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Abstract
Correct pricing of options and other financial derivatives is of great importance
to financial markets and one of the key subjects of mathematical finance.
Usually, parameters specifying the underlying stochastic model are not directly
observable, but have to be determined indirectly from observable quantities.
The identification of local volatility surfaces from market data of European
vanilla options is one very important example of this type. As with many other
parameter identification problems, the reconstruction of local volatility surfaces
is ill-posed, and reasonable results can only be achieved via regularization
methods. Moreover, due to the sparsity of data, the local volatility is not
uniquely determined, but depends strongly on the kind of regularization norm
used and a good a priori guess for the parameter. By assuming a multiplicative
structure for the local volatility, which is motivated by the specific data situation,
the inverse problem can be decomposed into two separate sub-problems. This
removes part of the non-uniqueness and allows us to establish convergence and
convergence rates under weak assumptions. Additionally, a numerical solution
of the two sub-problems is much cheaper than that of the overall identification
problem. The theoretical results are illustrated by numerical tests.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Stochastic models for the evolution of financial assets are at the core of mathematical finance.
In the famous Black–Scholes model [1], a financial asset, e.g. a stock S, is assumed to follow
the geometric diffusion

dSt = µSt dt + σSt dWt, (1)
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with drift rate µ and volatility σ . Here, Wt denotes a Brownian motion. For details on
mathematical finance we refer to [14, 19] and the references cited therein. Using no arbitrage
arguments and Ito calculus, one can show that the value of a European call option on an asset
following (1) has to satisfy the (Black–Scholes) partial differential equation

Ct + 1
2σ 2S2CSS + rSCS − rC = 0, (2)

where r is the short-term interest rate. As a consequence of no arbitrage arguments r enters
(2) instead of µ. The value of a European call option C = C(S, t;K, T ) with strike K and
maturity T at maturity t = T is given by the payoff

C(S, T ;K, T ) = max(S − K, 0). (3)

Under the assumption that the coefficients σ and r are constants (2), (3) admit an analytic
solution (the famous Black–Scholes formula, cf [1]). The interest rates r can usually be
determined from other financial instruments and are assumed to be known here. Hence,
the model (1) is specified by the single parameter σ , which can be uniquely determined
from one single option price depending monotonically on σ . The unique level of volatility
corresponding to an option price is also called (Black76) implied volatility.

A major drawback of the simple Black–Scholes model (1) is that the assumption of a
constant volatility in most situations contradicts market observations, i.e. implied volatilities
corresponding to options with different strikes K and maturities T are not constant, but typically
depend on K and T, which is known as the smile effect [5]. Consistency with the market can be
restored by using a volatility function σ(S, t) instead of a constant, see [6]. In order to specify
a stochastic model (1) which is consistent with the market, a local volatility function σ(S, T )

has to be found such that quoted market prices C∗(K, T ) = C(S0, 0;K, T ) are matched. As
for constant parameters C has to solve (2), (3), and S0 denotes the spot price of the underlying
asset S and t = 0 meaning today. Once the volatility function has been determined, many
different financial derivatives depending on S can be priced using (2) or similar equations.

Due to its relevance in practice, the following inverse problem of option pricing (IPOP),
also known as market calibration, has attracted significant interest in the past.

Inverse problem 1.1 (IPOP). Given prices C∗(K, T ) of European call options, find a volatility
function σ(S, T ) such that the solutions C of the Black–Scholes equation (2) satisfy the
calibration condition C(S0, 0;K, T ) = C∗(K, T ) for all (given) K and T.

In [17], the authors use a spline representation of the volatility surface σ(S, t) and
propose to solve the parameter identification problem corresponding to (2) by a regularized
least-squares approach. Note that in (2) the dependence of the option values on strikes K enter
via the terminal condition (3), which complicates the analysis and numerical solution of the
inverse problem. As shown in [3, 6], prices of European call options alternatively satisfy the
Dupire equation

CT = 1
2σ 2(K, T )K2CKK − rKCK, (K, T ) ∈ R+ × (0, T ∗],

C(S0, 0;K, 0) = max(S0 − K, 0), K ∈ R+,
(4)

where T ∗ denotes the maximal time horizon (maturity) of interest respectively for which
option prices are available. Hence, the inverse problem of option pricing can be seen as a
parameter identification problem for the parabolic equation (4). As with many parameter
identification problems the inverse problem 1.1, specifically the identification of σ(K, T ) in
(4), is ill-posed (see [7]) i.e. a solution does not depend stably on the data and the problem
can only be solved by some regularization method. Stable recovery of the volatility function
σ(K, T ) from observed option prices C∗(K, T ), which can be considered as noisy data of
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solutions C(K, T ) to the Dupire equation, has been investigated previously by several authors;
see, e.g. [2, 4, 7, 12, 16, 18].

