
IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 27 (2011) 025006 (18pp) doi:10.1088/0266-5611/27/2/025006

Sharp converse results for the regularization error
using distance functions

Jens Flemming1, Bernd Hofmann1 and Peter Mathé2
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Abstract
In the analysis of ill-posed inverse problems the impact of solution smoothness
on accuracy and convergence rates plays an important role. For linear ill-posed
operator equations in Hilbert spaces and with focus on the linear regularization
schema we will establish relations between different kinds of measuring
solution smoothness in a point-wise or integral manner. In particular, we
discuss the interplay of distribution functions, profile functions that express the
regularization error, index functions generating source conditions and distance
functions associated with benchmark source conditions. We show that typically
the distance functions and the profile functions carry the same information as
the distribution functions, and that this is not the case for general source
conditions. The theoretical findings are accompanied with examples exhibiting
applications and limitations of the approach. A detailed understanding of
solution smoothness will also be helpful for the treatment and convergence
analysis of nonlinear ill-posed problems.

1. Introduction

The stable approximate solution of ill-posed inverse problems that can be formulated as linear
operator equations

Ax = y (1)

with an injective and bounded linear operator A : X → Y mapping between Hilbert spaces
X and Y and possessing a non-closed range R(A) requires regularization, since under the
above assumptions the (formal) solution mapping y �→ x = A−1y exists for each y ∈ R(A),
however, this dependence is discontinuous. Precisely, this is the Moore–Penrose inverse A†,
which can be defined in a more general context as a densely defined (unbounded) operator.
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Therefore, the solution theory aims at replacing the discontinuous mapping A† by a family
of continuous (bounded) regularization operators Rα : Y → X indexed by the regularization
parameter α > 0. This approach is common since the early days of the theory of ill-posed
equations, and a seminal treatise along these lines is [6]. The goal is to design families Rα

with the property that Rαy → A†y as α → 0 whenever y ∈ R(A).

Regularization error. The deviation of Rαy from A†y is called regularization error, and we
have for y = Ax that

fx(α) := ‖A†y − Rαy‖ = ‖A†Ax − RαAx‖ = ‖x − RαAx‖, α > 0.

In most cases the family Rα is given by a family of piecewise continuous real functions gα .
By noting that A† = (A∗A)† A∗ we assign

Rα := gα(A∗A)A∗, (2)

where spectral calculus allows us to extend the real functions to operator valued ones. In
terms of the family gα the regularization error reads as fx(α) = ‖x − gα(A∗A)A∗Ax‖, and
this function was called profile function in [13].

A crucial observation in this context is that the decay rate of fx(α) as α → 0 depends on
smoothness properties of the solution element x. The quantitative relation between smoothness
properties of x, given in terms of spectral information, called distribution function below, and
the decay of the profile function for a given regularization was first emphasized in [24, 25].
Here we take a more general point of view, and we shall subsume such properties as different
kinds of solution smoothness of x with respect to the operator H := A∗A.

In this study we focus on the understanding of profile functions. It will be clear from
the discussion at the end of section 4 that the knowledge of the profile function completely
determines the worst-case behavior of the reconstruction error from noisy data.

Distribution function. The pointwise characteristics of the solution smoothness of x with
respect to the spectrum of H, which contains the complete spectral information of the element,
exploits the (right-continuous version of the) spectral distribution function:

F 2
x (t) := ‖Etx‖2 := 〈χ(0,t](H) x, x〉 = ‖χ(0,t](H)x‖2, 0 < t < ∞, (3)

or the equivalent representation as F 2
x (t) = ∫ t

0 d‖Esx‖2 for t > 0. Above, we let χ(0,t] be the
characteristic function of the interval (0, t], and Et = Et(H), 0 � t � ‖H‖, be the spectral
resolution of the operator H, i.e. for any (bounded measurable) real function h we have that

‖h(H)x‖2 =
∫ ‖H‖

0
h2(t) d‖Etx‖2,

we refer to [26, chapter 12] for details on spectral theory of bounded self-adjoint operators
in Hilbert space. We should note here that by definition the function Fx is non-decreasing
and right-continuous with limt→0 Fx(t) = 0. The latter property is a consequence of zero
being an accumulation point of the spectrum of H. The distribution function may have jumps
at the points of the spectrum of H. In particular, for compact operators H it will be piecewise
constant. Moreover, an immediate and well-known observation is the following fact.

