — [|Q(z) — 23|

4. Tf ||zpy1 — x| is small enough set 20 = x44; and stop. Otherwise
increase k by one and go to step 1.

Note that this is not the classical iterated Tikhonov method since the ref-
erence element in the penalty is not the previous iterate but the projection
of the previous iterate onto the range of ). In addition the regularization
parameter is chosen in each iteration, which is not the case for the classical
method. The element z; is the regularized solution one obtains from the
decomposition approach if standard Tikhonov regularization is applied to
Az = y°. The idea behind the proposed algorithm is to gradually bring the
intermediate values z,‘z close to the range of (). Thus, the projection onto
R(Q) has not too much negative influence. To our regret at the moment we
do not have a convergence proof for this method. All numerical experiments
indicate convergence of the xp and yield satisfactory regularized solutions.
Very good numerical results in comparison to existing methods motivated us
to publish the technique and to postpone a deeper theoretical investigation
to a future article.

3 Other regularization methods

In this section we outline the TIGRA and the local regularization method for
solving equation (1.1) approximately with given noisy data y°. Throughout
this section we use the abbreviations X := L?(0,1) and Y := L?(0,2).



3.1 TIGRA by Ramlau

In [13] Ramlau proposes a method for regularizing ill-posed bilinear map-
pings and other twice differentiable mappings. This so called TIGRA method
can also be applied to general quadratic mappings, especially to autoconvo-
lution problems. All in all, the TIGRA method is a sophisticated realization
of Tikhonov regularization for nonlinear equations. The idea is to apply the
steepest descent method to the Tikhonov minimization problem

TS (z) := | F(z) —°|? + al|z — Z||*> = min (3.1)
rxeX

with regularization parameter o and a priori information z. The impor-
tant observation is that for sufficiently large o the steepest descent method
converges to a global minimizer of the Tikhonov functional. Choosing this
minimizer as initial guess for minimizing the functional with smaller o again
yields convergence to a global minimizer. Following this idea one obtains
Tikhonov regularized solutions for a decreasing sequence of regularization
parameters.

The investigation and realization of the TIGRA method in [13] involves
several parameters and requires many more or less restrictive assumptions.
As the author of [13] remarks, some assumptions have to be neglected for
numerical realization. In our numerical experiments we use the following
algorithm.

0. Choose ag large enough and ¢ in (0,1).

1. Compute z¢ as a global minimizer of x ~ ||F(z) — 4°||? + aollz||?
(steepest descent with starting point ¢ — 1, the constant function, see
below).

2. For each k in N compute zj, as the minimizer of z — ||F(z) — ¢°||? +
¢"agl|z||? (steepest descent with starting point 2j_1, see below).

Note that the TIGRA method is not able to compute a regularized solu-
tion for only one fixed regularization parameter o (except for very large «).
Instead, it always produces regularized solutions for a sequence of parame-
ters. From this sequence a suitable parameter can be chosen by well-known
parameter choice rules, in our case the discrepancy principle and the qua-
sioptimality criterion (see below).

The steepest descent method for computing zj uses step direction

d(z) := =2(F'[2]*(F(z) — y0) + qkaox) (3.2)

at position x. The corresponding step length is chosen as follows



1. Choose p and  such that

1—-6p
ped). e (0 5%]
2. Set
4
Od:qkao, K_maX{2Hy6”,\/1f72p}, V:1—6p—'}/
and
( ) 1 . va 2vo
r(a) = ——— min e
2422 V 3 3K
Then set
k1 =2r(a) + K,
Ky = 3pa + Kr(a) + r(a)?,
Kg = oﬂr(a)2 + a\|y5H2 + 2a max{ar(a)Q, Hy‘SHZ}
and

K = 2(/@1/{2 + Hg).

Further, set
M = 2% + 4ko + 20 + 12k1 K + 1252

and
c = 4K? 4 4a + 24pa + 8K + 4.

See [13] for details on all these constants.

3. Compute tyi, as minimizer of

T) (2 + td(z)) — min. (3.3)

This is a polynomial in ¢ of degree 4.
4. Set the step length

{0 () - T+ tunde) 1
{Hd(w)!P’ ()P ety G




The steepest descent iteration is stopped if the current iterate = satisfies

2v 2v
Jd(@)] < =57 win {\/Z 3K}mm{qa va@). (35

For starting the steepest descent iteration for xy we use a constant func-
tion as starting point. Following [13] the starting point is not importance
since the Tikhonov functional is globally convex if oy is large enough. But at
the natural starting point zero the Tikhonov functional has Frechét deriva-
tive zero and thus the step direction is zero, too.

