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Abstract

In this paper, we consider the inverse problem of estimating si-

multaneously the five parameters of a jump diffusion process based on

return observations of a price trajectory. We show that there occur

some ill-posedness phenomena in the parameter estimation problem,

because the forward operator fails to be injective and small pertur-

bations in the data may lead to large changes in the solution. We

illustrate the instability effect by a numerical case study. To ob-

tain stable approximate solutions of the estimation problem, we use

a multi-parameter regularization approach, where a least-squares fit-

ting of empirical densities is superposed by a quadratic penalty term

of fitted semi-invariants with weights. A little number of required

weights is controlled by a discrepancy principle. For the realization of

this control, we propose and justify a fixed point iteration, where an

exponent can be chosen arbitrarily positive. A numerical case study

completing the paper shows that the approach provides satisfactory

results and that the amount of computation can be reduced by an

appropriate choice of the free exponent.

MSC2000 subject classification: 65J20, 62F10, 91B84

Keywords: Parameter estimation, jump diffusion processes,

ill-posedness, regularization, fixed point iteration

∗Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz,

Germany. Email: dana.duevelmeyer@ mathematik.tu-chemnitz.de .
†Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz,

Germany. Email: hofmannb@ mathematik.tu-chemnitz.de . Corresponding author.

1



1 Introduction

For modeling the time-dependent stochastic behavior of prices of stocks or
stock indices jump diffusion processes are rather helpful. Such processes
are able to close some gaps between the mathematical model and observed
market phenomena occurring when a geometric Brownian motion is used as
price process (see, e.g., [13, Chapter 9]). However, the number of parameters
to be determined grows from two to five if we replace the geometric Brownian
motion by a jump diffusion process. The aim of this paper is to analyze the
parameter estimation problem and its properties for a jump diffusion model
introduced below.

In accordance with [13] we call a stochastic process (St, t ∈ [0,∞)) a jump
diffusion process if it is satisfying the stochastic differential equation

dSt = St((µ − λν)dt + σdWt) + St−dN c
t

provided that (Wt, t ∈ [0,∞)) is a standard Wiener process, (Nt, t ∈ [0,∞))
is a Poisson process with intensity λ and (N c

t , t ∈ [0,∞)) is a compound
Poisson process associated to (Nt, t ∈ [0,∞)) with jump amplitude (Yj − 1)
and expectation ν = E{Yj − 1}. If Tj denotes a jump time we have N c

T+
j

=

N c

T−j
+ (Yj − 1) and hence it yields ST+

j
= ST−j

+ ST−j
(Yj − 1) = ST−j

Yj for

the jump diffusion process. The processes (Wt, t ∈ [0,∞)), (Nt, t ∈ [0,∞))
and the jumps (Yj)j≥1 are mutually independent. Additionally, we assume

log Yj ∼ N(µY , σ2
Y ) such that ν = eµY + 1

2
σ2

Y − 1. Consequently we have two
diffusion parameters µ and σ describing drift and volatility of the geometric
Brownian motion and three jump parameters. The parameter λ is specifying
the number of jumps whereas the parameters µY and σY are determining
mean and volatility of them.

Our inverse problem is to estimate from observed process data the five
scalar parameters µ ∈ R, σ > 0, λ ≥ 0, µY ∈ R and σY ≥ 0, which we collect
in the vector p = (µ, σ, λ, µY , σY )T ∈ R

5. This vector completely determines
the assumed price dynamics. After some considerations concerning the for-
ward operator we will formulate the inverse problem more precisely as an
operator equation at the the end of this section. For inverse problems in the
context of stochastic considerations see also in general [7], [8, Chapter 5] and
[11, Section 4.1.6]. To estimate p ∈ D with an assumed domain

D = {p ∈ R
5 : σ > 0, λ ≥ 0, σY ≥ 0} (1)
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we observe values St0 , St1 , ..., Stn of the price process under consideration
with an appropriate time step τ > 0 and ti = t0 + iτ (i = 0, 1, 2, ..., n). In

particular, we use the logarithmic returns rτ,i = log
(

Sti

Sti−1

)
(i = 1, 2, ..., n)

as data for fitting p.
The paper is organized as follows: We begin with a brief discussion of

the returns and their stochastic properties and introduce the operator of the
forward problem. In section 2 we illustrate some ill-posedness phenomena
which occur by solving the inverse problem numerically and discus reasons for
the instability. To overcome this instability of the conventional least-squares
fitting we propose in section 3 a multi-parameter regularization approach. It
is shown that such an approach can help to estimate the unknown parame-
ter vector of jump diffusion in a stable manner provided that realistic error
bounds for the semi-invariants can be prescribed. We illustrate its applica-
bility by a numerical case study with synthetic data in section 4. On the
other hand, in section 5 we propose a modification of the multi-parameter
algorithm based on some exponent variation. A numerical example, which
shows that appropriately chosen exponents can reduce the number of iterates
and hence the total amount of computation, completes the paper.

Our considerations to estimate a parameter vector p of the jump diffusion
process are based on the logarithmic returns. By using the generalized Itô-
calculus (see [14]) for semi-martingales we obtain after some computations:

Proposition 1 The natural logarithm of the price process log St fulfills the
stochastic differential equation

d(log St) = µ̃dt + σdWt + dÑ c
t ,

where µ̃ = (µ−λν − 1
2
σ2) and (Ñ c

t , t ∈ [0,∞)) denotes a compound Poisson
process associated to (Nt, t ∈ [0,∞)) with jump amplitude log Yj.

