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Abstract

We investigate the applicability of the method of maximum entropy regular-
ization (MER) to a specific nonlinear ill-posed inverse problem (SIP) in a purely
time-dependent model of option pricing, introduced and analyzed for an L2-setting
in [9]. In order to include the identification of volatility functions with a weak pole,
we extend the results of [12] and [13], concerning convergence and convergence rates
of regularized solutions in L1, in some details. Numerical case studies illustrate the
chances and limitations of (MER) versus Tikhonov regularization (TR) for smooth
solutions and solutions with a sharp peak. A particular paragraph is devoted to
the singular case of at-the-money options, where derivatives of the forward operator
degenerate.

1 Introduction

In this paper, we are dealt with a specific ill-posed nonlinear inverse problem that arises
in financial markets (for an overview of such problems see [3]). The problem consists in
finding (calibrating) a time-dependent volatility function defined on a finite time interval
I := [0, T ] from the term structure on I of observed prices of vanilla call options with
a fixed strike K > 0. This problem was introduced and discussed in an L2(I)-setting
in [9] with a convergence rate analysis of Tikhonov regularization based on the seminal
paper [6]. Here, we consider solutions in L1(I) and show the theoretical and practical
applicability of the method of maximum entropy regularization including convergence
and convergence rates of regularized solutions as well as numerical case studies. In this
context, we use the results of [12] and [13] and extend them in order to incorporate the
case of reference functions with a weak pole.
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The paper is organized as follows: In the remaining part of the introduction we de-
fine the specific inverse problem (SIP) under consideration in this paper and outline the
problem structure by characterizing the forward operator as a composition of a linear
integral operator and a nonlinear Nemytskii operator. Properties of the forward operator,
which imply the local ill-posedness of the inverse problem, are given in §2. Then in §3
we apply the maximum entropy regularization to the problem (SIP) and discuss sufficient
conditions for obtaining convergence rates. There occurs a singular case treated in §4,
where strike price of the option and current asset price coincide. A comprehensive case
study with synthetic data, presented in §5, completes the paper.

The restricted model under consideration uses a generalized geometric Brownian mo-
tion as stochastic process for an asset on which options are written. We denote by X(τ)
the positive asset price at time τ. With a constant drift µ, time-dependent volatilities
σ(τ) and a standard Wiener process W (τ) the stochastic differential equation

dX(τ)

X(τ)
= µ dτ + σ(τ) dW (τ) (τ ∈ I)

is assumed to hold. For an asset with current asset price X := X(0) > 0 at time τ = 0
we consider a family of European vanilla call options with a fixed strike K > 0, a fixed
risk-free interest rate r ≥ 0 and maturities t varying through the whole interval I. We set
a(t) := σ2(t) (t ∈ I) and call this not directly observable function a, which expresses the
volatility term structure, volatility function. Then it follows from stochastic considerations
(for details see, e.g., [15, p.71/72]) that the associated fair prices u(t) (0 < t ≤ T ) of these
options satisfy on an arbitrage-free market the equation

u(t) = X Φ

 ln(X
K )+rt+1

2

tR
0

a(τ) dτ

vuut tR
0

a(τ) dτ

− K e−rtΦ

 ln(X
K )+rt−1

2

tR
0

a(τ) dτ

vuut tR
0

a(τ) dτ

 (1)

with the cumulative density function of the standard normal distribution

Φ(z) :=
1√
2π

z∫
−∞

e−
x2

2 dx. (2)

Moreover, the payoff of a European call at expiry provides

u(0) = max(X − K, 0). (3)

The Black-Scholes-type formula (1) – (3) is originally derived for positive continuous
volatility functions, but it also yields well-defined values u(t) ≥ 0 (t ∈ I) if the function
a is Lebesgue-integrable and almost everywhere finite and positive.

For parameters X > 0, K > 0, r ≥ 0, τ ≥ 0 and s ≥ 0 we introduce the Black-Scholes
function

UBS(X, K, r, τ, s) :=


XΦ(d1) − Ke−rτΦ(d2) (s > 0)

max(X − Ke−rτ , 0) (s = 0)
(4)

with

d1 :=
ln

(
X
K

)
+ rτ + s

2√
s

, d2 := d1 −
√

s (5)
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and Φ(·) from formula (2). In terms of the auxiliary function

S(t) :=

t∫
0

a(τ) dτ (t ∈ I) (6)

the option prices can be written concisely as

u(t) = UBS(X, K, r, t, S(t)) (t ∈ I).

Now let a∗ denote the exact volatility function of the underlying asset and S∗ denote
the corresponding auxiliary function obtained from a∗ via formula (6). Instead of the fair
price function

u∗(t) = UBS(X, K, r, t, S∗(t)) (t ∈ I). (7)

we observe a square-integrable noisy data function uδ(t) (t ∈ I), where u∗ and uδ belong to
the set D+ of nonnegative functions over the interval I. Then the specific inverse problem
of identifying (calibrating) the volatility term structure a∗ from noisy data uδ can be
expressed as follows:

Definition 1.1 (Specific inverse problem – SIP) From a square-integrable noisy data
function uδ(t) (t ∈ I) with noise level δ > 0 and

‖uδ − u∗‖L2(I) =

∫
I

(
uδ(t) − u∗(t)

)2
dt


1
2

≤ δ

find appropriate approximations aδ of the function a∗, where both aδ and a∗ are integrable
and almost everywhere nonnegative functions over I and we measure the accuracy of aδ

by

‖aδ − a∗‖L1(I) =

∫
I

∣∣aδ(τ) − a∗(τ)
∣∣ dτ.