3.2 Local regularization by Dai and Lamm

In [2] Dai and Lamm present a method for deautoconvolution if data is
only available on the interval (0,1 + R) with R between 0 and 1 instead of
(0,2). Their method is design in such a way that R plays the role of the
regularization parameter. Based on an idea called local regularization the
original equation (1.1) is transformed into

R p R ¢ R
t)//x(s) dsdp+//x(t+p—s)x(s) dsdp:/y5(t+p) dp, (3.6)
0 0 0 0

which shall hold for all ¢ € (0,1).

Discretization with normalized box functions in X and normalized hat
functions in Y, cf. also next section, and approximation of integrals by rect-
angular quadrature leads to the following steps for obtaining the discretized

solution 2° = (29,...,2%) to (3.6) from discretized data y° (see [2] for de-
tails):

0. Choose the regularization parameter r from {1,...,n}, see below.

1. Set

1
3n\ 4
6
531:(2) yy-
2. Fort=2,...,r set

1

o = /3
70 *”yz Zxﬂxﬂ-l —j
1



3. Set

4. Fori=r+1,...,n set

1 3n « ! :
T \/7Zyz+y Z Z xll“wk l

7=0 k=11=k+1

<o,

Note that this algorithm only works for yf > 0 as already mentioned
in [2]. The discretized regularization parameter r can take values from
{1,...,n}. The corresponding continuous parameter is R = T, that is, the
method uses data on (0,1 + T) only.

The regularization parameter r causes two problems. On the one hand
there are only n possible choices, which provides only coarse control of the
regularization process. On the other hand the interpretation of r is differ-
ent from the usual interpretation of the regularization parameter « in other
methods. As described in [2] the algorithm calculates the first r elements
of & without regularization and the remaining elements with regularization
by using additional data of length ~. Thus, we observe the following role
of r: If r attains its smallest value, then the algorithm yields the unregu-
larized solution of (1.1). If r attains its largest value, also no regularization
takes places and z coincides with the unregularized solution of (1.1), too.
The influence of r is not monotone and thus r cannot be transformed into
a real positive regularization parameter showing the typical behavior. In
our numerical experiments below we calculate regularized solutions for all r
and then choose the one satisfying the discrepancy principle or the discrete
quasioptimality criterion as described above.

4 Numerical tests

4.1 Parameter choice and discretization

In our numerical test below we apply two different parameter choice rules for
selecting a suitable regularization parameter a. The discrepancy principle
is an a posteriori rule, that is, it requires knowledge of the noise level §.
Contrary, the quasi optimality principle is heuristic, thus, it works without
knowing §, but the theoretical foundation is less strong.



Choosing « according to the discrepancy principle means that a;g satisfies
8 < ||F(zq) =4l < 76 (4.1)

with some fixed 7 close to one. There are also other common versions of the
discrepancy principle, for instance the sequential discrepancy principle [9].

The quasi optimality criterion in its discrete form chooses a = ¢* o,
where ¢ is between zero and one, « is an upper bound for the regularization
parameter, and k* is the minimizer of

J x‘sk,lao H — min. (4.2)

qukao Yy kEN

For all three regularization methods we use the same discretization,
namely we decompose the interval (0, 1) into n subintervals of equal length
and approximate an element x from L?(0,1) by

n
T~ E Ti€;,
i=1
i—1

where e; is the normalized box function on (=1, ). The coefficient vector
(1,...,xy) will be denoted by z. Note that the set {e1,...,e,} is an or-
thonormal system in L?(0,1). The subspace spanned by these box functions
will be denoted by X,.

Simple computations show that the autoconvolution operator F' trans-
forms an element from X,, into a piecewise affine function on (0,2) with
equispaced grid points at % for j =0,1,...,2n. In addition (F(x))(0) =0
and (F(z))(2) = 0 for all z from X,,. The (2n — 1)-dimensional span of
F(X,,) will be denoted by Y2,_1. Each element from Y5,_1 can be written

as a suim
2n—1

y=>_uli
j=1

where f; is the normalized hat function with center % and width % The
corresponding coefficient vector (yi,...,y2,—1) will be denoted by y.