From proposition 1 we directly derive the structure

rτ = log

(
Sτ

S0

)
= (µ̃τ + σWτ ) +

Nτ∑

j=1

log Yj

of logarithmic returns. The stationarity of the returns rτ expressed by the
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equality in distribution of rτ and

rx
τ := log

Sx+τ

Sx

= log Sx+τ − log S0 + log S0 − log Sx

= rx+τ − rx = µ̃τ + σ(Wx+τ − Wx) +

Nx+τ∑

j=Nx+1

log Yj

follows directly from the stationarity of the increments of a Wiener process
and a Poisson process for a fixed time difference τ , since rx

τ has the same

distribution as µ̃τ + σ(Wx+τ − Wx) +
Nx+τ−Nx∑

j=1

log Yj. By applying the law of

total probability we express the distribution function as

F (x, p) = P(rτ ≤ x) =
∞∑

j=0

P(Nτ = j) P(rτ ≤ x | Nτ = j)

=
∞∑

j=0

e(−λτ)(λτ)j

j!
Φ

(
x − (µ̃τ + jµY )√

σ2τ + jσ2
Y

)
.

Consequently, the density function attains the form

f(x, p) =
∞∑

j=0

e−λτ (λτ)j

j!
√

σ2τ + jσ2
Y

φ

(
x − (µ̃τ + jµY )√

σ2τ + jσ2
Y

)
,

where Φ(x) =
x∫

−∞
φ(z) dz and φ(x) = 1√

2π
e−

x2

2 denote distribution and den-

sity function of the standard normal distribution. For all p ∈ D with D from
(1) we have

f(x, p) ≤
∞∑

j=0

e−λτ (λτ)j

j!
√

σ2τ

1√
2π

=
1

σ
√

2πτ
< ∞

and hence f( · , p) is in L∞(R) ∩ L1(R).
By applying the Lévy-Khintchine formula (see [16, p. 195]) we get the

characteristic function

ϕ
(
θ, p
)

= E e(iθrτ )

= exp

(
iµ̃τθ − σ2

2
τθ2 + λτ

(
exp

(
−σ2

Y

2
θ2 + iµY θ

)
− 1

))
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of the returns and can calculate the semi-invariants sτ,k(p) (see [15, p. 289])
from the k-th derivative

sτ,k(p) =
(log ϕ)(k)(0, p)

ik
.

This implies

sτ,1(p) = (λµY + µ̃)τ

sτ,2(p) = ((σ2
Y + µ2

Y )λ + σ2)τ

sτ,3(p) = (3σ2
Y + µ2

Y )λτµY (2)

sτ,4(p) = (3σ4
Y + 6σ2

Y µ2
Y + µ4

Y )λτ

sτ,5(p) = (15σ4
Y + 10σ2

Y µ2
Y + µ4

Y )λτµY

...
...

We use the following general relation (see [15, p. 290]) to compute the
moments from the semi-invariants or vice versa.

Proposition 2 Let ξ be a random variable with E |ξ|n < ∞. Then for all
k ≤ n we have for the interplay of the first k-th moments mk = Eξk and the
first k-th semi-invariants sk of ξ

mk =
∑

λ(1)+...+λ(q)=k

1

q!

k!

λ(1)! · · ·λ(q)!

q∏

ν=1

sλ(ν),

and

sk =
∑

λ(1)+...+λ(q)=k

(−1)q−1

q

k!

λ(1)! · · ·λ(q)!

q∏

ν=1

mλ(ν) ,

where
∑

λ(1)+...+λ(q)=k

denotes the summation over all ordered sets of natural

numbers {λ(ν) (ν = 1, 2, ..., q)} with
q∑

ν=1

λ(ν) = k.
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From proposition 2 we can conclude as follows:

s1 = m1 = Eξ

s2 = m2 − m2
1 = E(ξ − Eξ)2 = D2ξ

s3 = m3 − 3m2m1 + 2m3
1 = E(ξ − Eξ)3

s4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1 = . . .

= E(ξ − Eξ)4 − 3s2
2

s5 = m5 − 5m4m1 − 10m3m2 + 20m3m
2
1 + 30m2

2m1 − 60m2m
3
1 + 24m5

1

= . . . = E(ξ − Eξ)5 − 10s2s3

...
...

Note that the relations above can also be used to calculate empirical semi-
invariants from empirical moments or central moments.

It seems to be natural to estimate the parameter vector p of the jump
diffusion process by conventional statistical techniques like the maximum
likelihood method or the moment method. There are papers like [12] which
are dealt with the parameter estimation in jump diffusion models and oc-
curring pitfalls in the estimation process (see also [2]). In [12] the author
emphasizes that it is invalid to use standard maximum likelihood procedures
for estimating jump parameters. There are also serious mathematical and
numerical problems if one tries to solve the nonlinear equations (2) with
semi-invariants sτ,k as given data and p as vector of unknown parameters.
This approach is very similar to the statistical method of moments.

We would like to point out at that our inverse problem of determining
p is closely related to the well-known Hamburger moment problem. For the
ill-posedness of moment problems see, e.g., [1]. By the moment problem an
unknown density function is to be determined from given moments, whereas
we are only searching for a small number of intrinsic parameters of the den-
sity function. Nevertheless, some ill-posedness phenomena also occur in our
inverse problem.