The inverse problem (SIP) corresponds with the solution of the nonlinear operator
equation

F (a) = u (a ∈ D(F ) ⊂ B1, u ∈ D+ ∩ L2(I) ⊂ B2) (8)

in the pair of Banach spaces

B1 := L1(I) and B2 := L2(I)

with a given noisy right-hand side, where the nonlinear forward operator

F = N ◦ J : D(F ) ⊂ B1 −→ B2

with domain
D(F ) :=

{
a ∈ L1(I) : a(τ) ≥ 0 a.e. in I

}
(9)
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is decomposed into the inner linear Volterra integral operator J : B1 −→ B2 with

[J(h)](t) :=

t∫
0

h(τ) dτ (t ∈ I) (10)

and the outer nonlinear Nemytskii operator N : D(N) := D+∩L2(I) ⊂ B2 −→ B2 defined
as

[N(S)](t) := UBS(X, K, r, t, S(t)) (t ∈ I) (11)
by using the Black-Scholes function (4) – (5).

2 Properties of the forward operator and ill-posedness
of the inverse problem

In order to characterize the forward operator F in the pair of Banach spaces B1 and B2, we
first study the components J and N of its decomposition. For example as a consequence
of Theorem 4.3.3 in [8] we obtain the continuity and compactness of the injective operator
J : L1(I) → L2(I) defined by formula (10).

For studying the operator N, we summarize the main properties of the Black-Scholes
function UBS by the following lemma, which can be proven straightforward by elementary
calculations.

Lemma 2.1 Let the parameters X > 0, K > 0 and r ≥ 0 be fixed. Then the nonnegative
function UBS(X, K, r, τ, s) is continuous for (τ, s) ∈ [0,∞)× [0,∞). Moreover, for (τ, s) ∈
[0,∞)×(0,∞), this function is continuously differentiable with respect to τ, where we have

∂UBS(X, K, r, τ, s)

∂τ
= r K e−rτ Φ(d2) ≥ 0,

and twice continuously differentiable with respect to s, where we have with ν := ln
(

X
K

)
∂UBS(X,K,r,τ,s)

∂s
= Φ′(d1) X 1

2
√

s

= X
2
√

2 π s
exp

(
− [ν+r τ ]2

2 s
− [ν+r τ ]

2
− s

8

)
> 0

(12)

and
∂2UBS(X,K,r,τ,s)

∂s2 = −Φ′(d1) X 1
4
√

s

(
− [ν+rτ ]2

s2 + 1
4

+ 1
s

)
= − X

4
√

2 π s

(
− [ν+rτ ]2

s2 + 1
4

+ 1
s

)
exp

(
− [ν+r τ ]2

2 s
− [ν+r τ ]

2
− s

8

)
.

(13)

Furthermore, we find the limit conditions

lim
s→∞

UBS(X, K, r, τ, s) = X (14)

and

lim
s→0

∂UBS(X, K, r, τ, s)

∂s
=

{ ∞ (X = K e−rτ )

0 (X �= K e−rτ )
(15)
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The Nemytskii operator N defined by formula (11) maps continuously in L2(I), since
the function k(τ, s) := UBS(X, K, r, τ, s) satisfies the Caratheodory condition and the
growth condition (see, e.g., [14, p.52]). Namely, due to the formulae (4), (12) and (14)
k(τ, s) is continuous and uniformly bounded with 0 ≤ k(τ, s) ≤ X for all (τ, s) ∈ I×[0,∞).

From formula (12) of Lemma 2.1 we moreover obtain ∂k(τ,s)
∂s

> 0 for all (τ, s) ∈ I × (0,∞)
and hence the injectivity of the operator N on its domain D(N).

Lemma 2.2 The nonlinear operator F : D(F ) ⊂ L1(I) → L2(I) is compact, continuous,
weakly continuous and injective. Thus, the inverse operator F−1 defined on the range
F (D(F )) of F exists.

Proof: Since the linear operator J maps injective and compact from L1(I) to L2(I) and
the nonlinear operator N maps injective and continuous from D(N) ⊂ L2(I) to L2(I),
the composite operator F = N ◦ J is injective, continuous and compact. Consequently,
F transforms weakly convergent sequences {an}∞n=1 ⊂ D(F ) with an ⇀ a0 in L1(I) into
strongly convergent sequences F (an) → F (a0) in L2(I) and is weakly continuous. Due to
the injectivity of F, the inverse F−1 : F (D(F )) ⊂ L2(I) → D(F ) ⊂ L1(I) is well-defined.
Note that the range F (D(F )) ⊂ D+ contains only continuous functions over I

Now we are in search of solution points a∗ ∈ D(F ), for which the inverse problem (SIP)
written as an operator equation (8) is locally ill-posed or locally well-posed, respectively
(cf. [10, Definition 2]).

Definition 2.3 We call the operator equation (8) between the Banach spaces B1 and B2

locally ill-posed at the point a∗ ∈ D(F ) if, for all balls Br(a
∗) with radius r > 0 and center

a∗, there exist sequences {an}∞n=1 ⊂ Br(a
∗) ∩ D(F ) satisfying the condition

F (an) → F (a∗) in B2, but an �→ a∗ in B1 as n → ∞ .

Otherwise, we call the equation (8) locally well-posed at a∗ ∈ D(F ) if there exists a radius
r > 0 such that

F (an) → F (a∗) in B2 =⇒ an → a∗ in B1 as n → ∞,

for all sequences {an}∞n=1 ⊂ Br(a
∗) ∩ D(F ).

Note that, for the injective operator F under consideration, local ill-posedness at a∗

implies discontinuity of F−1 at the point u∗ = F (a∗) and vice versa continuity of F−1 at
u∗ implies local well-posedness at a∗.