4.2 Implementation details

For our numerical tests we simulate data in the following way: We choose an
exact solution z° in L?(0,1) and use numerical integration to obtain values
for F(z°) on a very fine grid. From these values we form a coarser piecewise
affine approximation of F(z°) with grid points *, 2 2n=l - Remember

nony n

10



that (F(z%))(0) = 0 and (F(z°))(2) = 0 is always satisfied. The resulting
vector will be denoted by y°. Then we add noise in form of a vector e of
elements independently drawn from a Gaussian distribution with mean zero
and standard deviation one, that is, we set

v =y’ +de.

For our experiments below we always provide the relative noise level

Sllell
1y°I

Here 3° and e denote the functions in L?(0,2) corresponding to QO and e,
respectively, as described above in Section 3.

For the discrepancy principle we use 7 = 1.2. For the quasioptimality
criterion we use ¢ = 0.9 and ¢ = 0.5 for the TIGRA method and the de-
composition approach, respectively, and choose g large enough to prevent
the quasioptimality criterion from choosing qag, that is, the minimum of
(4.2) lies not at the boundary of the considered range of parameters. Hints
on the choice of the regularization parameter r for the local regularization
approach by Dai and Lamm were given above.

Throughout our experiments we use the discretization level n = 300.

Step length selection in the TIGRA method requires the choice of two
parameters p and v. We use p = 0.05 and v = 0.2.

The iteration of the Tikhonov step in our decomposition method is
stopped if the distance between two iterates xy and zpy; becomes smaller
than 1072, If this does not happen within the first 10 iterations, then the
iteration is stopped, too.

It is important to note that the autoconvolution operator F' is not in-
jective. If z is a solution to (1.1) then also —z is a solution. The three
algorithms choose one of these two possibilities more or less by chance. For
plotting our results we chose the sign by hand in such a way that easy
comparison of the results is possible.

Orel :=

4.3 Test A: quadratic function

The exact solution z! for our first numerical experiment is the quadratic
function given by

i) =1-3(t-1)% te(0,1).

11



This function was also considered in [2] for testing the local regularization
approach. We run all three methods with 1% and 5% relative noise. Ex-
act and noisy data as well as corresponding reconstructions from TIGRA
method and our decomposition approach are shown in Figure 1.

Since the local regularization approach did not provide any useful recon-
struction we test our algorithms also with the noise model and noise level
used in [2]. There the authors use pointwise relative noise, that is, each
component yi of the noisy data vector is drawn from a uniform distribu-
tion on the interval [0.99 yg, 1.01 gg]. This corresponds to an overall relative
noise level of 0.46%. Data and results are shown in Figure 2. Note that the
regularized solution corresponding to the regularization parameter chosen
by the discrepancy principle shows high oscillations. Thus, we did not plot
it in Figure 2 (d) to keep the scaling of the vertical axis.

4.4 Test B: periodic function

The exact solution z' for our second numerical experiment is the periodic
function given by
z1(t) = sin(4wt), te (0,1).

Since TIGRA method and our decomposition approach seem to work fine
we choose a relative noise level of 10%. Data and reconstructions are shown
in Figure 3.

As already observed in Test A above, local regularization does not yield
any useful results for such a high noise level.

4.5 Test C: discontinuous function

The exact solution for our third and last numerical experiment is a piecewise
constant function given by

0.5, ifte€]0,0.5),
zT(t) =140.25, ifte[0.5,0.8), te(0,1).
0.75, if ¢t €[0.8,1],
We use a relative noise level of 5%. Again local regularization is ruled out

due to lacking regularization. Data and results for TIGRA method and
decomposition technique are shown in Figure 3.