However, an important aspect that has been neglected in most of the previous works is
the specific data situation. Typically, option prices are available for a relatively large number
of strikes K but only a few maturities T. Additionally, a stable determination of volatilities for
high/low strikes is only possible for relatively large maturities, and thus the reconstructions for
short maturities will depend highly on initial values with respect to the kind of regularization
used in the least-squares approach. In order to incorporate the special data situation, an ansatz

σ(K, T ) = σ(K)ρ(T )

was proposed in [3]. In the present paper, we will use a similar decomposition of volatility
smile and term structure, namely

σ(K, T ) = σ1
(
e− ∫ T

0 r(t) dtK
)
σ2(T ) (5)

and show that such a decomposition has several advantages.
First of all, by the special choice (5), the parameter identification problem decomposes into

two separate sub-problems, i.e., the term and smile structure can be determined separately. The
cases of a purely price-dependent and purely time-dependent volatility have been investigated
in detail previously, see, e.g., [3, 7, 12, 18, 20], and parts of the theoretical considerations
also apply to our situation. For the stable solution of the sub-problems we propose and
analyse regularized least-squares approaches, i.e., Tikhonov regularization. We will derive
our theoretical results with minimal requirements on the data, i.e., we show that the volatility
smile σ1 can be determined from option prices for only one maturity, while the term structure
σ2 can be recovered from option data for only one strike. Our inverse problem is the
following:

Inverse problem 1.2 (Decoupled IPOP). Let C1(K) := C∗(K, T ∗), C2(T ) := C∗(K∗, T )

denote option prices for fixed maturity T ∗ respectively fixed strike K∗. Determine functions
σ1(·), σ2(·) such that the solution C(K, T ) to (4) with σ(K, T ) defined by (5) satisfies

C(K, T ∗) = C1(K), K ∈ R+ and C(K∗, T ) = C2(T ), T ∈ [0, T ∗].

Although, from an analytical point of view, option prices C1 for all strikes and one
maturity, respectively C2 for one strike and all maturities are sufficient for determining the
smile and term structure σ1, σ2, all available option prices can be utilized for the sub-problems
alternatively, which may additionally stabilize their solution.

Remark 1.1. The volatility smiles σ(·, T ) for maturities T depend on discounted strikes: this
makes sense from a practical point of view, since volatility smiles usually attain their minimum
near the spot K = S(t), i.e. they float with evolving time.

One of the conjectures against an assumption of a special structure (5) of volatility might
be that the implied volatility smiles usually flatten over time. However, as we will show by
our numerical experiments, such a behaviour is not in contradiction to our assumption on the
structure of the volatility, i.e. the Black76 volatilities corresponding to the volatility surface
(5) also show this flattening phenomenon.

Finally, as we will outline in more detail in section 5, the assumption of the special form
(5) allows a fine discretization and thus good resolution of the local features of the volatility
smile, and a fast numerical solution of the identification problem at the same time. Even in
case that the true volatility does have a different form than (5), a reconstructed volatility of the
form (5) may serve as a good initial guess for the general inverse problem 1.1.
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The outline of the paper is as follows. In the following section, we formulate the inverse
problem in more detail and show that, for a volatility surface of the form (5), the calibration
naturally decomposes into the two sub-problems of recovering the smile and the term structure
separately. In section 3, we discuss the problem of identifying the smile and recall the most
important results on its regularization and stable solution. The problem of recovering the term
structure will be investigated in section 4. Finally, we discuss some details of an efficient
numerical implementation and present the results of numerical tests in section 5.

2. Decoupling of the smile and term structure

We are concerned here with the identification of a local volatility function σ(K, T ) in the
Dupire equation from market observations C∗(K, T ) of option prices satisfying the Black–
Scholes equation (2). Due to the limited availability of data, we restrict the class of admissible
volatilities to the form such as (5), i.e. we assume the volatility smile to float with discounted
strikes Y = e− ∫ T

0 r(t) dtK . In order to make the decomposition into the smile σ1 and term
structure σ2 unique, we set∫ T ∗

0
σ 2

2 (t) dt = 1, (6)

where T ∗ denotes the largest maturity for which option prices are taken into account. We show
now that by a transformation of variables the inverse problem decomposes rather naturally
into two separate sub-problems.