Theorem 2.4 The operator equation (8) associated with the inverse problem (SIP) is
locally ill-posed at the solution point a∗ ∈ D(F ) whenever we have

ess inf
τ∈I

a∗(τ) > 0. (16)

5



Proof: For a function a∗ ∈ D(F ) satisfying (16) let ε > 0 in an(τ) := a∗(τ) + ε sin(nτ)
(τ ∈ I) be small enough in order to ensure an ∈ D(F ) ∩ Br(a

∗). Due to the Riemann-
Lebesgue lemma we have lim

n→∞
∫
I

sin(nτ)ϕ(τ)dτ = 0 for ϕ ∈ L∞(I) and thus an ⇀ a∗.

On the other hand,
∫
I

| sin(nτ)|dτ �→ 0 provides an �→ a∗ in L1(I) as n → ∞. Then the

compactness of F implies F (an) → F (a∗) in L2(I) and hence the local ill-posedness at
the point. a∗

By the arguments of the above proof it cannot be excluded that (8) is locally well-posed
if ess inf

τ∈I
a∗(τ) = 0. For example in the case a∗ = 0 (zero function) the weak convergence

an ⇀ 0 in L1(I) implies strong convergence an → 0 in L1(I) if all functions an are
nonnegative a.e. However, if there is no reason to assume a purely deterministic behavior
of the asset price X(t) for some time interval, the ill-posed situation caused by (16) seems
to be realistic.

Thus, a regularization approach is required for the stable solution of the nonlinear
inverse problem (SIP). The standard Tikhonov regularization (TR) approach in the sense
of [6] with penalty functional ‖a − a‖2

L2(I) for that problem including considerations on
the strength of ill-posedness is studied in the paper [9]. Here, we will apply the maximum
entropy regularization (MER) to (SIP) and extend in this context the results of the
papers [12] and [13] concerning convergence and convergence rates to the case of reference
functions, which are not necessarily in L∞(I).

3 Applicability of maximum entropy regularization

Since the solution space of the inverse problem (SIP) is L1(I) and we have a stochastic
background, the use of maximum entropy regularization (MER) as an appropriate regu-
larization approach (cf. [5, Chapters 5.3 and 10.6] and the references therein) is motivated.
We use the penalty functional

E(a, a) :=

∫
I

{
a(τ) ln

(
a(τ)

a(τ)

)
+ a(τ) − a(τ)

}
dτ (17)

called in [4] cross entropy relative to a fixed reference function a ∈ L1(I) satisfying the
condition

0 < c ≤ a(τ) a.e. on I. (18)

For the unique solution a∗ ∈ D(F ) (see (9)) of equation F (a) = u∗ with the exact right-
hand side u∗ (see (7)) we assume in the sequel a∗ ∈ D(E) with

D(E) :=
{
a ∈ D(F ) ⊂ L1(I) : E(a, a) < ∞}

. (19)

Since the weak continuity of F implies the weak closedness of the operator, we obtain
from Lemma 2.2:

Corollary 3.1 The nonlinear operator F : D(F ) ⊂ L1(I) → L2(I) possessing a convex
and in L1(I) weakly closed domain D(F ) is continuous, weakly closed and injective.
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For the operator equation (8) with an operator F as characterized by Corollary 3.1 it is
useful to consider regularized solutions aδ

α solving the extremal problem

‖F (a) − uδ‖2
L2(I) + α E(a, a) −→ min, subject to a ∈ D(E). (20)

If the unknown solution a∗ is normalized by specifying ‖a∗‖L1(I), frequently the penalty
functional

Ẽ(a, a) :=

∫
I

a(τ) ln

(
a(τ)

a(τ)

)
dτ (21)

is considered instead of (17). This situation has been studied in [12] and [13] combined
with a reference a ∈ L∞(I) satisfying the condition

0 < c ≤ a(τ) ≤ c < ∞ a.e. on I. (22)

Note that we have
E(a, a) = Ẽ(a, e · a) +

∫
I

a(τ) dτ

and the functional (17) attains its minimum for a = a, whereas (21) attains its minimum
for a = a

e
. Moreover, the domains D̃(E) :=

{
a ∈ D(F ) ⊂ L1(I) : Ẽ(a, a) < ∞

}
and D(E)

(see (19)) coincide. Whenever a satisfies (22), the extremal problem (20) is equivalent to

‖F (a) − uδ‖2
L2(I) + αẼ(a, e · a) −→ min, subject to a ∈ D̃(E) (23)

and the theoretical results of [12] and [13] apply to regularized solutions aδ
α obtained by

solving (20).

Using [4, Lemmas 2.1 - 2.3] and the following Lemma 3.2, which is as an extension
of [12, Lemma 3], one can show along the lines of the proofs of [12, Theorems 1 and 2]
that for all regularization parameters α > 0 the minimization problem (20) is solvable
(not necessarily unique) and the regularized solutions aδ

α stably depend on the data uδ.
In contrast to (22) we include in (18) functions a with a weak pole. This seems to be
reasonable, since the admissible solutions a∗ of (SIP) may also have such a pole.

Lemma 3.2 For {an}∞n=1 ⊂ D(E), a0 ∈ D(E) and a satisfying (18) we have

an ⇀ a0 in L1(I) ∧ E(an, a) → E(a0, a) =⇒ an → a0 in L1(I) as n → ∞,

i.e., weak convergence and convergence in entropy imply strong convergence in L1(I).

Proof: Let B denote the Borel subsets of I. We define on (I,B) a measure

θ(A) :=

∫
A

e · a(τ)dτ (A ∈ B)

and consider the finite measure space L1(I,B, θ). Weak convergence of a sequence {bn}∞n=1 ∈
L1(I,B, θ) to an element b0 ∈ L1(I,B, θ) means, for all f ∈ L∞(I,B, θ),∫

I

bnfdθ →
∫
I

b0fdθ as n → ∞.