12
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Figure 1: Test A with 1% (left column) and 5% (right column) relative
noise, top row: exact data (solid) and noisy data (dots), middle row: exact
solution (dotted line), results from decomposition approach with discrepancy
principle (dashed line) and quasioptimality criterion (solid line), bottom row:
same as middle row but with TIGRA method.
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Figure 2: Test A with pointwise relative noise, (a) exact data (solid) and
noisy data (dots), (b) exact solution (dotted line), results from decomposi-
tion approach with discrepancy principle (dashed line) and quasioptimality
criterion (solid line), (c¢) same as (b) but with TIGRA method, (d) results
from local regularization with quasioptimality criterion (solid line).
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Figure 3: Test B with 10% relative noise (left column) and test C with 5%
relative noise (right column), top row: exact data (solid) and noisy data
(dots), middle row: exact solution (dotted line), results from decomposi-
tion approach with discrepancy principle (dashed line) and quasioptimality
criterion (solid line), bottom row: same as middle row but with TIGRA
method.
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4.6 Regularization parameters and total errors

Table 1 shows the regularization parameters obtained by discrepancy prin-
ciple and quasioptimality criterion for tests A, B, and C. For the decomposi-
tion approach multiple parameters have to be chosen, one in each iteration.
We do not list them all but we provide the smallest (first line in correspond-
ing cell) and the largest (second line in corresponding cell) regularization
parameter for each test.

Test Orel decomposition TIGRA local
approach regularization
aq 109-ac1 aq aq | Td Tq
A 5% || 0.0286 | 1.9074 | 0.0828 | 0.0112 - 4
1.1810 | 1.9074

1% || 0.0057 | 1.9074 | 0.0154 | 0.0035 - 4
0.2542 | 3.8147

0.46% || 0.0026 | 3.8147 | 0.0171 | 0.0017 | 4 20
0.0922 | 15.259

B 10% || 0.0515 | 1.9074 | 0.1282 | 0.0102 - 4
1.8530 | 1.9074

C 5% || 0.0194 | 1.9074 | 0.0766 | 0.0040 | - 9
0.4575 | 1.9074

Table 1: Regularization parameters og and g obtained by discrepancy
principle and quasioptimality criterion, respectively.

Table 2 contains the deviations of the reconstructed solutions from the
exact ones, measured in the L?(0,1)-norm of the corresponding piecewise
constant functions.

5 Comparison of the three methods

5.1 Conclusions from the numerical experiments

The major conclusion from our numerical experiments above is that our
decomposition approach yields reconstructions comparable to the results of
the TIGRA method. From Table 2 we see that in some cases the TIGRA
method is slightly better and in other cases the decomposition technique
shows slightly smaller errors. But these small deviations in the errors might
also be caused by the parameter choice strategies.

16



Test drel || decomposition TIGRA local

approach regularization
Hd Hq Hd Hq Hd Mg
A 5% || 0.0831 | 0.0429 | 0.0824 | 0.0336 - 1 0.9535

1% || 0.0325 | 0.0168 | 0.0278 | 0.0154 - 1 0.3906
0.46% || 0.0250 | 0.0160 | 0.0280 | 0.0092 | 0.2515 | 0.0240
B 10% | 0.0510 | 0.0425 | 0.1897 | 0.0335 - 17.5
C 5% || 0.0853 | 0.0680 | 0.2117 | 0.0665 - | 0.4648

Table 2: Total reconstruction errors, pq denotes the error for reconstruction
with discrepancy principle jiq the error for reconstruction with quasiopti-
mality criterion.

The local regularization approach does not give any useful result, except
for very low noise levels. And even for such low noise levels that approach
cannot keep up with the other algorithms. In [2] regularizing properties of
local regularization are proven under various assumptions. But in view of
our experiments the regularizing effect is too weak.

The computation time for the TIGRA method in all cases was much
longer than for the decomposition technique because the TIGRA method re-
quires many iterations till the stopping criterion is satisfied. Of course, com-
putation times always depend on the concrete implementation and maybe
further code optimization is possible. But we think that the choice of the
step length and the stopping criterion, which differentiates between TIGRA
method and steepest descent method, is the reason for the long computa-
tion time. In the next subsection we will compare the time complexity of all
three methods and we will see that the TIGRA method should be faster than
the decomposition technique, but only if the number of TIGRA iterations
is lower than the squared discretization parameter n. The local regulariza-
tion technique is extremely fast, but, as described above, often produces no
useful results.

Concerning parameter choice strategies we observed that both the dis-
crepancy principle and the quasioptimality criterion provide acceptable reg-
ularization parameters. The discrepancy principle yields parameters which
seem to be somewhat too large, causing oversmoothing. In contrast, the
quasioptimality criterion chooses the regularization parameter in some cases
slightly too small. This is especially the case in combination with the de-
composition approach, causing oscillations at the boundaries of the domain
of the reconstructed function, see Figure 1 (d) and Figure 3 (d).