Fact 1 ([25, proposition 2.3]). Given x ∈ X, the increase Fx(α) = O(ακ) as α → 0, for
some 0 < κ < 1, implies that x ∈ R(Hν) for every 0 < ν < κ .
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General smoothness. The smoothness of solutions x ∈ X for ill-posed equations can be
expressed mathematically in different ways. The most traditional form is characterized by
source conditions. In its general version it is assumed that there is a non-decreasing continuous
function ψ : (0, ‖H‖] → R

+ = (0,∞) with limt→0 ψ(t) = 0 that we will call the index
function, for which

x = ψ(H) v, (4)

with some source element v ∈ X. Evidently, (4) can be rewritten as x ∈ R(ψ(H)). Recent
results assert that for every x ∈ X there is an index function ψ and a source element v ∈ X

satisfying (4), see [15, 22].
Although the concept of source conditions (4) proved to be useful in the error analysis of

ill-posed operator equations, the pointwise characteristics (3) contain more precise information
of the smoothness of x with respect to the operator H. We exhibit this in case of Tikhonov
regularization, where the family Rα is given for y = Ax by Rαy = (H +αI)−1Hx, and hence
the corresponding profile function is

fx(α) := α‖ (H + αI)−1 Hx‖, 0 < α < ∞, (5)

which is an index function, well defined and increasing for all α > 0. A celebrated
converse result establishes a one-to-one correspondence between the distribution and the
profile functions in moderate cases.

Fact 2 ([25, theorem 2.1]). Given x ∈ H , we have that fx(α) = O(ακ), for some 0 < κ < 1,
if and only if Fx(α) = O(ακ) as α → 0.

The key to the proof of fact 2 is the following result. It uses the family wα ∈ X of
elements given as wα := χ(α,‖H‖](H)H−1x, α > 0, which will prove useful later, see (A.2)
for the general construction.

Lemma 1 ([25], or the original study [7]) . Let wα be defined as above. The behavior
Fx(α) = O(ακ), for some 0 < κ < 1, yields α‖wα‖ = O(ακ) as α → 0.

In contrast, by using power-type source conditions we only have that fx(α) = O(αν)

provided that x ∈ R(Hν), again whenever 0 < ν < 1. This of course is less accurate
than the assertion in fact 2, and it is mentioned in [25] that there are x ∈ R(Hν) for which
fx(α) = o(αν). We will return to this discussion in corollary 2.

Distance function. In the past years, with the study [10] as well as the subsequent studies in
[3, 4, 11, 13, 17] and [9], the lack of information occurring when general source conditions
are used, was circumvented by using distance functions:

dψ(R) := inf {‖x − ψ(H)v‖ : ‖v‖ � R} , 0 � R < ∞. (6)

Whenever x /∈ R(ψ(H)) such distance functions dψ(R), which are positive, decreasing,
convex and continuous for all 0 � R < ∞, moreover tending to zero as R → ∞, measure
the degree of violation of x with respect to the benchmark source condition (4). Most of
the mentioned properties of the function dψ are given in [10, lemma 2.5 and its proof]. For
completeness we indicate the proof of the convexity. If for 0 < R, S < ∞ the minimizers
for dψ(R) and dψ(S) are called vR, vS , respectively, then ‖(vR + vS)/2‖ � (R + S)/2, and
dψ((R + S)/2) � ‖x − ψ(H)((vR + vS)/2)‖ � 1

2 (dψ(R) + dψ(S)).