7



Note that f ∈ L∞(I,B, θ) is equivalent to f ∈ L∞(I). Moreover, for bn := an

e·a and b0 := a0

e·a
the equivalences

an → a0 in L1(I) ⇐⇒ bn → b0 in L1(I,B, θ),

an ⇀ a0 in L1(I) ⇐⇒ bn ⇀ b0 in L1(I,B, θ)

and ∫
I

{an ln an
a

+a−an}dτ →
∫
I

{ao ln ao
a

+a−ao}dτ ⇐⇒ ∫
I

{bn ln bn}dθ →
∫
I

{bo ln bo}dθ

hold. Theorem 2.7 in [2] asserts that

bn ⇀ b0 in L1(I,B, θ) and
∫
I

{bn ln bn} dθ →
∫
I

{b0 ln b0} dθ

imply bn → b0 in L1(I,B, θ). This assertion combined with the above implications proves
the lemma.

Now we can prove a convergence theorem for maximum entropy method. Note that for
the entropy functional (21) and a reference function a satisfying (22) this result directly
follows from [12, Theorem 3].

Theorem 3.3 Let a∗ ∈ D(E) be the exact solution of problem (SIP) associated with
noiseless data u∗. Then, for a sequence {uδn}∞n=1 of noisy data with ‖uδn − u∗‖L2(I) ≤ δn

and δn → 0 as n → ∞ and for a sequence {αn = α(δn)}∞n=1 of positive regularization
parameters with

αn → 0 and
δ2
n

αn
→ 0 as n → ∞,

any sequence {aδn
αn
}∞n=1 of corresponding regularized solutions converges to the exact solu-

tion in L1(I), i.e., we have
lim

n→∞
‖aδn

αn
− a∗‖L1(I) = 0.

Proof: By definition of aδn
αn

we have

‖F (
aδn

αn

)− uδn‖2
L2(I) + αnE

(
aδn

αn
, a

) ≤ ‖F (a∗) − uδn‖2
L2(I) + αnE (a∗, a) . (24)

By the choice of α(δ) there exists a constant C0 > 0 such that E
(
aδn

αn
, a

) ≤ C0 for
sufficiently large n. Since the level sets EC := {a ∈ D(E) : E(a, a) ≤ C} are weakly com-
pact in L1(I) (see, e.g., [4, Lemma 2.3]), there are a subsequence

{
a

δnk
αnk

}∞

k=1
of

{
aδn

αn

}∞
n=1

and an element ã ∈ L1(I) with a
δnk
αnk

⇀ ã in L1(I) as k → ∞. Moreover, (24) implies

lim
k→∞

‖F
(
a

δnk
αnk

)
−uδnk ‖2

L2(I) = 0 and therefore F
(
a

δnk
αnk

)
→ u∗ in L2(I). Thus, by the weak

closedness of F we have ã ∈ D(F ) and F (ã) = u∗. Since F is injective, this implies
ã = a∗. It remains to show that a

δnk
αnk

→ a∗ in L1(I) as k → ∞, since then any subse-
quence of {aδn

αn
}∞n=1 has the same convergence property. Applying Lemma 3.2 we only

have to show E
(
a

δnk
αnk

, a
)
→ E(a∗, a) as k → ∞. From the weak lower semicontinuity of
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E (·, a) together with (24) and the choice of α(δ) we immediately derive this convergence
in entropy by the inequalities

E (a∗, a) ≤ lim inf
k→∞

E
(
a

δnk
αnk

, a
)
≤ lim sup

k→∞
E

(
aδn

αn
, a

) ≤ E (a∗, a) .

The convergence formulated in Theorem 3.3 may be arbitrarily slow. To obtain a
convergence rate of regularized solutions,

‖aδ
α − a∗‖L1(I) = O

(√
δ
)

as δ → 0, (25)

in the proof of the next theorem we follow the ideas of Theorem 1 from [13] (originally
formulated and proven in Chinese in [13]) and extend those results to our situation. Here
we use the Landau symbol O in (25) in the sense of the existence of a constant C > 0
satisfying for sufficiently small δ the estimate above ‖aδ

α − a∗‖L1(I) ≤ C
√

δ. Note that
convergence rates results for the maximum entropy regularization avoiding the assumption
of weak closedness of the nonlinear forward operator are given in [7].

Theorem 3.4 Let the operator H : D(H) ⊂ L1(I) −→ L2(I) be continuous and weakly
closed and let the domain D(H) of H, containing functions which are nonnegative a.e. on
I, be convex. Moreover, let the operator equation H(a) = u∗, for the given right-hand side
u∗ ∈ L2(I), have a unique solution a∗ ∈ D(H) with E(a∗, a) < ∞. Then we have, for
data uδ ∈ L2(I) with ‖uδ − u∗‖L2(I) ≤ δ and regularization parameters chosen as α ∼ δ,
regularized solutions aδ

α solving the extremal problems

‖H(a) − uδ‖2
L2(I) + α E(a, a) −→ min, subject to a ∈ D(H) with E(a, a) < ∞,

which provide a convergence rate (25) whenever there exists a continuous linear operator
G : L1(I) −→ L2(I) with a (Banach space) adjoint G∗ : L2(I) −→ L∞ (I) and a positive
constant L such that the following three conditions are satisfied:

(i) ‖H(a) − H(a∗) − G(a − a∗)‖L2(I) ≤ L

2
‖a − a∗‖2

L1(I) for all a ∈ D(H),

(ii) there exists a function w ∈ L2(I) satisfying ln
(

a∗
a

)
= G∗ w

and

(iii) L ‖w‖L2(I) ‖a∗‖L1(I) < 1.

Proof: By definition of aδ
α we have

‖H (
aδ

α

)− uδ‖2
L2(I) + αE

(
aδ

α, a
) ≤ ‖H(a∗) − uδ‖2

L2(I) + αE (a∗, a)

and hence

‖H (
aδ

α

)− uδ‖2
L2(I) + αE

(
aδ

α, a∗) ≤ ‖H(a∗) − uδ‖2
L2(I) + α

∫
I

(
a∗ − aδ

α

)
ln

(
a∗

a

)
dτ.
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With condition (ii) we then obtain

‖H (
aδ

α

)− uδ‖2
L2(I) + αE

(
aδ

α, a∗) ≤ ‖H(a∗) − uδ‖2
L2(I) + α

∫
I

(
a∗ − aδ

α

)
G∗ w dτ.