17



Finally we observed that for the decomposition technique the quasiop-
timality criterion chooses the regularization parameter extremely small in
comparison to the discrepancy principle, but nevertheless the corresponding
reconstructions seem to be regularized properly. Up to now we do not have
a complete interpretation of this fact. But further theoretical investigation
of the decomposition technique will bring light into this.

5.2 Computational complexity of the three methods

The TIGRA method requires numerical evaluation of F', which can be real-
ized with O(n?) elementary operations. Application of the Frechét deriva-
tive F'[z] also requires O(n?) operations. Step length selection lies below
these counts. Thus each steepest descent step requires O(n?) operations.
The number of steepest descent iterations varies in a wide and does not
only depend on the discretization level n but also on « and y°. Thus, per
regularization parameter the TIGRA method requires

O (iterations - n?) (5.1)

elementary operations.
According to [2], for each regularization parameter r the local regular-
ization approach requires
O(n*r — nr?) (5.2)

elementary operations if r is much smaller than the discretization level n.
The discretization of the decomposition approach is described in [6].
Applying the quadratic isometry ) to x from the span of the n box functions
gives an £2(N)-element with at most w nonzero components. The linear
operator A then transforms this finitely supported element into a piecewise
affine function in the span of the hat functions used for discretization in
L?(0,2). Thus, the Tikhonov step has to approximate the solution of a
system of linear equations with system matrix A of dimension (2n — 1) x

w. Solving the Tikhonov minimization problem leads to a system with

matrix AT A+al of size w X w Solving this system without further
knowledge of the matrix’ structure would require O(n®) operations. But in
case of autoconvolution the matrix AT A + ol is sparse and its structure
allows to split the corresponding system of equations into 2n — 1 systems
with square matrices of size 1,2...,n,...,2,1. Thus, solving the Tikhonov
problem can be realized with O(n*) operations.

Inversion of () requires the computation of the largest eigenvalue and a

corresponding eigenvector of a symmetric matrix of dimension n x n. There

18



exist several algorithms for this purpose, the power method, the inverse
power method or the Rayleigh quotient iteration, to name a few. Compu-
tational costs are lower than for the Tikhonov step.

Each iteration of the Tikhonov step requires the choice of a new regular-
ization parameter and thus multiple Tikhonov problems have to be solved.
Since all these Tikhonov problems have a similar structure computation time
can be saved by using suitable matrix decompositions which do not depend
on « (see [3, Section 9.3]). In addition we observed numerically that from
iteration to iteration the parameter chosen by some fixed parameter choice
rule varies only slightly. In fact, in all experiments we observed that the
chosen parameter decreases. Thus, each chosen parameter seems to provide
an upper bound for the parameter in the next iteration. To our regret we
do not have a theoretical foundation of this observation.

Simplifying the situation slightly by neglecting the parameter choice per
iteration, as can be justified by the numerical observation just described,
the computational costs for the decomposition approach ‘per parameter’ are

O (iterations - n*), (5.3)

where the number of iterations in contrast to the TIGRA method is only
about 10.

6 Conclusions and future work

In this article the presented a new decomposition technique for stable ap-
proximate solution of autoconvolution and other quadratic equations. The
new method works in practice and can compete with existing approaches
for deautoconvolution. The major idea is to split the nonlinear autoconvo-
lution operator into a well-posed quadratic part and into an ill-posed linear
part. The latter can be inverted by well-known regularization methods and
inversion of the well-posed quadratic part reduces to finding an eigenvector
corresponding to the largest eigenvalue of a symmetric matrix.

Up to now there is no complete proof that the proposed method is reg-
ularizing and convergent for decreasing noise level. But since it is a com-
bination of well understood existing techniques a proof of such properties
should be possible and we will try to find one in our future research.

As already described in the introduction, investigation of autoconvolu-
tion equations is only the first step towards the stable inversion of a com-
plexvalued and kernel-based autoconvolution-type problem appearing in the
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SD-SPIDER method for characterizing ultra-short laser pulses. Our decom-
position technique allows for the necessary extensions to general quadratic
mappings and also complexvalued functions should be manageable within
this framework.
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