Remark 1. In the previous study [13] the authors used the distance function �ψ defined as

�ψ(t) := inf {‖tx − ψ(H)v‖ : ‖v‖ � 1} , t > 0,
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instead of dψ(R), R > 0. The relation

dψ(R) = R�ψ(1/R), R > 0, (7)

is evident from the definition. We know from [13, lemma 5.3] that the function �ψ as well as
the function t �→ �ψ(t)/t, t > 0, are increasing index functions mapping (0,∞) onto itself.
Some more insight gives [8, remark 1] indicating that the transformations �ψ �→ dψ according
to (7) and its inverse dψ �→ �ψ are involutions that preserve convexity.

Here we confine to the usage of dψ as the distance function. In the following, for short we
call the index function ψ in the dψ benchmark. If the decay of dψ(R) → 0 as R → ∞ is slow,
then x strongly violates the benchmark source condition, whereas a fast decay corresponds to
a weak violation. The distance function approach, also called method of approximate source
conditions is a third way of expressing solution smoothness. To see this we recall the following
result, where as in the following we write dν(R) for short if we mean dψ(R) with the monomial
benchmark ψ(t) = tν, ν > 0.

Fact 3 ([4, theorem 3.2], [13, section 5.2]). Smoothness of the form x ∈ R(Hκ) with
0 < κ < ν implies for the distance function with the monomial benchmark ψ(t) = tν, t > 0,

a decay rate dν(R) = O
(
R− κ

ν−κ

)
as R → ∞.

This assertion will be improved as a result of our analysis in corollary 2.
We should mention here the dual formulation of the distance function

dψ(R) = sup {〈x, v〉 − R‖ψ(H)v‖, ‖v‖ � 1} , R > 0, (8)

as an alternative to (6), which is derived from the concept of the Fenchel duality, see [28, section
2.7]. This can be helpful for obtaining lower bounds of dψ(R) if one finds an appropriate
choice of v ∈ X, see for example [16, p 96].

Remark 2. Distance functions, or approximate source conditions, already mentioned
in the monograph [1], are also used for the analysis of nonlinear ill-posed problems. If
the nonlinear forward mapping is smoothing then the Fréchet derivative at the solution
constitutes a linear operator, which is compact in typical cases. This can then be used
to measure smoothness, and to establish corresponding distance functions. We mention
[2, 9] for recent references concerning Tikhonov-type regularization, and [18] concerning
iterative regularization. However, the error analysis of nonlinear equations is superimposed
by the specific structure of nonlinearity in a neighborhood of the solution, which prevents an
immediate use of the techniques as developed below. Nonetheless, a prospective analysis in
this direction may result in new insights.

Outline. In this study we will establish relations between the different kinds of measuring
solution smoothness, in particular between distance functions dψ(R), the distribution function
Fx(α), and a regularization error fx(α) in the context of the linear regularization schema
introduced in section 2. The basic question is, whether the distance function carries the same
spectral information as the distribution function. General lower and upper bounds are given in
section 3. The proof of the main general result will be given in the appendix. For the specific
case of the power-type behavior we even show a one-to-one correspondence between the
associated exponents in section 4, which answers the above basic question in the affirmative.
We also highlight the theoretical results by providing examples which show the application
and limitations of our findings in section 5. In particular we discuss relations to other results
in this direction, which were previously obtained by several authors.
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2. The linear regularization schema

Before formulating the main results in sections 3 and 4 we shall recall the concept of a
regularization schema as given in [13], where only linear regularization operators Rα are
under consideration. If the family of operators Rα was obtained from some family of generator
functions gα , see (2), then the regularization error constitutes as

x − RαAx = (I − gα(H)H)x,

and we associate to the function gα the residual (bias) function rα(t) := 1 − tgα(t), 0 < t �
‖H‖.

Definition 1. A family of piecewise continuous functions gα(t) is called a regularization
if lim

α→0
rα(t) = 0 as α → 0 for all 0 < t � ‖H‖ and the following estimates hold for all

0 < t � ‖H‖, 0 < α � ᾱ, and with constants γ0, γ1 and γ∗:

(1)
√

t |gα(t)| � γ∗/
√

α,
(2) |rα(t)| � γ1,
(3) t |gα(t)| � γ0.