The integral in the last formula can be understood as a duality product: G∗ w ∈ L∞ (I)
is applied to a∗ − aδ

α ∈ L1(I). Using the definition of the adjoint operator G∗ we obtain

‖H (
aδ

α

)− uδ‖2
L2(I) + αE

(
aδ

α, a∗) ≤ ‖H(a∗) − uδ‖2
L2(I) + α

∫
I

G
(
a∗ − aδ

α

)
w dτ. (26)

For r
(
aδ

α, a∗) := H
(
aδ

α

)− H(a∗) − G
(
aδ

α − a∗) we have by condition (i)

‖r (
aδ

α, a∗) ‖L2(I) ≤ L

2
‖aδ

α − a∗‖2
L1(I)

Substituting
G

(
a∗ − aδ

α

)
= H(a∗) − H

(
aδ

α

)
+ r

(
aδ

α, a∗)
in (26) we get

‖H (
aδ

α

)− uδ‖2
L2(I) + αE

(
aδ

α, a∗)
≤ ‖H(a∗) − uδ‖2

L2(I) + α
〈
w, H(a∗) − H

(
aδ

α

)
+ r

(
aδ

α, a∗)〉
L2(I)

,

where 〈·, ·〉L2(I) denotes the common inner product in L2(I). Because of formula (1.7) in
[4, p.1558] we have(

2

3
‖aδ

α‖L1(I) +
4

3
‖a∗‖L1(I)

)−1

‖aδ
α − a∗‖2

L1(I) ≤ E
(
aδ

α, a∗) .

Therefore

‖H (
aδ

α

)− uδ‖2
L2(I) + α

(
2

3
‖aδ

α‖L1(I) +
4

3
‖a∗‖L1(I)

)−1

‖aδ
α − a∗‖2

L1(I) (27)

≤ δ2 + αδ‖w‖L2(I) + α‖w‖L2(I)‖H
(
aδ

α

)− uδ‖L2(I) +
1

2
αL‖w‖L2(I)‖aδ

α − a∗‖2
L1(I).

Following the proof of Theorem 3.3 here we also have lim
δ→0

‖aδ
α − a∗‖L1(I) = 0 for the

parameter choice α ∼ δ. For sufficiently small values δ condition (iii) implies

1

2
L‖w‖L2(I)

(
2

3
‖aδ

α‖L1(I) +
4

3
‖a∗‖L1(I)

)
< 1. (28)

Thus we have

‖H (
aδ

α

)− uδ‖2
L2(I) ≤ δ2 + αδ‖w‖L2(I) + α‖w‖L2(I)‖H

(
aδ

α

)− uδ‖L2(I).

With the implication a, b, c ≥ 0 ∧ a2 ≤ b2 + ac ⇒ a ≤ b + c we obtain

‖H (
aδ

α

)− uδ‖L2(I) ≤
√

δ2 + αδ‖w‖L2(I) + α‖w‖L2(I)

10



and by substituting this relation into (27)

α

[(
2

3
‖aδ

α‖L1(I) +
4

3
‖a∗‖L1(I)

)−1

− 1

2
L‖w‖L2(I)

]
‖aδ

α − a∗‖2
L1(I) (29)

≤ δ2 + αδ‖w‖L2(I) + α‖w‖L2(I)

(√
δ2 + αδ‖w‖L2(I) + α‖w‖L2(I)

)
.

For the parameter choice α ∼ δ we finally obtain ‖aδ
α − a∗‖L1(I) = O(

√
δ) for δ → 0 from

formula (29) by considering the inequality (28).

In order to apply Theorem 3.4 with H = F to our problem (SIP), we restrict the
domain of F in the form

D̃(F ) :=
{
a ∈ L1(I) : a(τ) ≥ c > 0 a.e. in I

}
and assume a∗ ∈ D̃(F ) ∩ D(E) for a given lower positive bound c also occurring in
condition (18). Since D̃(F ) is also convex and closed, F : D̃(F ) ⊂ L1(I) → L2(I) remains
weakly closed. Note that the functions S = J(a) according to (10) with a ∈ D̃(F ) satisfy
the condition

S(t) ≥ c t (t ∈ I). (30)

Setting H := F and D(H) := D̃(F ) the operator G in Theorem 3.4 can be considered
as the Fréchet derivative F ′(a∗) of F at the point a∗ neglecting the fact that D̃(F ) has
an empty interior in L1(I) (cf. [5, Remark 10.30]). If there exists a linear operator G
satisfying the condition (i) in Theorem 3.4, then the structure of G can be verified as a
(formal) Gâteaux derivative by a limiting process outlined in [9, §5] in the form G = M ◦J
or

[G(h)](t) = m(t) [J(h)](t)
(
t ∈ I, h ∈ L1(I)

)
. (31)

with a linear multiplication operator M defined by the multiplier function

m(0) = 0, m(t) =
∂UBS(X, K, r, t, S∗(t))

∂s
> 0 (0 < t ≤ T ) , (32)

where S∗ := J(a∗) and we can prove:

Theorem 3.5 In the case X �= K we have m ∈ L∞ (I) and the operator G defined by
the formulae (31) and (32) maps continuously from L1(I) to L2(I). Then the condition

‖F (a) − F (a∗) − G(a − a∗)‖L2(I) ≤ L

2
‖a − a∗‖2

L1(I) for all a ∈ D̃(F ) (33)

is satisfied with a constant

L =
√

T C2, where C2 := sup
(τ,s)∈Mc

∣∣∣∣∂2UBS(X, K, r, τ, s)

∂s2

∣∣∣∣ < ∞

is determined from the set

Mc := {(τ, s) ∈ IR2 : s ≥ c τ, 0 < τ ≤ T}.