Let A(Y ) = 1
2σ 2

1 (Y ) and B(T ) = σ 2
2 (T ) denote the smile and term structure of volatility.

By a rescaling of time, namely

τ(T ) :=
∫ T

0
B(t) dt, (7)

and with the notation U(Y, τ) := C(K, T ), the Dupire equation (4) transforms into

Uτ (Y, τ ) = A(Y )Y 2UYY (Y, τ ), (Y, τ ) ∈ (0,∞) × (0, 1]

U(Y, 0) = max(S0 − Y, 0), Y ∈ (0,∞),
(8)

where we used that
∫ T ∗

0 B(t) dt = 1 by (6). The degeneracy in (8) can be lifted by
transformation into logarithmic variables y = log(Y ), which yields

uτ (y, τ ) = a(y)(uyy(y, τ ) − uy(τ )), (y, τ ) ∈ R × (0, 1],

u(y, 0) = max(S0 − ey, 0), y ∈ R,
(9)

where a(y) = A(Y ) and u(y, τ ) = U(Y, τ). Using standard theory for parabolic equations
one gets the following result (see [2]):

Proposition 2.1. Let A(Y ) ∈ Cλ(R+) for some λ ∈ (0, 1). Then (8) has a unique solution
U ∈ C2,1(R+ × (0, T ∗]) ∩ Cλ,λ/2(R+ × [0, T ∗]).

Note that the system (8) no longer depends on the term structure B, and thus the problem
of identifying the volatility smile A(Y ) amounts to the identification of a time-independent
volatility:

Inverse problem 2.1 (inverse smile problem). Let U1(Y ) := C(K, T ∗) denote observed
prices of European call options with maturity T ∗. Find a function A(Y ) such that the solution
U(Y, τ) of (8) satisfies

U(Y, 1) = U1(Y ), Y ∈ R+. (10)
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We will summarize the main results in a stable regularized solution of this problem in
section 3.

Once the volatility smile A(·) has been determined, the identification of the term structure
B(·) can be performed by solving the following second inverse problem:

Inverse problem 2.2 (inverse term structure problem). Let U2(T ) := C(K∗, T ) denote
observed option prices for a fixed strike K∗, and Y ∗(T ) := K∗ e

∫ T

0 r(t) dt . Find a function B(T )

such that

U

(
Y ∗(T ),

∫ T

0
B(t) dt

)
= U2(T ), T ∈ (0, T ∗] (11)

where U = UA denotes the solution of the Dupire equation (8) for a given smile A.

Note that the term structure B enters only via (7). We only mention that instead of
Y ∗(T ) = K∗ e

∫ T

0 r(t) dt other price trajectories, e.g. Y ∗(T ) ≡ Y ∗ (at-the-money options),
respectively all available option prices can be used for determining the term structure.

We now turn to a detailed discussion of the two inverse sub-problems 2.1 and 2.2, and
investigate their stable solution by appropriate regularization methods.

3. On recovering the volatility smile

Identification of the volatility smile A(Y ) in (8) from option prices U1(Y ) has been
investigated previously, e.g. in [2, 3, 7, 11, 18]. For completeness of presentation and later
reference, we recall the most important stability and uniqueness results for the inverse smile
problem 2.1, and then discuss a stable approximate solution in the case of perturbed data via
Tikhonov regularization.

The following uniqueness result for the inverse problem of determining A(Y ) from
observations U1(Y ) for U(Y, 1) follows from results derived in [2, 3, 15]:

Proposition 3.1. Let U1,1, U1,2 denote the solutions of (8) corresponding to parameter
functions A1, A2 ∈ Cλ(R+) with Ai(Y ) � A > 0, and let � ⊂ R+ denote an interval. If
A1(Y ) = A2(Y ) on a certain interval ω ⊂ � and U1,1(Y, 1) = U1,2(Y, 1) for Y ∈ �, then
A1(Y ) = A2(Y ) on �. In case � is bounded, 0 /∈ � and A1(Y ) = A2(Y ) for Y ∈ R+\�, then
a Lipschitz estimate

‖A1(·) − A2(·)‖Cλ(�) � C‖U1,1(·, 1) − U1,2(·, 1)‖C2+λ(�),

holds.

If only perturbed data Uδ
1 are available instead of U1, then a solution A to the inverse

problem

U(Y, 1) = Uδ
1 (Y ), Y ∈ R+

will in general not exist. In order to overcome the problem of non-solvability, one can use
a least-squares approach, which has additionally to be regularized, since the inverse problem
is ill-posed. A stable solution of the inverse smile problem (10) formulated in logarithmic
variables (cf (9)) via Tikhonov regularization has been investigated, e.g. in [4, 7, 18]. We
shortly outline the key results.