Using the notation of index functions introduced in the initial section we say that an index
function ϕ is a qualification of the regularization generated by gα with constant γ if

|rα(t)|ϕ(t) � γ ϕ(α), 0 < t � ‖H‖, 0 < α � ᾱ.

A standard account on the linear regularization schema is [5].

Regularization from a single function. In many cases the regularization family gα can be
obtained from a single function, say g : (0,∞) → R, accompanied with the function
r(t) := 1 − tg(t), t > 0, where we refer to [27, section 2.3] and to the German textbook [20].
It is easy to see that such function g gives rise to a regularization by exploiting the dilatation
procedure:

gα(t) := 1

α
g

(
t

α

)
, t > 0, α > 0,

provided that g obeys

(1)
√

t |g(t)| � γ∗, t > 0,
(2) |r(t)| � γ1, t > 0, and
(3) t |g(t)| � γ0, t > 0.

Note that by construction we have that rα(t) = r(t/α) for t, α > 0, and that rα is well
defined for every α > 0, i.e., ᾱ := ∞.

Profile functions. With respect to any given regularization gα we are interested in the profile
function (regularization error), which is seen to equal

fx(α) := ‖rα(H)x‖, 0 < α � ᾱ. (9)

We shall assume that ‖rα(H)x‖ is a non-decreasing function in α for simplicity. This is the
case if the underlying regularization gα is such that the function α �→ |rα(t)| , 0 < α � ᾱ,
is non-decreasing, which is always satisfied for regularization from a single function g with
non-increasing r. If the regularization gα consists of continuous functions, then fx is continuous
and hence with limα→0 fx(α) = 0 an index function.
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Example 1 (Tikhonov regularization). This regularization method with the continuous
functions gα(t) = 1/(t + α) and rα(t) = α/(t + α) is obtained from g(t) := 1/(t + 1),
with r(t) = 1/(t + 1). We observe that the function r is decreasing and moreover that
1
2 = r(1) � r(t) � 1, 0 < t � 1. Any concave index function, in particular any linear, is a
qualification of the method.

Example 2 (spectral cutoff). Another important regularization method is spectral cutoff,
where gα(t) = 1/t, t > α, and gα(t) = 0, otherwise. This function with a jump at the point
t = α corresponds to g(t) = 1/t, t > 1, and g(t) = 0, otherwise. The residual function
is r(t) = χ(0,1](t), the characteristic function of the interval (0, 1], again a non-increasing
function in t. Spectral cutoff has arbitrary index functions as qualification. We note the
important observation that for spectral cutoff we have that

‖rα(H)x‖ = Fx(α), 0 < α � ‖H‖. (10)

Remark 3. It is well known that regularization can also be achieved by discretization, or a
combination of linear regularization with discretization, we mention [23] or the more recent
[19]. Here the regularization error measures the behavior of the discretization on exact data.
This is also an important quantity, and the smoothness concepts as developed here have impact
on the decay of the regularization error through the degree of approximation and the modulus
of injectivity (inverse property). Details are beyond the scope of this study, we refer to [14]
for some initial study in this direction, even for nonlinear equations.

One important observation from [24] relates the distribution function Fx to the profile
function fx as follows.

Proposition 1. For every regularization gα there is a constant 0 < c � 1 such that

Fx(cα) � 2fx(α), 0 < α � ‖H‖.

Proof. We first note that by item (i) of definition 1 with constant γ∗ we find a 0 < c � 1 for
which |rα(t)| � 1/2 whenever 0 < t � cα. Precisely, setting c := min

{
1

4γ 2∗
, 1

}
we have

|rα(t)| � 1 − t |gα(t)| � 1 − γ∗
√

t/α � 1 − γ∗
√

c � 1/2.