11



Proof: We make use of the fact that a multiplication operator M is continuous in L2(I)
if the multiplier function m belongs to L∞ (I) . From formula (12) we obtain for (τ, s) ∈
I × (0,∞) the estimate∣∣∣∣∂UBS(X, K, r, τ, s)

∂s

∣∣∣∣ =
X√
8 π s

exp

(
−

[
ln

(
X
K

)
+ r τ

]2

2 s
− ln

(
X
K

)
+ r τ

2
− s

8

)

≤
√

X K

8 π

1√
s

exp

(
−

[
ln

(
X
K

)
+ r τ

]2

2 s

)
.

This implies for (τ, s) ∈ Mc∣∣∣∣∂UBS(X, K, r, τ, s)

∂s

∣∣∣∣ ≤
√

X K

8 π

(
K

X

) r
c 1√

s
exp

(
−

[
ln

(
X
K

)]2

2 s

)
. (34)

For X �= K the right expression in the inequality (34) is continuous with respect to
s ∈ (0,∞) and tends to zero as s → 0 and as s → ∞. With a finite constant
C1 := sup

(τ,s)∈Mc

∣∣∣∂UBS(X,K,r,τ,s)
∂s

∣∣∣ < ∞ we then have m ∈ L∞ (I) in that case. In order

to prove the condition (33) for X �= K, we use the structure of the second derivative
∂2UBS(X,K,r,τ,s)

∂s2 as expressed by formula (13). Similar considerations as in the case of the
first derivative also show the existence of a constant C2 := sup

(τ,s)∈Mc

∣∣∣∂2UBS(X,K,r,τ,s)
∂s2

∣∣∣ < ∞.

Then we can estimate for S = J(a), S∗ = J(a∗), a, a∗ ∈ D̃(F ) and T ∈ I

|[F (a) − F (a∗) − G(a − a∗)](t)| =

=
∣∣∣UBS(X, K, r, t, S(t)) − UBS(X, K, r, t, S∗(t)) − ∂UBS(X,K,r,t,S∗(t))

∂s
(S(t) − S∗(t))

∣∣∣
= 1

2

∣∣∣∂2UBS(X,K,r,t,Sim(t))
∂s2 (S(t) − S∗(t))2

∣∣∣ ≤ C2

2
‖a − a∗‖2

L1(I),

where Sim with min(S(t), S∗(t)) ≤ Sim(t) ≤ max(S(t), S∗(t)) for 0 < t ≤ T is an inter-
mediate function such that the pairs of real numbers (t, S(t)), (t, S∗(t)) and (t, Sim(t)) all
belong to the set Mc. This provides

‖F (a) − F (a∗) − G(a − a∗)‖L2(I) ≤
√

T C2

2
‖a − a∗‖2

L1(I)

and hence the condition (33), which proves the theorem.

In order to interpret the conditions (ii) and (iii) in Theorem 3.4 for problem (SIP)
with H = F in the case X �= K, we write (ii) as

ln

(
a∗(t)
a(t)

)
=

T∫
t

m(τ) w(τ)dτ
(
t ∈ I, w ∈ L2(I)

)
. (35)

If (ii) is satisfied, then the function ln
(

a∗
a

)
belongs to the Sobolev space H1 (I) , which is

embedded in the space of continuous functions C(I). Moreover, we get

a∗ (T ) = a (T ) and w = −
[
ln

(
a∗
a

)] ′

m
∈ L2(I), (36)

12



where the weight function 1
m

does not belong to L∞ (I) , since we have lim
t→0

m(t) = 0. As
a consequence of condition (iii) the norm ‖w‖L2(I) has to be small enough with respect to
L and ‖a∗‖L1(I) in order to ensure the convergence rate (25).

Note that the strength of the conditions (ii) and (iii) in the case X �= K also depends
on the rate of growth of 1

m(t)
→ ∞ as t → 0. If we restrict the reference functions a by

condition (22), then we have an exponential growth rate indicating an extremely ill-posed
behavior of (SIP), but localized in a neighborhood of t = 0. Namely, from formula (12)
we derive

1

m(t)
= C

√
S∗(t) exp(ψ(t)) (0 < t < T )

with a constant C > 0 and

ψ(t) =
ν2

2S∗(t)
+

r2 t2

2S∗(t)
+

νr t

S∗(t)
+

ν

2
+

r t

2
+

S∗(t)
8

, ν := ln

(
X

K

)
�= 0.

With a∗ ∈ D̃(F ) and formula (35) we obtain a constant c depending on w and c with
a∗(τ) ≤ c a.e. in I. Hence we derive c t ≤ S∗(t) ≤ c t (t ∈ I). This implies the estimates

C̃
√

t exp

(
ν2

2 c t

)
≤ 1

m(t)
≤ Ĉ

√
t exp

(
ν2

2 c t

)
(0 < t ≤ T ) (37)

below and above with positive constants C̃ and Ĉ .

4 The singular case

Analyzing the structure of the second partial derivative ∂2UBS(X,K,r,τ,s)
∂s2 in formula (13) for

X �= K we find that the upper bound C2 defined in Theorem 3.5 and hence L =
√

T C2

grow to infinity as X − K → 0. The limit case X = K of at-the-money options, how-
ever, represents a singular situation (cf. also [9, §3]), since then M fails to be a bounded
linear operator in L2(I) due to lim

t→0
m(t) = ∞ (see formula (37) for ν = ln

(
X
K

)
= 0).