Consider the Tikhonov functional

f (a) = ∥∥u(·, 1; a) − uδ
1

∥∥2
u

+ α‖a − a0‖2
a, (12)
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where a0 denotes an appropriate initial guess and uδ
1 denote the perturbed data satisfying∥∥u1 − uδ

1

∥∥
u

� δ (13)

and u1(y) := u(y, 1; a†) are the noise free data corresponding to the true volatility a†. The
existence of a minimizer aδ

α of (12) has been shown for reasonable choices of norms ‖·‖u, ‖·‖a

and for the following set of admissible parameters,

K∗
a = {a ∈ a∗ + H 1(R) : 0 < a � a � a}, (14)

with a∗ ∈ {a : 0 < a � a � a, ∇a ∈ L2(R)}. The uniqueness of a minimizer for a
sufficiently small time horizon τ ∗, i.e. for u1(y) := u(y, τ ∗), follows from the following result
derived in [18] if weighted norms are used in (12):

Proposition 3.2 (theorem 7.4 in [18]). Assume that a1(y), a2(y) are two minimizers of the
Tikhonov functional

fρ(a) = ‖u(·, τ ∗) − u∗
1(·)‖2

ρ + α‖∇a‖2
ρ (15)

with norm ‖v‖2
ρ = ∫

R
v(y)ρ(y) dy and weight ρ(y) � ρ0 > 0 such that

∫
R

ρ(y)−1 dy < ∞.
If there exists a point y0 such that a1(y0) = a2(y0) and τ ∗ is sufficiently small, then a1 ≡ a2.

A careful inspection of the proofs in [18] shows that it is possible to choose τ ∗ = 1 if ρ−1

decreases fast enough, and thus the result can be applied to our situation.
While for theoretical considerations it might be adequate to assume that observations are

available for a continuum of strikes, this is of course not possible in reality, where only prices
for a discrete set of strikes are quoted. In [7], both situations have been considered, and
stability, convergence and convergence rates of the Tikhonov regularized solutions aδ

α with
vanishing noise ‖u − uδ‖u � δ → 0 have been shown. In the following let ‖ · ‖a := ‖ · ‖H 1(R)

and u be the solution to (9). Additionally, let F : K∗
a → U denote the mapping F : a 
→ u(y, 1)

respectively F : a 
→ u(yi, 1) with U = L2(R) respectively U = R
n and ‖ · ‖u be accordingly

defined either by

‖u‖2
u =

∫
R

|u(y, 1)|2 dy or ‖u‖2
u =

∑
i

u(yi, 1)2.

Proposition 3.3 (cf [7], theorems 3.1, 3.2; [8], theorem 10.4). Let α > 0, uk
1 → uδ

1 and
ak denote the minimizer of (12) with uδ

1 replaced by uk
1. Then there exists a convergent

sub-sequence of {ak} and the limit of each convergent sub-sequence is a minimizer of (12).
If (13) holds and α(δ) is such that α(δ), δ2/α(δ) → 0, then every sequence {ak}, where

δk → 0 and ak = a
δk

α(δk)
denotes a minimizer of (12) with u∗

1 replaced by u
δk

1 satisfying (13), has
a convergent sub-sequence. The limit of every convergent sub-sequence is an a∗-minimum-
norm solution.

The forward operator F is Fréchet differentiable on K∗
a and the derivative F ′(a†) satisfies

a Lipschitz condition

‖[F ′(a) − F ′(a†)]b‖u � L‖a − a†‖a (16)

locally around a†. If the a priori choice a∗ − a† ∈ R(F ′(a†)∗), i.e.

a† − a∗ = F ′(a†)∗w (17)

and ‖w‖u is sufficiently small, then with the choice α ∼ δ the rate∥∥aδ
α − a†∥∥

a
= O(

√
δ) (18)

holds.
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Note that in view of proposition 3.2 we expect the minimizers ak to be unique if a complete
set of option prices u(y, 1) for all y ∈ R are available, in which case the convergence in the
above proposition would hold in the strong sense. The rates (18) were proven in [7] under
simpler conditions on g := a† − a∗, namely

|g(i)| = O(e−|y|), i = 1, . . . , 6 respectively i = 1, . . . , 4. (19)

It was independently shown in [11] that similar decay conditions are necessary in order to
show that a† − a∗ ∈ R(F ′(a†)∗). Note, that the condition (19) is actually quite similar to
the requirement that a(·) has to be known outside of � for the stability result in proposition
3.1, i.e. the volatility a(y) has to be known almost precisely for large |y| in order to get good
approximations.