Then we bound

f 2
x (α) =

∫ ‖H‖

0
|rα(t)|2 dF 2

x (t)

�
∫ cα

0
|rα(t)|2 dF 2

x (t) � 1

4

∫ cα

0
dF 2

x (t) = 1

4
F 2

x (cα),

from which the assertion follows. �

3. General results

As already mentioned, both functions, the regularization error fx and the distance function dψ

reflect smoothness of x in the sense of certain spectral properties of the involved element with
respect to H.

We shall establish for x /∈ R(ψ(H)) a one-to-one correspondence between distance
functions dψ(R) and profile functions fx(α), for an appropriate relation between R and α. To
this end let


ψ(R) := dψ(R)

R
= �ψ

(
1

R

)
, R > 0. (11)

6
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Since dψ(R) is decreasing and continuous for 0 � R < ∞, the function 
ψ(R) is even a
strictly decreasing continuous function for all positive R mapping (0,∞) onto itself. By the
above reasoning the equation


ψ(R) = ψ(α) (12)

has a unique solution R = R(α) for each α ∈ (0, ᾱ].
The following upper bound was derived by using the function �ψ in [13, theorem 5.5].

For the convenience of the reader we recall the proof within the present context, here.

Proposition 2. If the regularization gα has qualification ψ with constant γ and if
x /∈ R(ψ(H)), then

‖rα(H)x‖ � (γ + γ1)dψ

(

−1

ψ (ψ(α))
)
, 0 < α � ᾱ.

Proof. Let R = R(α) be given by solving equation (12), and let v be the minimizer of the
distance function dψ(R). Then

‖rα(H)x‖ � ‖rα(H)(x − ψ(H)v)‖ + ‖rα(H)ψ(H)v‖
� γ1dψ(R) + γψ(α)R

� (γ1 + γ ) max{dψ(R), ψ(α)R},
which allows us to complete the proof. �

Our goal is to establish a converse to the bound from proposition 2, and we shall distinguish
a low-benchmark and a high-benchmark case, respectively. The main general result is the
following theorem 1. We establish essential cross connections between distance and profile
functions. This will be helpful for discussing the power-type case in the subsequent section.
Because the proof of this theorem is rather technical, we postpone it to the appendix section.

Theorem 1. Let ψ be an index function and x /∈ R(ψ(H)). Moreover let gα be a
regularization.

Low-benchmark: If the function t �→ ψ2(t)/t is non-increasing, or
High-benchmark: If the function t �→ ψ2(t)/t is non-decreasing, and the regularization
is obtained from a single function g with non-increasing r, |r(1)| > 0,

then

dψ

(
2 max{γ0, γ∗}
−1

ψ (ψ(α))
)

� C‖rα(H)x‖, 0 < α � ᾱ, (13)

with constant C = 1 in the low-benchmark case and C = γ1/|r(1)| in the high-benchmark
case.

If the regularization has qualification ψ , then

‖rα(H)x‖ � 2 max{γ, γ1}dψ

(

−1

ψ (ψ(α))
)
, 0 < α � ᾱ.

Remark 4. We mention that γ0 � 1 and hence 2 max{γ0, γ∗} � 2 for any regularization gα ,
and this follows from lim

α→0
t gα(t) = 1 for all 0 < t � ‖H‖ as required in definition 1, which

implies that γ0 � sup
0<t�‖H‖, 0<α�ᾱ

t |gα(t)| � 1.

In case that the distance function dψ does not decay too quickly we can take out the
leading constant 2 max{γ0, γ∗} on the left in (13). Precisely, a non-decreasing function, say
h : (0,∞) → (0,∞), is said to obey a �2-condition if there is a constant C2 � 1 such that
h(2t) � C2h(t), t > 0. This restricts the growth rate of the function h to be sub-exponential.

7
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Within the present context this specifies to the following. If the function 1/dψ obeys a �2-
condition, in particular, if dψ decays sub-exponentially, then there is a constant 0 < c � 1
such that

cdψ

(

−1

ψ (ψ(α))
)

� dψ

(
2 max{γ0, γ∗}
−1

ψ (ψ(α))
)
.