Consequently, G defined by the formulae (31) – (32) is not necessarily a continuous oper-
ator from L1(I) to L2(I) and the properties of this operator G may vary when the point
a∗ ∈ D̃(F ) ⊂ L1(I) changes. We formulate this variation in the following more in detail:

Theorem 4.1 In the case X = K the operator G defined by the formulae (31) – (32) is
a bounded linear operator from L1(I) to L2(I) if a∗ ∈ D̃(F ) satisfies the condition

a∗(τ) ≥ c τ−β (τ ∈ I) (38)

for a fixed constant 0 < β < 1. On the other hand, that linear operator G is unbounded
for

a∗ ∈ D̃(F ) ∩ L∞(I). (39)

Proof: For X = K the formula (12) attains the form

∂UBS(X,K,r,τ,s)
∂s

= X
2
√

2 π s
exp

(
−r2 τ2

2 s
− r τ

2
− s

8

)
. (40)
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The following considerations are based on this formula. If a∗ ∈ D̃(F ) satisfies the condi-
tion (38), then we can estimate with S∗ = J(a∗) and some positive constants C, C̃ and˜̃
C:

‖G(h)‖2
L2(I) ≤ C

∫
I

1

S∗(t)

 t∫
0

h(τ) dτ

2

dt ≤ C̃

∫
I

dt

t1−β

 ‖h‖2
L1(I) ≤ ˜̃

C‖h‖2
L1(I). (41)

This proves the continuity of G in that case. On the other hand, for a∗ satisfying (39)
and consequently c t ≤ S∗(t) ≤ c t we consider the sequences of functions

hn(τ) =

{
2n(1 − nτ) (0 ≤ τ ≤ 1/n)

0 (1/n < τ ≤ T )
with ‖hn‖L1(I) = 1

and
[J(hn)](t) =

{
2nt − n2t2 (0 ≤ t ≤ 1/n)

1 (1/n < t ≤ T ).

Then we derive from the structure of J(hn)

lim
n→∞

‖G(hn)‖2
L2(I) = lim

n→∞

∫
I

m2(t) [J(hn)]2(t) dt = ∞ if m �∈ L2(I).

Now we have in that case with positive constants C, C̃ and K∫
I

m2(t) dt = C

∫
I

1

S∗(t)
exp

(
r2t2

S∗(t)
− rt − S∗(t)

4

)
dt

≥ C̃

∫
I

exp(−Kt)

t
dt ≥ C̃ exp(−KT )

∫
I

dt

t
= ∞.

Thus the operator G is unbounded in that situation.

As Theorem 4.1 indicates, the operator F fails to be Gâteaux-differentiable at any
point a∗ ∈ D̃(F ) ∩ L∞(I). Then a condition

‖F (a) − F (a∗) − G(a − a∗)‖L2(I) ≤ L

2
‖a − a∗‖2

L1(I) (42)

for all a ∈ D̃(F ) requiring even the existence of a Fréchet derivative G cannot hold at
such a point. Although the Gâteaux derivative G exists as a bounded linear operator
from L1(I) to L2(I) in the special case of elements a∗ with a weak pole satisfying (38) we
disbelieve the existence of a constant 0 < L < ∞ such that (42) is valid for all a∗ ∈ D̃(F ).
However, we have no stringent proof of that fact.

After all we note that, for X = K, the operator G according to (31) – (32) mapping
from L2(I) to L2(I) as considered in [9, §5] is continuous for all a∗ ∈ L2(I) ∩ D̃(F ).

Namely, for h ∈ L2(I) with
(

t∫
0

h(τ) dτ

)2

≤ t ‖h‖2
L2(I) as a consequence of the Schwarz

14



inequality we estimate with positive constants Ĉ and ˆ̂
C and S∗(t) ≥ c t (t ∈ I) in analogy

to (41):

‖G(h)‖2
L2(I) ≤ Ĉ

∫
I

t

S∗(t)
dt

 ‖h‖2
L2(I) ≤ ˆ̂

C‖h‖2
L2(I).

But we also conjecture that an inequality

‖F (a) − F (a∗) − G(a − a∗)‖L2(I) ≤ L

2
‖a − a∗‖2

L2(I) for all a ∈ L2(I) ∩ D̃(F ),

cannot hold.

5 Numerical case studies

In [9] we find a case study concerning the solution of (SIP) using a discrete version of
a second order Tikhonov regularization (TR) approach with solutions of the extremal
problem

‖F (a) − uδ‖2
L2(I) + α ‖a′′‖2

L2(I) −→ min, subject to a ∈ D(F ) ∩ H2(I). (43)

Here, we compare this approach with the results of a discrete version of maximum entropy
regularization (MER) with respect to the character and quality of regularized solutions.
In particular, we tried to find situations in which maximum entropy regularization per-
forms better than Tikhonov regularization. In the paper [1] the applicability of these two
regularization methods for the classical moment problem was studied. The authors con-
cluded that Tikhonov regularization of second order is superior if the solution is smooth,
whereas maximum entropy regularization leads to better results if the solution has sharp
peaks.

We compared for T = 1 the behavior of the maximum entropy regularization (MER)
according to (20) and of the second order Tikhonov regularization (TR) according to (43)
implemented in a discretized form for the convex and rather smooth volatility function

a∗
1(τ) = ((τ − 0.5)2 + 0.1)2 (0 ≤ τ ≤ 1)

in a first study and for the volatility function

a∗
2(τ) = 0.1 +

0.9

1 + 100(2τ − 1)2
(0 ≤ τ ≤ 1)

with a sharp peak at the point τ = 0.5 in a second study.

For our case studies we approximated the functions a by the vector a = (a1, . . . , aN)T

with ai = a
(

2i−1
2N

)
. Using the values X = 0.6, K = 0.5, r = 0.05 we computed the exact

option price data u∗
j = u∗(tj) at time tj := j

N
(j = 1, . . . , N) according to formula (7).