We assume p∗ ∈ D to be the exact parameter vector to be determined and
analyze the estimation problem by using methods of inverse problem theory
in order to find approximate solutions pδ of p∗, which stably depend on the

vector Sδ = (Sδ
t0
, Sδ

t1
, . . . , Sδ

tn
)T of noisy price data and associated returns

rδ
τ = (rδ

τ,1, ..., r
δ
τ,n)

T .

Therefore we consider the empirical density function of the empirical re-
turns belonging to the data Sδ and choose that parameter vector pδ which
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minimizes the distance between the density function f( · , pδ) and the empiri-
cal density function. We use the L2-norm for measuring the distance between
the two densities.

In this context, we define the operator A : p 7→ f of the forward
problem which maps the parameter vector p ∈ D to the density function
f( · , p) ∈ L1(R) ∩ L∞(R) using the series expansion

[A(p)](x) = f(x, p) =
∞∑

j=0

e−λτ (λτ)j

j!
√

σ2τ + jσ2
Y

φ

(
x − (µ̃τ + jµY )√

σ2τ + jσ2
Y

)
(x ∈ R).

(3)

Thus, the inverse problem can be written as the nonlinear operator equation

A(p) = f (p ∈ D ⊂ X := R
5, f ∈ A(D) ⊂ Y ) , (4)

where A(D) denotes the range of the operator A and Y is a Banach space
with norm || · ||Y . We will focus on the situation where the well-defined non-
linear operator A is a mapping from X to Y := L2(R) with domain (1). In
[3] and [4] we have shown that this operator A is continuous for all parameter
vectors p ∈ D.

For fixed p the function [A(p)](x) is an infinite mixture of weighted density
functions gj(x, p) of Gaussian variables with mean µ̃τ + jµY and variance
σ2τ + jσ2

Y , that is

gj(x, p) =
1√

σ2τ + jσ2
Y

φ

(
x − (µ̃τ + jµY )√

σ2τ + jσ2
Y

)
.

Furthermore, the weights wj = e−λτ (λτ)j

j!
correspond with the probability

that j jumps occur. Such a mixture of bell-shaped curves also appears at
considering Fredholm integral equations in L2 or C-spaces with continuous
and bell-shaped kernels (see for example [11, example 2.3]). Even if our for-
ward operator A maps from a finite dimensional space only and although we
have an infinite sum instead of an integral, the mixture of bell-shaped curves
(3) leads to smoothing properties which are comparable to those of integral
operators mapping between two infinite dimensional spaces. In particular,
they cause ill-conditioning phenomena which will be illustrated and discussed
in section 2.
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2 Ill-posedness phenomena of the inverse prob-

lem

The practical inverse problem of parameter estimation consists in finding
appropriate approximations pδ of the true vector p? with A(p?) = f ? using

the noisy data function f δ ∈ Y with
∣∣∣∣f δ − f ?

∣∣∣∣
Y
≤ δ and noise level δ > 0.

The noisy data are obtained from empirical density functions of the empirical
returns rδ

τ .
Uniqueness and stability of solutions play an important role in the so-

lution process. Therefore we will briefly discuss some properties of A. The
operator A is obviously not injective on D. To see this, we consider the pa-
rameter vectors p

1
= (µ, σ, λ, 0, 0)T and p

2
= (µ, σ, 0, µY , σY )T . Both vectors

map to the same density function

[A(p
1
)](x) = [A(p

2
)](x) =

1√
σ2τ

φ

(
x − µ̃τ√

σ2τ

)
(x ∈ R),

which is a normal density function, because the jump part is eliminated.
In the case of p

1
the jump size is always zero and in the second case of

p
2

jumps do not occur. However, this trivial case is the only example for
non-injectivity. The following proposition is proven in [17].

Proposition 3 The operator A is injective on the restricted domain

D̂ =
{
p ∈ D : λ

(
σ2

Y + µ2
Y

)
6= 0

}
.

Consequently the operator equation (4) is uniquely solvable if and only
if a solution p ∈ D̂ exists. Moreover, the equation

A(p
1
) = A(p

2
) (5)

can only hold for some p
1
6= p

2
whenever p

1
and p

2
from (1) both belong to the

set D \ D̂, that means λ1 (µY
2
1 + σY

2
1) = λ2 (µY

2
2 + σY

2
2) = 0. Furthermore, it

is easy to prove that the diffusion parameters coincide in every case A(p
1
) =

A(p
2
), even the operator A fails to be injective.

Proposition 4 For a pair of vectors p
1

= (µ1, σ1, λ1, µY 1, σY 1)
T ∈ D and

p
2

= (µ2, σ2, λ2, µY 2, σY 2)
T ∈ D with p

1
6= p

2
satisfying (5) we have µ1 = µ2,

σ1 = σ2 and p
1
, p

2
∈ D \ D̂.
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The parameter vector p = (µ, σ, λ, µY , σY )T ∈ D \ D̂ is a solution of

(4) if and only if (µ, σ, 0, µ̂Y , σ̂Y ) ∈ D \ D̂ and (µ, σ, λ̂, 0, 0) ∈ D \ D̂ are
solutions of (4) for arbitrary µ̂Y ∈ R, σ̂Y ≥ 0 and λ̂ ≥ 0. As a consequence
of proposition 4 we can extend the domain of injectivity as follows.

Corollary 5 The operator A is injective even on the domain

D̃ =
{
p ∈ D : λ 6= 0

}
.