By exploiting the definition y = log(Y ), the above results carry over immediately to the
formulation (10), (8) of the inverse smile problem 2.1 in natural variables if the following
weighted norms are used:

‖U‖2
U =

∫
R+

|U(Y )|2 1

Y
dY, ‖A‖2

A =
∫

R+

(|A(Y )|2 + |Y∇Y A(Y )|2) 1

Y
dY. (20)

We will use such weighted norms also in our numerical examples below.

4. Recovering the term structure

First, the identification of the term structure from option data corresponding to a known
volatility smile A, cf inverse problem 2.2, will be discussed. At the end of this section,
we then also investigate the case when A is only known approximately, e.g. from a prior
identification of the smile (see section 3 and inverse problem 2.1).

For the moment let A be given and U(Y, τ) denote the solution of the Dupire
equation (8). Let U2, U

δ
2 denote (measurements of the) option prices corresponding to strikes

Y ∗ := K∗ e
∫ T

0 r(t) dt with K∗ > 0, i.e.,

U(Y ∗(T ), τ (T )) = U2(T ), T ∈ (0, 1) (21)

and
∥∥U2 − Uδ

2

∥∥
U

� δ, where τ(T ) = ∫ T

0 B(t) dt and B(t) denotes the true term structure,
which is to be determined from (21). Formally, this inverse problem can be written as

G(B) = Uδ
2 , [G(B)](T ) = [GA(B)](T ) := U

(
Y ∗(T ),

∫ T

0
B(t) dt

)
, (22)

where we consider G as an operator from

D(G) :=
{
B ∈ L2(0, 1) : 0 < B � B,

∫ 1

0
B(t) dt = 1

}

to L2(0, 1), and Y ∗(T ) = e
∫ T

0 r(t) dtK∗ is defined as above. We will write GA only if the
dependence of A is important. Note that in contrast to a comparable discussion in [12]
the function U here is not explicitly available, but implicitly given as a solution to (8). For the
subsequent analysis we will utilize the following properties of the mapping operator G:

Proposition 4.1. The operator G : D(G) ⊂ L2(0, 1) → L2(0, 1) is injective, compact,
continuous and weakly closed. Moreover, if K∗ �= S0, then for every B0 ∈ D(G) there exists
a linear bounded operator G′(B0) : L2(0, 1) → L2(0, 1) such that

‖G(B) − G(B0) − G′(B0)(B − B0)‖L2(0,1) � L

2
‖B − B0‖2

L2(0,1), (23)

holds for all B ∈ D(G) with L not depending on B0.
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Proof. We decompose G = N ◦ J , where the operators J,N : L2(0, 1) → L2(0, 1)

are defined by (JB)(T ) := ∫ T

0 B(t) dt and N(τ)(T ) = U(Y ∗(T ), τ (T )). Note that
Y 2UYY = 	(Y, τ ; S, 0) where 	 denotes a fundamental solution to (8) (see [3]), and hence
Uτ > 0 for T > 0. Thus G is the concatenation of injective operators. By the regularity of
U (cf proposition 2.1) it follows that N is continuous, which together with the compactness
of J yields the continuity and compactness of G. The weak closedness follows by noting that
D(G) is a closed convex set. For the Taylor approximation (23) we use

[G(B) − G(B0)](T ) =
∫ 1

0
Uτ

(
Y ∗(T ),

∫ T

0
(1 − s)B(t) + sB0(t) dt

)
ds

∫ T

0
B(t) − B0(t) dt

and that even Uττ is bounded uniformly on R+×[0, 1]\{(K, T ) : |K−S0|+|T | < |K∗−S0|/2}.
�

Applying proposition A.3 and remark A.4 of [9], we conclude the local ill-posedness of
equation (21) in the sense of [13 definition 2]:

Corollary 4.1. For every B ∈ D(G) and every ball Br(B) with r > 0, there exists a
sequence {Bn} ⊂ D(G) ∩ Br(B) with Bn ⇀ B,Bn �→ B but G(Bn) → G(B). In particular,
equation (21) is locally ill-posed and G−1 is not continuous in G(B).