In this case the upper and lower bounds for the profile function in theorem 1 coincide up to
constants.

We highlight one specific instance of theorem 1, when we choose spectral cutoff
as regularization. In this case the profile function fx(α) has a clear interpretation, see
representation (10) in example 2.

Corollary 1. For an arbitrary index function ψ we have that

dψ

(
2
−1

ψ (ψ(α))
)

� Fx(α) � 2dψ

(

−1

ψ (ψ(α))
)
, 0 < α < ∞.

Proof. The proof of the lower bound is the same as for the high-benchmark case of
theorem 1 applied to the spectral cut-off schema, but instead of lemma 8 here one has to use
remark 7, see the appendix below. For the upper bound we apply theorem 1 again to spectral
cutoff and take into account that γ∗ = γ0 = 1. �

We close this section with general remarks on techniques for bounding distance
functions. The ‘standard’ way for establishing upper bounds is to use the family wα :=
χ(α,‖H‖](H)ψ(H)−1x ∈ X, 0 < α � ᾱ, since here ‖x − ψ(H)wα‖ = Fx(α). This family
adapts the choice used for proving lemma 1. Upper bounds are then obtained from this, since
dψ(‖wα‖) � Fx(α), such that upper bounds for ‖wα‖, typically of the order Fx(α)/ψ(α),
yield upper bounds for dψ by monotonicity.

It is harder to establish lower bounds. Two ways are worth mentioning. First, corollary 1
yields, with R := 
−1

ψ (ψ(α)) that

Fx(ψ
−1(
ψ(R))) � 2dψ(R), R � R0.

In the ‘moderate’ cases, if the smoothness given by the distribution Fx is far enough from
the benchmark ψ , this yields lower bounds for dψ , see e.g. the reasoning in example 3(c),
below. However, in extremal cases, if the actual smoothness is close to the benchmark, then a
case-dependent analysis may provide sharp lower bounds. Here we point at the corresponding
discussion in example 3(a).

4. Power-type behavior

Here we discuss consequences of corollary 1 for power-type functions of growth and decay
rates expressing the solution smoothness. In general such functions correspond to moderate
smoothness situations; other behavior is possible, see example 4. In the following result
we consider power-type benchmark smoothness ψν(t) := tν for some fixed ν > 0 with
the corresponding distance functions dν(R) := dψν

(R) and associated quotient functions

ν(R) := dν(R)

R
.

Since the results will be asymptotic in nature, we recall the following notion and notation.

Definition 2. Suppose that f, g : (0, a) → (0,∞) are real functions. Then we
denote f = O(g) as t → 0, if there are constants C < ∞ and 0 < t̄ � a such that
f (t) � Cg(t), 0 < t < t̄ . We denote f � g if f = O(g) and g = O(f ). Finally, we denote
f = o(g) if f (t)/g(t) → 0 as t → 0.

8
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The above behavior is concerned with functions defined in a right neighborhood of zero,
but similar notion and notation applies for positive functions f (R), g(R), R ∈ [M,∞), M >

0, when the limit case R → ∞ is under consideration.
The following result extends and reproves [24, theorem 2.2] by using distance functions.

Its proof, as given here, will use the results obtained so far.

Theorem 2. Let 0 < κ < ν. For x ∈ X satisfying the condition x /∈ R(Hν) the following
assertions are equivalent.

(1) The distribution function for x behaves like Fx(α) � ακ as α → 0.
(2) The distance function for x behaves like dν(R) � R− κ

ν−κ as R → ∞.
(3) For an arbitrary regularization gα , which has ϕ(t) = tν, t > 0, as qualification, the

profile function fx(α) := ‖rα(H)x‖ for x behaves like fx(α) � ακ as α → 0.

The assertions remain valid when replacing � by either big-o ‘O’ or little-o ‘o’.

We shall see in the examples 3 and 5, given in section 5, that the power-type behavior
actually occurs for compact and non-compact operators H.

To prove theorem 2 we start with the following preliminary result.