Since the operator equation (4) is not uniquely solvable for all density
functions f from the range A(D), the equation (4) is ill-posed. We can
easily find a sequence {fn} where fn = A(p

n
) converges to f0 = A(p

0
) in the

norm of Y , but the sequence
{
p

n

}
with

p
n
∈ U(fn) :=

{
p ∈ D : A(p) = fn

}

does not converge to p
0
∈ U(f0) in X. However, we can show that under some

conditions the diffusion parameters µ and σ of parameter vectors p
n
∈ U(fn)

converge to the diffusion parameters of parameter vectors p
0
∈ U(f0), i.e.,

lim
n→∞

µn = µ0 and lim
n→∞

σn = σ0 . (6)

In general we cannot ensure the convergence of the jump parameters λ, µY

and σY , but we obtain the limit condition

lim
n→∞

λn(µY
2
n + σY

2
n) = λ0(µY

2
0 + σY

2
0) . (7)

Note that the limit case λ → ∞ may lead to an asymptotical non-injectivity
of the operator A. Then also the equations (6) and (7) are not necessarily
fulfilled asymptotically. In order to prevent this case, we restrict this param-
eter by an upper bound λmax. Besides restricting the jump intensity we also
restrict the jump heights and consider for sufficiently large constants λmax,
µY max and σY max parameter vectors in the restricted domain

Dmax :=
{
p ∈ D : λ ≤ λmax < ∞ , |µY | ≤ µY max < ∞ , σY ≤ σY max < ∞

}
.

The limitation of µY and σY is not essential, because the jumps and absolute
returns |rτ | increase arbitrarily as |µY | → ∞ or σY → ∞. In [3] and [4] we
have proven the following proposition.
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Proposition 6 Let {fn} ⊂ A(D
max

) be a sequence which converges in Y to
the density function f0 ∈ A(D

max
). Then the inverse images

p
n

= (µn, σn, λn, µY n, σY n)T ∈ U(fn)∩D
max

and p
0

= (µ0, σ0, λ0, µY 0, σY 0)
T ∈

U(f0)∩D
max

fulfill (6) and (7). Every infinite subsequence
{

p
nk

}
⊂ U(fn)∩

D
max

has an accumulation point p̂ ∈ U(f0)∩D
max

. Moreover, if additionally

f0 ∈ A(D
max

∩ D̂), then for a sufficiently large n the sets U(fn) ∩ D
max

and

U(f0) are both a singleton and the sequence
{
p

n

}
converges to p

0
.

If we accept solutions only in Dmax, the operator equation (4) is stably
solvable in terms of properties formulated in proposition 6. Therefore we
consider the least-squares problem

Ψ(p) :=
∣∣∣∣A(p) − f δ

∣∣∣∣2
L2(R)

−→ min, subject to p ∈ Dmax. (8)

Since σ = 0 is excluded, the set Dmax of feasible solutions in (8) is not
closed. Nevertheless this extremal problem is solvable in all practical cases
where the empirical density function f δ is uniformly bounded by a constant
B > 0. Namely, by restricting the intensity parameter λ we particularly get
the existence of a positive lower bound

σ ≥ e−λmaxτ

(
δ +

√
B
)2 √

2πτ

> 0

for all parameter vectors p from the set Mη =
{

p ∈ Dmax :
∣∣∣∣A(p) − f δ

∣∣∣∣
L2(R)

≤ η
}

and sufficiently small η ≤ δ.
Unfortunately, there occur some instability effects by solving the least

squares problem (8) numerically even if the noise level δ is very small (see
also [5]). These ill-posedness phenomena are caused by an ill-conditioned
extremal problem

∥∥A(p) − zδ
∥∥2

2
→ min, subject to p ∈ Dmax (9)

with Euclidean norm ‖·‖2 and minimizer pδ, which we obtain after discretiza-
tion. In this context, we search for least-squares solutions of the discretized
version

A(p) = z (10)
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of equation (4). Since the empirical density function has the form of a
histogram, we discretize the density function f( · , p) in the same way and

denote the discretized function as f̃( · , p). Hence we consider for the grid
x0 < x1 < . . . < xn the discretized operator A : D ⊂ R

5 → R
n map-

ping p ∈ D to the vector z = (f̃(x0, p), f̃(x1, p), . . . , f̃(xn−1, p))T ∈ R
n.

For studying the stability of least-squares solutions we perturb the vector
z∗ = A(p∗) component-wise by normally distributed and uncorrelated errors

εi ∼ N(0, δ2) by setting zδ
i = z∗i (1 + εi) such that we have

E‖z∗ − zδ‖2
2 =

n−1∑

i=0

(z∗i )
2 E
(
ε2
i

)
= δ2 ‖z∗‖2

2

and

E

(‖z∗ − zδ‖2
2

‖z∗‖2
2

)
= δ2 .

Figure 1 illustrates the used functions and data. The data vector zδ can
be considered as a skeleton of the empirical density function obtained from
noisy returns rδ

τ . Since we do not compute the data zδ from the returns, we
must calculate the empirical moments mδ

τ,k through

mδ
τ,k ≈

n−1∑

i=0

1

k + 1

(
xk+1

i+1 − xk+1
i

)
zδ

i ,

where we use the approximation

mτ,k(p) =

∫

R

xkf(x, p) dx ≈
∫

R

xkf̃(x, p) dx =

n−1∑

i=0

zi

1

k + 1
(xk+1

i+1 − xk+1
i ) .

Using proposition 2 we thus obtain also empirical semi-invariants sδ
τ,k.