For stabilization of the problem (21) we consider Tikhonov regularization, i.e. for noisy
data Uδ

2 and some regularization parameter β > 0, an approximate solution of (21) is defined
via ∥∥G(B) − Uδ

2

∥∥2
L2(0,1)

+ β‖B − B∗‖2
L2(0,1) → min, B ∈ D(G). (24)

Utilizing proposition 4.1, standard results of regularization theory (cf [9]) yield that such a
minimizer exists. If δn → 0 and δ2

n

/
βn → 0, then the regularized solutions B

δn

βn
converge to

the true solution B†. Moreover, the following convergence rates result holds:

Proposition 4.2. Let B† denote the true solution of (21) and assume that there exists a function
w ∈ L2(0, 1) such that

(i) B† − B∗ = G′(B†)∗w with
(ii) L‖w‖L2(0,1) < 1,

where L is the constant of the estimate (23). Let Bδ
β denote the minimizer of (24) with β ∼ δ

then ∥∥Bδ
β − B†∥∥

L2(0,1)
= O(

√
δ).

Remark 4.1. For the problem under investigation, the source condition (i) can be interpreted
in the following way, cf [12]. Let

m(T ) := Uτ

(
Y ∗(T ),

∫ T

0
B†(t) dt

)
, T ∈ (0, 1).

Then (i) is equivalent to

(B† − B∗)(0) = 0 and
(B† − B∗)′

m
∈ L2(0, 1).

Note that the denominator m(0) = 0 and m(T ) > 0 for T > 0. Thus (i) is a stronger condition
than B† − B∗ ∈ H 1(0, 1).
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At the end of this section we will discuss the situation in which parameter A in the
sub-problem (21) is only known approximately, which will be the typical situation in our
decomposition approach:

Lemma 4.1. For A, Ã ∈ K∗
a , let U, Ũ denote the solutions of (8) and GA,GÃ be defined as

in (22). Then for B ∈ D(G) the estimate

‖GA(B) − GÃ(B)‖L2(0,1) � C‖A − Ã‖a

holds for a constant C > 0 independent of A, Ã and B. Here, ‖ · ‖a denotes the norm defined
by (20).

Proof. For the proof we utilize the formulation of the Dupire equation in logarithmic variables,
cf (9). The difference v := u − ũ then solves

vτ = a(y)(vyy − vy) + (a(y) − ã(y))(ũyy − ũy), v(y, 0) = 0.

As shown in [7, 11], a solution to (9) has the regularity u ∈ L2(0, 1;H 2(R)), and the same
regularity holds for v. Moreover,

‖v‖L2(0,1;H 2(R)) � ‖a − ã‖H 1(R)‖ũ‖L2(0,1;H 2(R)).

The result then follows by back-substitution to natural variables. �

Proposition 4.3. Let U2 denote the true data corresponding to the inverse problem (22) with
smile A and true solution B†. Assume that

∥∥Uδ
2

∥∥
L2(0,1)

� δ and ‖A − A‖A � δA, where

‖ · ‖A denotes the norm defined in (20), and let B
δ

β denote the minimizer of (24) with data Uδ
2 ,

parameter A, and β ∼ √
δA + δ. Then∥∥B

δ

β − B†∥∥2
L2(0,1)

= O(
√

δA + δ).

Proof. Using lemma 4.1 we have∥∥GA

(
B

δ

β

) − Uδ
2

∥∥2
L2(0,1)

+ β
∥∥B

δ

β

∥∥2
L2(0,1)

� Cδ2 + 2β
〈
B† − B∗, B† − B

δ

β

〉
L2(0,1)

. (25)

The rest follows as in the proof of [8, theorem 10.4]. �

Together with the convergence result for the inverse smile problem we obtain that under
the conditions of propositions 3.2, 4.2 (with A replaced by Aδ

α) the following convergence
rates hold,
∥∥Aδ

α − A†∥∥
A

= O(
√

δA) and
∥∥B

δ

β − B†∥∥
L2(0,1)

= O
(√√

δA + δB

)
,

where δA and δB denote the noise levels of the data U1 and U2, respectively, and the
regularization parameters α, β are chosen appropriately, i.e. α ∼ δA, β ∼ √

δA + δB .

5. Numerical aspects

In this section, we discuss several aspects of a numerical solution of the inverse problems 2.1,
2.2, and present the results of our numerical test.

Discretization of the forward problem. The option pricing equations (4), respectively (8),
are discretized by finite differences in space and a Crank–Nicholson scheme in time. We
have observed in our numerical experiments that the stability and accuracy of the solution of
the Dupire equation is comparable for both formulations, (8) in natural variables, and (9) in
logarithmic variables. Here, we stay with the natural variables and restrict the space domain
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to K ∈ [0, 5S] with appropriate Dirichlet boundary conditions on both sides. Already for
a rough discretization of 200 equidistant points in space and 100 equidistant points in time,
the maximal deviation of the numerically calculated option prices (occurring near K = S

and T = 0) is by a factor 10 less than the typical bid–ask spread (and thus the expected
discrepancies) in the option prices of about 1% of S.