Perturbed by a random noise vector η = (η1, . . . , ηN)T ∈ IRN with normally distributed
components ηi ∼ N (0, 1), which are i.i.d. for i = 1, 2, ..., n, the vector u∗ := (u∗

1, . . . , u
∗
N)T

gives the noisy data vector uδ with components

uδ
j := u∗

j + δ
‖u∗‖2

‖η‖2

ηj (j = 1, . . . , N),
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where ‖ · ‖2 denotes the Euclidean vector norm. The discrete regularized solutions
aδ

α =
(
(aδ

α)1, . . . , (a
δ
α)N

)T were determined as minimizers of discrete analogs of the ex-
tremal problems (23) and (43) and the accuracy of approximate solutions was measured

in the Manhattan norm ‖aδ
α−a∗‖1 =

N∑
j=1

|(aδ
α)j −a∗

j |, which is proportional to the discrete

L1-norm.

In the first case study with exact solution a∗
1 we used the discretization level

N = 20 and in both studies and all figures the noise level δ = 0.001. Figure 1 shows
the unregularized solution (α = 0). Small data errors cause significant perturbations
in the least-squares solution. Therefore a regularization seems to be necessary. For the
maximum entropy regularization (MER) with reference function

a1(τ) := (0.5 · (τ − 0.5)2 + 0.16)2 (0 ≤ τ ≤ 1)

the error ‖aδ
α − a∗

1‖1 as a function of the regularization parameter α > 0 is sketched in
figure 2. Figure 3 shows for the same reference function the best solution obtained by
maximum entropy regularization minimizing the discrete L1-error norm over all regular-
ization parameters α > 0. Figure 4 displays alternatively the best regularized solution
computed by second order Tikhonov regularization (TR).

Regularization method Error ‖aδ
αopt

− a∗
1‖1

(TR) 0.0560
(MER) with a1 0.0896
(MER) with a2 0.1196

Table 1: Accuracy of best regularized solutions for smooth solution

Table 1 compares the errors ‖aδ
α − a∗

1‖1 for the best regularized solutions aδ
α obtained

by (TR) and by (MER) with the two different reference functions a1 as defined above and

a2(τ) := 0.07 (0 ≤ τ ≤ 1).

It can be concluded, that for the smooth function a∗
1 to be recovered the best solutions were

obtained by Tikhonov regularization of second order. Hence, for the test function a∗
1 the

smoothness information, which is used by Tikhonov regularization of second order, seems
to be more appropriate than the information about the shape of a∗, which is reflected by
the reference function a1 in the context of maximum entropy regularization. In absence
of any information about the shape of a∗ one has to use a constant reference function, for
example a2, which does not provide acceptable regularized solutions here.

In our second case study with exact solution a∗
2 we used N = 50 and compared (TR)

and (MER) with the well-approximating reference function

a3(τ) = 0.12 + 0.5/(1 + 100(2τ − 1)2) (0 ≤ τ ≤ 1)

and with the constant reference function

a4(τ) := 0.5 (0 ≤ τ ≤ 1).
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The figures 5, 6, 7, 8 show the unregularized solution, the best regularized solution ob-
tained by (TR) and by (MER) with reference function a3 and a4, respectively. The best
possible errors ‖aδ

α − a∗
2‖1 are compared in table 2. Here the maximum entropy results

with the reference function a3 are better than the results obtained with (TR). On the
other hand, (MER) with reference function a4 leads to a regularized solution, which ap-
proximates the exact solution a∗

2 quite well for 0 < τ < 0.95, but deviates at the right
end of the interval, because for τ ≈ 1 the data information decreases (cf. formulae (6),
(7) and (36)) and the influence of the reference function dominates.

Regularization method Error ‖aδ
αopt

− a∗
2‖1

(TR) 0.6429
(MER) with a3 0.2694
(MER) with a4 0.7169

Table 2: Accuracy of best regularized solutions for peak solution

It should be remarked that the peak shape of the function a∗
2 is well-recovered without

regularization, whereas the smooth parts of the function away from the peaks require a
regularization.

In conclusion, we can say that our investigations have confirmed the results of the
article [1]. For determining a smooth exact solution maximum entropy regularization was
inferior to Tikhonov regularization of second order, whereas it was superior in the peak
case, provided we used an appropriate reference function.

In a final consideration we checked the convergence rates of (MER) solutions for δ → 0
in the peak case of an exact solution a∗

2. With N = 50 and the reference functions a3

and a4 we compared the ‖.‖1-errors for noise levels δ1 = 0.01, δ2 = 0.001 and, δ3 = 0.0001
(see tables 3 and 4). Although the reference functions both do not satisfy the condition
(36), the convergence rate seems to be nearly proportional to

√
δ. However, for the less

informative reference function a4 the absolute error levels are significantly larger than for
a3 and smaller optimal regularization parameters αopt occur.

δ αopt ‖aδ
αopt

− a∗‖1

0.01 0.0118 0.7719
0.001 0.00209 0.2694
0.0001 0.000292 0.0770

Table 3: Errors of optimal (MER) solutions for a∗
2 with a3 depending on δ
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δ αopt ‖aδ
αopt

− a∗‖1

0.01 0.0035 2.396
0.001 0.00034 0.717
0.0001 0.000044 0.1555

Table 4: Errors of optimal (MER) solutions for a∗
2 with a4 depending on δ
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Figure 1: Unregularized least-squares solution for a∗
1 and δ = 0.001
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Figure 3: Optimal solution of (MER) for a∗
1 with a1
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Figure 4: Optimal solution of (TR) for a∗
1
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Figure 5: Unregularized least-squares solution for a∗
2 and δ = 0.001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a*

aα
δ

Figure 6: Optimal solution of (TR) for a∗
2
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Figure 7: Optimal solution of (MER) for a∗
2 with a3
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Figure 8: Optimal solution of (MER) for a∗
2 with a4
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