The following numerical examples will show, that non-injectivity of the
forward operator A is not the only ill-posedness phenomenon occurring in the
inverse problem of determining p. In order to illustrate the instability as the
second ingredient of ill-posedness, here we generated for the parameter vector
p∗ = (0.1, 0.2, 10.0, 0.1, 0.2)T the exact right hand side z∗ concerning daily

returns (τ = 1
250

). For studying the case of noisy data we actually computed
the weakly perturbed vector pδ with δ = 0.01. A simulated price trajectory

11



−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

f( · , p∗) and f̃( · , p∗)
−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35
z*

zδ

z∗ and zδ

Figure 1: Discretization and perturbed data

associated with those settings is presented in the left-hand picture of figure
2, whereas the right-hand picture shows the histograms corresponding to the
exact data z∗ and the noisy data zδ. The semi-invariants sδ

τ,k of the noisy data
are displayed in table 2. The deviation between the exact semi-invariants and
sδ

τ,k has the same order of magnitude like the noise level δ.

k sτ,k(p
∗) sδ

τ,k deviation

1 −0.000779874 −0.000766772 1.68%
2 +0.002160000 +0.002162937 0.14%
3 +0.000520000 +0.000519441 0.11%
4 +0.000292000 +0.000291870 0.04%
5 +0.000112400 +0.000112369 0.03%
6 +0.000069640 +0.000069666 0.04%
7 +0.000033940 +0.000033959 0.06%
8 +0.000022893 +0.000022913 0.09%

Table 1: Semi-invariants of the perturbed data (τ = 1
250

)

We begin our study with the case of unperturbed data z∗. Solving the
least-squares problem (9) iteratively with an appropriate initial guess leads to
the very good approximation p = (0.1022, 0.2000, 9.9920, 0.1002, 0.2003)T of

the exact solution p? = (0.1, 0.2, 10.0, 0.1, 0.2)T . Since the estimated param-

eters are close to the exact ones, the density functions f̃( · , p) and f̃( · , p∗)
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Figure 2: Sample trajectory and data

nearly coincide and the deviations between semi-invariants are also rather
small (see table 2). For the sake of simplicity we convert daily semi-invariants
using the scaling property scτ,k(p) = csτ,k(p) with c = 1

τ
= 250 into annu-

alized semi-invariants with τ = 1 and write in this case for the k−th semi-
invariant sk instead of s1,k.

k sk(p) sk(p
∗) deviation

1 −0.1935712 −0.1949685 0.72%
2 +0.5414362 +0.5400000 0.27%
3 +0.1306442 +0.1300000 0.50%
4 +0.0734753 +0.0730000 0.65%
5 +0.0283397 +0.0281000 0.85%
6 +0.0175866 +0.0174100 1.01%
7 +0.0085878 +0.0084850 1.21%
8 +0.0058021 +0.0057233 1.38%

Table 2: Annualized semi-invariants of the estimated parameter vector p

The computation of a least-squares solution for a first realization of the
weakly perturbed data vector zδ, however, provides us with rather large de-
viations between exact and estimated parameters, although the noise level
δ = 0.01 is not too high (see table 3). In particular, the parameter µ re-
sponds very sensitively to data changes. However, the density function of
the estimated parameters fits the data very well. A very interesting effect
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is that the semi-invariants and moments of the estimated parameters clearly
deviate from the exact ones (see table 4). This observation will be used in
section 3 in order to construct a specific approach of stabilization.

parameters pδ (estimated) p∗ deviation

µ −0.0424 +0.1 142.35%
σ +0.2003 +0.2 0.16%
λ +10.6748 +10.0 6.75%
µY +0.0865 +0.1 13.54%
σY +0.1784 +0.2 10.82%

Table 3: Estimated parameters for a first realization of zδ with δ = 0.01

k sk(p
δ) sk(p

∗) deviation

1 −0.2900873 −0.1949685 48.79%
2 +0.4594911 +0.5400000 14.91%
3 +0.0949759 +0.1300000 26.94%
4 +0.0482313 +0.0730000 33.93%
5 +0.0162548 +0.0281000 42.15%
6 +0.0090766 +0.0174100 47.87%
7 +0.0038871 +0.0084850 54.19%
8 +0.0023572 +0.0057233 58.81%

Table 4: Annualized semi-invariants of the estimated parameter vector pδ

We repeated the computations with six additional different realizations
of the data vector zδ. The results are given in table 5.
They show the instability of the least-squares problem (8) expressed by a
wide range of possible parameter vectors pδ obtained by varying data pertur-
bations with only one per cent noise. This instability requires the use of a
regularization method (see, e.g., [6] and [8]) for finding approximate solutions
of p∗ in a stable manner.