In order to illustrate that local volatility surfaces satisfying (5) can be stably identified by
our approach, we consider the following test example:

Example 1. Let S0 = 1, T ∗ = 1, r = 7.5% and σ(K, T ) have the form (5) with

A†(Y ) = 1
20

[
1 − 1

2 exp(−4 log2(Y )) · sin(2πY)
]

(26)

and

B†(T ) = 1 + 3
5 sin(2πT ). (27)

We try to identify A and B from option price data C∗
i for T ∗ = 1 and Ki = 0.6 + i0.05 ∈

[0.6, 2], respectively C∗
j with K∗ = S0 = 1 and Tj = 0.1 + j ∗ 0.1 ∈ [0.1, 1]. The option

prices C∗
i , C

∗
j corresponding to (26), (27) are computed numerically according to (4) and

additionally perturbed by uniformly [−δ, δ] distributed random noise. In accordance to the
expected errors in observed option prices, we set δ = 10−3.

The values for T ∗, r and A are motivated by the following consideration. Assume that
option prices with maturities for the next two and a half years are available, the interest rate is
about 2.5% and the volatility of the underlying is about 20%. By a rescaling of time, we get
T ∗ = 1, r ∼ 7.5%, and σ 2 ∼ 0.1. The Tj then correspond to quarter–annual expiries.

Identification of the volatility smile. As outlined in section 2, we first reconstruct the volatility
smile A(Y ) from option prices C∗

i for the maturity T ∗ and strikes Ki , which are discounted
according to Yi = Ki e−rT ∗

. In analogy to section 3 we define the regularized solution as the
minimizer of the Tikhonov functional

1

Ni

Ni∑
i=1

|C∗
i − U(Yi, 1)|2 + α‖A − A∗‖2

∗, (28)

where U(Y, τ) denotes the solution to (8) restricted to the domain (y, τ ) ∈ (0, 5) × (0, 1).
For regularization, we use the norm

‖A‖2
∗ =

∫ 5

0
A(Y )2 1

Y
dY +

∫ 5

0
AY (Y )2Y dY (29)

which amounts to the H 1 norm of a(y) := A(Y ) in logarithmic variables y = log(Y ); see
section 3. The stability and convergence results cited in section 3 are directly applicable and
yield convergence (in a set-valued sense) of the regularized solutions to an A∗-minimum-norm
solution. The regularization parameter α is determined by a discrepancy principle, i.e. we
start with α0 and decrease α until the residual max{|C∗

i − U(Yi, 1)|} � τδ.
The minimization of the Tikhonov functional (28) is carried out by a Newton–CG

algorithm [10]. For α = α0, the algorithm is started at the a priori guess A∗, yielding a
minimizer Aδ

α0
and for α = αi := 2−iα0 the iteration is then started at the previous minimizer

Aδ
αi−1

. In each Newton step, a CG iteration is applied for the solution of the linearized
equation. The inner (CG) iteration is stopped, when the residual of the linearized equation
has been decreased by a constant factor q (we choose here q = 0.5). If the a priori guess is
assumed not to reflect the asymptotic behaviour (for Y large/small), one might also use the
Newton–CG algorithm directly as regularization method (see, e.g., [10]), in which case the
volatility function does not stay so close to the initial guess A∗ as in the case of Tikhonov
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Figure 1. The true smile A† and the reconstructions Aδ
α for δ = 0.001 and δ = 0.000 25

(cf table 1).

Table 1. Convergence rates for the inverse smile problem, example 1.

δ
‖C∗

i
−Ui (A

δ
α‖)

‖C∗
i
−Ui (A

∗)‖
‖Aδ

α−A†‖
‖A∗−A†‖ itNew(itCG) α

0.004 0.3689 0.7680 2 (3) 0.001
0.002 0.2030 0.6027 3 (5) 0.001
0.001 0.1429 0.5588 4 (10) 0.001
0.0005 0.0703 0.3921 9 (34) 0.000 25
0.000 25 0.0252 0.3377 10 (46) 6.25 ×10−5

regularization. The computational effort for one Newton step with N inner CG iterations
essentially consists of 2(N + 1) solutions of (8) or the linearized (adjoint) equation. The
numerically observed convergence rate is

∥∥A† − Aδ
α

∥∥ ∼ δ0.30. In view of the results cited
in section 3 we expect a good approximation of the volatility smile only in the region where
option prices are observed. Additionally, the quality of the reconstructions will decrease
rapidly for large/small strikes. Both effects are also observed in the numerical test; cf
figure 1.