3 Multi-parameter regularization approach

The instability of least-squares solutions pδ with respect to varying data zδ

as observed in section 2 sufficiently motivates the use of a regularization
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µ σ λ µY σY

p∗ 0.1 0.2 10.0 0.1 0.2

1st run 0.6413 0.1993 8.6430 0.1522 0.2792
2nd run −0.1225 0.1992 11.4048 0.0759 0.1617
3rd run −0.0913 0.2003 11.1035 0.0803 0.1685
4th run 0.0354 0.2003 10.3857 0.0924 0.1876
5th run 0.2557 0.1990 9.5495 0.1128 0.2198
6th run 0.5253 0.1995 8.8196 0.1415 0.2637

Table 5: Least-squares solutions pδ of six further noisy data simulations with
δ = 0.01

approach for determining the parameter vector p. Since there is no other a
priori information that prefers a specific parameter vector p, we exploit the
fact pointed out in the case study that the semi-invariants and moments of
the estimated parameters sensitively respond to parameter changes. Hence,
we use the first l semi-invariants for a regularization, because they are scal-
able in time, i.e. scτ,k(p) = csτ,k(p) (c > 0), whereas we have for the moments
mcτ,k(p) 6= cmτ,k(p) for k = 1, 2, ..., l. Consequently, we can use without loss
of generality annualized semi-invariants in the following. The order of magni-
tude varies for different semi-invariants. In this context, we assume that the
upper bounds δk (k = 1, ..., l) of admissible semi-invariant deviations can be
prescribed in a useful manner. For example it is well known from statistics
that usually

∣∣s1(p
?) − sδ

1

∣∣ is larger than deviations of higher semi-invariants.
This motivates the application of a multi-parameter regularization approach
as introduced and analyzed in [8, §4.2] (see also [9]).

So we are going to compute the optimal vector pδ

opt
as a minimizer of the

problem
‖A(p) − zδ‖2

2 → min , subject to p ∈ M δ (11)

with
M δ =

{
p ∈ Dmax :

∣∣sk(p) − sδ
k

∣∣ ≤ δk, k = 1, . . . , l
}

,

where sδ
k is the k-th empirical semi-invariant computed from data zδ. The

optimal vector pδ

opt
, however, represents an appropriate trade-off between

acceptably small discrepancy values ‖A(pδ

opt
) − zδ‖2 and a required fitting

pδ

opt
∈ M δ of semi-invariants. In order to compute pδ

opt
in an efficient manner,
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we search for a saddle point of the Lagrangian functional

L(p, α) = ‖A(p) − zδ‖2 +

l∑

k=1

αk

(∣∣sk(p) − sδ
k

∣∣2 − δ2
k

)
(12)

of the in general non-convex optimization problem (11) with multiplier vec-
tors α = (α1, ..., αl)

T ∈ R
l
+. The numerical computation of such saddle-point

can be performed iteratively by computing minimizers pδ

α
of

F (p, α) = ‖A(p)− zδ‖2
2 + Ω(p, α, zδ) → min , subject to p ∈ Dmax (13)

with penalty functional

Ω(p, α, zδ) =
l∑

k=1

αk

∣∣sk(p) − sδ
k

∣∣2 (14)

and a sequence of vectors α = (α1, ..., αl)
T . This a specific multi-parameter

approach for finding regularized least-squares solutions to equation (10). The
approach is based theoretically on the following lemma 7 and theorem 8.

Lemma 7 A pair (p̂, α̂) ∈ D
max

× R
l
+ is a saddle-point of the Lagrangian

functional (12) to the optimization problem (11) if p̂ = pδ

α̂
is a minimizer of

(13) for the regularization parameter vector α = α̂ and satisfies simultane-
ously the l equations

α̂k

(
|sk(p̂) − sδ

k|2 − δ2
k

)
= 0 (k = 1, . . . , l) (15)

and the additional conditions

|sk(p̂) − sδ
k|2 ≤ δ2

k if α̂k = 0 (k = 1, . . . , l) . (16)

Proof

The pair (p̂, α̂) is a saddle-point of the Lagrangian functional (12) to the

optimization problem (11) if it fulfills for all p ∈ Dmax and all α ∈ R
l
+ the

inequalities
L(p̂, α) ≤ L(p̂, α̂) ≤ L(p, α̂) .
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The right inequality is evidently satisfied if p̂ = pδ

α̂
is a minimizer of (13)

for the regularization parameter vector α̂. The left inequality, however, is
equivalent to

l∑

k=1

(α̂k − αk)
(∣∣sk(p̂) − sδ

k

∣∣2 − δ2
k

)
≥ 0 for all α ∈ R

l
+ . (17)

Certainly, the pair of conditions (15) and (16) implies the inequality (17).
This proves the lemma.

It is well-known from optimization theory that p̂ solves the optimization

problem (11) whenever (p̂, α̂) ∈ Dmax × R
l
+ in a saddle-point in the sense of

lemma 7. Adapted from this result we construct an iteration process that
approaches this solution. In this context, we reformulate the equations (15)
as fixed point equations in the form

α̂k = α̂k

|sk(p̂) − sδ
k|2

δ2
k

(k = 1, . . . , l). (18)

Moreover, we choose a small positive number 0 < ε � 1 and an initial
guess α(0) ∈ R

l
+ with positive components α

(0)
k (k = 1, . . . , l) for starting the

iteration process

p(j) := pδ

α(j) (j = 0, 1, . . .) ;

α
(j+1)
k := α

(j)
k max

{∣∣sk(p
(j)) − sδ

k

∣∣2

δ2
k

, ε

}
(j = 0, 1, . . . ; k = 1, . . . , l).

(19)

Theorem 8 If the iteration (19) converges, i.e., α(j) → α̂ ∈ R
l
+ and p(j) →

p̂ ∈ D
max

as j → ∞, then the pair (p̂, α̂) is a saddle-point of the Lagrangian

functional (12) and hence p̂ = pδ

opt
is an optimal solution of (11).

Proof

We apply lemma 7 which proves the theorem if all the hypotheses of this
lemma are satisfied. By construction the limit vectors α̂ and p̂ of iteration
(19) satisfy for all p ∈ Dmax the inequality F (p̂, α̂) ≤ F (p, α̂) such that p̂ is
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a solution of (13) for α = α̂. Moreover, the pair (α̂, p̂) fulfills for k = 1, . . . , l
the equations

α̂k = α̂k max

{∣∣sk(p̂) − sδ
k

∣∣2

δ2
k

, ε

}
. (20)

For fixed k equation (20) holds if α̂k = 0 or
∣∣sk(p̂) − sδ

k

∣∣2 = δ2
k. This implies

relation (15). In order to show relation (16), we assume that
∣∣sk(p̂) − sδ

k

∣∣2 >

δ2
k and α̂k = 0 would hold simultaneously for some k. Then there is a

j0 = j0(k) such that
∣∣sk(p

(j)) − sδ
k

∣∣2 > δ2
k is valid for all j ≥ j0, since the

k−th semi-invariant sk(p) is continuous with respect to parameter vectors
p ∈ D. Thus we have

max

{∣∣sk(p
(j)) − sδ

k

∣∣2

δ2
k

, ε

}
> 1

and by (19) the inequality α
(j+1)
k > α

(j)
k > 0 for all j ≥ j0. Then the limit

α̂k = limj→∞ α
(j)
k cannot be zero as assumed and consequently condition (16)

is valid. This proves the theorem.

Unfortunately, theorem 8 makes only an assertion provided that the iteration
process (19) converges. Indeed, it seems to be very difficult to formulate suf-
ficient conditions for getting a contraction mapping in the sense of Banach’s
fixed point theorem. However, the iteration along the lines of the following
algorithm seems to converge rather stable in a wide field of applications (see
also [10]).

Algorithm 9

Step 0 Choose jmax ∈ N, ε, ε1 > 0 sufficiently small and α(0) with positive

components. Set j := 0.

Step 1 Compute p(j) = pδ

α(j) as a minimizer of F (p, α(j)) by solving (13).

Step 2 Compute α
(j+1)
k = α

(j)
k max

{
|sk(p(j))−sδ

k|2
δ2
k

, ε

}
(k = 1, 2, ..., l).

Step 3 If ‖α(j+1) − α(j)‖2 ≤ ε1 or j + 1 ≥ jmax, set p̂ := p(j) and stop;

otherwise set j := j + 1 and go to step 1.
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4 Numerical case studies

The multi-parameter regularization approach formulated in algorithm 9 was
tested by a case study comparable to that of section 2 with a parameter vector
p∗ = (0.1, 0.2, 10.0, 0.1, 0.2)T , τ = 1

250
and ε = ε1 = 1e−05. However, we have

chosen the higher noise level δ = 0.1, because this choice seems to corresponds
to a more realistic situation in financial practice. The a priori chosen error
bounds δk (k = 1, 2, ..., 5) are listed in the fifth column in table 8. The
empirical semi-invariants sδ

k obtained from the data, which provide a basis
for the penalty term (14), and the corresponding exact semi-invariants of the
parameter vector p∗ are compared in table 6. For the used data the iteration

k sδ
k (empirical semi-inv.) sk(p

∗) (exact semi-inv.) |sk(p
∗) − sδ

k| deviation

1 −0.17002795 −0.19496852 0.02494 12.79%
2 +0.54421567 +0.54000000 0.00422 0.78%
3 +0.13101847 +0.13000000 0.00102 0.78%
4 +0.07375075 +0.07300000 0.00075 1.00%
5 +0.02837745 +0.02810000 0.00028 0.99%

Table 6: Comparison of empirical and exact semi-invariants

process was convergent and provided the regularized solution p̂ = pδ

α̂
, which is

compared with p∗ in table 7. The deviation between the regularized solution
and the true parameter vector (in per cent) is given for the five components in
the fourth column of table 7. As expected the determination of µ is extremely
difficult (about 16 per cent error), whereas the standard deviations σ and σY

are estimated rather good with errors less than 2 per cent. The computed

parameter p∗ p̂ = pδ

α̂
deviation

µ 0.1 0.115857 15.86%
σ 0.2 0.197669 1.17%
λ 10.0 9.491907 5.08%
µY 0.1 0.103871 3.87%
σY 0.2 0.203410 1.71%

Table 7: Some optimal multi-parameter regularized solution and its perfor-
mance

optimal regularization parameter vector α̂ is given for that data realization
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in the last column of table 8. Furthermore, table 8 indicates that just for
the second and third semi-invariants the restrictions given by δ2 and δ3 are
active for the optimal solution and hence only α2 and α3 are positive.

k sδ
k sk(p̂) |sk(p̂) − sδ

k| δk α̂

1 −0.17002795 −0.17002795 0.00680543 0.01 0.00000000
2 +0.54421567 +0.53421568 0.00999999 0.01 0.28657429
3 +0.13101847 +0.13301848 0.00200001 0.002 6.34543394
4 +0.07375075 +0.07527707 0.00152632 0.002 0.00000000
5 +0.02837745 +0.02983393 0.00145648 0.002 0.00000000

Table 8: Prescribed bounds and more details of the iteration result

As a conclusion one can say that the multi-parameter approach that com-
bines the least-squares fitting of the empirical density function obtained from
return data with the fitting of empirical semi-invariants works quite well for
the case study situation. This kind of regularization is able to surmount
part of instability of conventional least-squares fittings and leads to fairly
acceptable approximate parameters for the jump diffusion process.