We mention that even if the a priori guess has the wrong asymptotic behaviour, the
reconstructions in the region of interest are still comparably good.

Identification of the term structure. The second part of our numerical test cf figure 2, table 2
consists of identifying the term structure B(T ) from option prices corresponding to a single
strike price K∗ and several maturities Tj given (at least an estimate for) the volatility smile
A(Y ). As we have seen in section 2, the prices for maturity Tj do not depend on B(T ) but only

on
∫ Tj

0 B(t) dt , i.e. in the case of only few observations the problem is highly underdetermined
and uniqueness (and stability) of a solution has to be enforced by some kind of regularization.
Taking into account the specific data situation, we choose the Tikhonov functional

1

NT

NT∑
j=1

|C∗(K∗, Tj ) − U(K∗ e−rTj , τ (Tj ))|2 + β‖τ − τ ∗‖2
H 1 (30)

instead of (24). Note that by (7) we have τ(0) = 0 and τ(1) = 1. Thus the regularization
term ‖τ − τ ∗‖2

H 1 is equivalent to ‖B − B∗‖2
L2 in (24). Once τ has been determined as

the minimizer of (30), the term structure B(T ) can be found by differentiating τ which is a
stable operation from H 1 to L2. For minimizing the Tikhonov functional and the parameter
choice the same algorithms as for the inverse smile problem above can be used. The solution
can be further improved if data for several price trajectories, e.g. all available option prices,
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Figure 2. Left: the true maturities τ δ and the regularized approximations τ δ
α for H 1 and H 2

regularization. Right: the underlying term structure B† and the corresponding reconstructions Bδ
α

(cf table 2).

Table 2. Convergence rates and iteration numbers (inner/outer iterations) for the inverse term
structure problem.

δ
‖C∗−U(Bδ

α)‖
‖C∗−U(B0)‖

‖Bδ
α−B†‖

‖B∗−Bδ‖ itNew(itCG)

0.00 4 0.001 031 0.031 95 1 (4)
0.00 2 0.000 853 0.017 50 1 (4)
0.00 1 0.000 837 0.014 45 1 (3)
0.000 5 0.000 290 0.009 20 2 (8)
0.000 25 0.000 233 0.007 45 2 (7)

are taken into account. In this case, the least-squares term reads

1

NT

NT∑
j=1

1

NK,j

NK,j∑
i=0

|C∗(K∗
ij , Tj ) − U(K∗

ij e−rTj , τ (Tj ))|2.

In our example, the inverse problem is already regularized sufficiently by discretization
(only 10 maturities) and we can set β = 0. If data for more maturities are available, β can be
chosen in a similar manner as α was chosen for determining the smile structure above, which
slightly increases the numerical effort.

Note that for sparse data, the minimizer of the Tikhonov functional (30) is a piecewise
linear function, and thus the term structure B(T ) is piecewise constant here. The smoothness
of the solution can be enforced by regularizing in a stronger norm, e.g. H 2 yields a piecewise
linear term structure B(T ). On the other hand, this shows that a solution B to the inverse term
structure problem is not unique if only discrete data are available.

Finally, we remark that the inverse term structure problem is almost linear, i.e. we have

[G′(B)H ](T ) = Uτ (K
∗ e−rT , B(T ))H(T ).

Thus the nonlinearity is essentially determined by the deviation of Uτ from a constant, which
is usually not too large if T is not too small. This weakly nonlinear behaviour is also observed
in the numerical tests, where only 1 or 2 Newton iterations are needed for a reasonable
minimization of (30).

Identification of non-conforming volatility surfaces. As we have illustrated above, volatility
surfaces of the form (5) can be efficiently reconstructed by our approach. If, however,
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the true volatility does not satisfy the assumption (5), another technique is needed to
fully calibrate the model to the market. Still, our approach can be used to construct
a good initial guess for the full calibration problem, which might be formulated as
minimization of

1

NT

NT∑
j=1

1

NK,j

NK,j∑
i=0

|C∗(K∗
ij , Tj ) − C(K∗

ij , Tj )|2 + α‖σ 2 − σ 2
∗ ‖2, (31)

where σ 2
∗ (K, T ) := 2Aδ

α(Y )Bδ
α(T ) with Aδ

α(Y ) and Bδ
α(T ) determined as described above.

For a detailed discussion of the full calibration problem, we refer to [4, 7, 16, 17] and the
references cited therein.
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