At the end of this section we illustrate the stabilizing effect of the multi-
parameter regularization by comparing this method with a conventional max-
imum likelihood estimation for a practical situation. In this context we sim-
ulated 20 times series of 250 prices, which correspond to the case that the
parameter vector has to be estimated from daily closing prices of one trading
year. The results of the maximum likelihood estimation are displayed in the
left hand side and the corresponding results of the multi-parameter regular-
ization on the right hand side of figure 3. In order to analyze the results
correctly, it is important to notice the different scales used in both graphics.
Each bar contains the results for the corresponding parameter. The thin lines
represent the estimated values of a parameter, the dashed line the median
of all estimated values and the bold face line the exact parameter value. We
should mention that 250 data are not enough to expect very good estimates,
since they correspond to a large noise level δ � 0.1. There are some signifi-
cant outliers for σ, λ, µY and σY using the maximum likelihood estimation.
They are caused by a misinterpretation of the jump part. If the jumps are not
identified, but misinterpreted as a high volatility, then the estimated value
of the parameter σ is to large and either jump intensity λ or jump mean
µY and jump volatility σY to small. The left-hand schema of figure 3 shows
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Figure 3: Results of 20 simulations all based on 250 daily closing prices

that instability phenomena also occur in the case of maximum likelihood es-
timation. On the other hand, the stabilizing effect of the multi-parameter
regularization approach is illustrated by the right-hand schema of figure 3 in
form of reduced variations for the majority of estimated parameters over 20
simulations.

5 A modification based on exponent varia-

tion

In section 4 we have illustrated that the multi-parameter regularization in-
troduced in section 3 is suitable to obtain stable approximate solutions for
the parameter estimation problem under consideration. The multi-parameter
algorithm, however, can be improved by a modification based on exponent
variation. The proposed algorithm 9 is based on condition (15) and the asso-
ciated fix point equations (18). Instead of (15) we can also use the equivalent
conditions

α̂k

(∣∣sk(p̂) − sδ
k

∣∣γ − δ
γ
k

)
= 0 (k = 1, . . . , l)
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for arbitrary exponents γ > 0 and modify the iteration (19) as

p(j) = pδ

α(j) for (j = 0, 1, . . .) ;

α
(j+1)
k = α

(j)
k max

{∣∣sk(p
(j)) − sδ

k

∣∣γ

δ
γ
k

, ε

}
(j = 0, 1, . . . ; k = 1, . . . , l) .

(21)

The assertion of theorem 8 remains valid for every γ > 0 and the appropriate
choice of γ can be exploited to accelerate the rate of convergence and hence
to improve the efficiency of the algorithm.

Finally, we present the results of two further numerical case studies con-
cerning the effect of appropriately chosen values γ for the iteration process
(21). For both studies we used a noise level δ = 0.05, a maximum number
of iterations jmax = 3000 and prescribed bounds δk (k = 1, ..., 5) as given
below. All other parameters and settings were taken as in the case study of
section 4.

In a first study we used the bounds δ1 = δ2 = δ3 = δ4 = δ5 = 0.005 and
we compared the required number of iterations depending on the exponent
γ which varied in the range [0.1, 4.5]. We simulated 5 data vectors zδ and
estimated for each γ the parameter vector pδ . In most cases the iteration
converged, particularly for γ < 2. It could be seen that the exponent γ

did not affect the optimization result provided that the iteration converged.
Namely, the essential decimal places of the regularized solutions p̂ = pδ

α̂

coincide for all γ in case of convergence. However, the exponent γ strongly
influences the number of required iterations (see table 9).

Table 9 suggest to choose γ < 2. This suggestion could be confirmed by a
second study, the results of which are displayed in figure 4. This figure shows
mean and median of the required iterations from 10 runs, where we took the
bounds δ1 = 0.08, δ2 = 0.02, δ3 = δ4 = δ5 = 0.004 and give results also for
smaller exponents γ < 0.1. For very small γ the required number of iterations
also grows such that an intermediate interval, for example γ ∈ [0.2, 1.5], can
be recommended for use in this iteration process. Comparable suggestions
for the choice of the iteration exponent were given in [10], where an inverse
eigenvalue problem was solved by a similar multi-parameter regularization
approach.
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γ run 1 run 2 run 3 run 4 run 5
0.1 281 325 1115 167 751
0.2 135 241 655 94 484
0.3 106 366 854 69 264
0.4 74 302 719 49 185
0.5 89 309 555 48 189
0.6 63 272 576 54 153
0.7 76 272 490 46 105
0.8 45 488 1013 42 142
0.9 49 292 1468 61 150
1.0 50 179 2533 69 91
1.1 45 551 559 36 137
1.2 49 648 786 52 137
1.3 62 947 1126 34 157
1.4 29 519 3000 66 111
1.5 46 439 808 62 181
1.6 48 564 1506 77 127
1.7 161 862 3000 50 165
1.8 95 433 3000 159 159
1.9 93 997 3000 59 438
2.0 83 1233 3000 72 3000
2.5 112 3000 3000 3000 354
3.5 847 3000 3000 3000 3000
4.5 3000 3000 3000 3000 3000

Table 9: Required iterations depending on γ, first study
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[4] D. Düvelmeyer. Some stability results of parameter identification in
a jump diffusion model. In J. vom Scheidt, editor, Tagungsband zum
Workshop Stochastische Analysis Klingenthal 2004 (ISSN 1612-5665),
pages 27–43, Chemnitz University of Technology, Faculty of Mathemat-
ics, 2005.
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