Lemma 2. Let 0 < κ < ν. We have that dν(R) = O(R−κ/(ν−κ)) as R → ∞ implies that
dν(


−1
ν (α)) = O(ακ) as α → 0. The assertion remains true if we replace big-O ‘O’ by

little-o ‘o’.

Proof. The assumption on dν implies that 
ν(R) = O(R−1/(ν−κ)); thus, there are 0 < C < ∞
and 0 < R0 < ∞ for which 
ν(R) � CR−1/(ν−κ) whenever R � R0. This yields that

−1

ν (CR−1/(ν−κ)) � R, by monotonicity. We assign α := CR−1/(ν−κ) and thus have that

−1

ν (α) � (α/C)κ−ν . Therefore, using the monotonicity of dν we see that

dν

(

−1

ν (α)
)

� dν((α/C)κ−ν) � C((α/C)κ−ν)−κ/(ν−κ) = O(ακ).

The assertion for little-o is along the same lines, but more tedious. �

Proof of theorem 2. We first proof the equivalence of items (I) and (II) in either
of the asymptotic regimes. By lemma 2 and corollary 1 the order of magnitude of
dν yields the corresponding order for Fx. For the converse we use the approximation
wα := χ(α,‖H‖](H)H−νx. By substituting the operator H in lemma 1 with Hν we see
that Fx(α) = O(ακ) yields an inequality of the form αν‖wα‖ = O(ακ). Therefore, there is
0 < C < ∞ such that

dν(Cακ−ν) � dν(‖wα‖) � ‖x − Hνwα‖ = Fx(α).

By letting α := (R/C)−1/(ν−κ) we obtain that

dν(R) � Fx((R/C)−1/(ν−κ)) = O(R−1/(ν−κ)) as R → ∞.

Again, for little-o the reasoning is similar.
Finally, suppose that Fx(α) � ακ . Plainly, by the first part of the proof this implies that

dν(R) = O(R−κ/(ν−κ)). If it were true that dν(R) = o(R−κ/(ν−κ)), then this would imply,
again by the beginning of the proof, that Fx(α) = o(ακ), contradicting the assumption. Similar
applies by assuming that dν(R) � R−κ/(ν−κ) , and this shows the equivalence of items (I) and
(II) in either of the asymptotic regimes.

Next, the asymptotics dν(R) = O(R− κ
ν−κ ) implies that fx(α) = O(ακ), by lemma 2 and

proposition 2. The same applies for little-o ‘o’.
Finally, if Fx(α) � ακ then, by the first part of the proof, and by proposition 2, this

implies that fx(α) = O(ακ). From proposition 1 we deduce that ακ = O(fx(α)) in this case.

9
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Since item (I) is a special case of item (III), the proof is complete. �

This shows that in power-type situations, the decay rates of the distance function as well as
of the profile function both relate to the ‘pointwise’ behavior of the spectrum of x with respect
to H, given by Fx. In contrast smoothness expressed by source conditions (4), i.e. requiring
that x is in the range of some index function of the operator H, considers the spectrum of H in
an ‘integral’ form only. We dwell on this, and highlight some relations to the study [4].

Lemma 3. Let ψ be an arbitrary index function. If x ∈ R(ψ(H)) then Fx(α) = o(ψ(α)) as
α → 0.

Proof. First, by the injectivity of the operator H we have F 2
x (α) → 0 as α → 0.

Next, by assumption the function 1/ψ2 ∈ L1((0,∞), dF 2
x ), and hence the measure

dGx(t) := 1/ψ2(t) dF 2
x (t) is absolutely continuous with respect to dF 2

x . Thus, for each
ε > 0 there is δ > 0 such that

∫
A dF 2

x (t) � δ implies that
∫
A dGx(t) � ε for all Borel sets

A ⊂ (0,∞). In particular, if αδ is small enough such that F 2
x (αδ) � δ, then

ε �
∫ αδ

0

1

ψ2(t)
dF 2

x (t) � 1

ψ2(αδ)
F 2

x (αδ),

from which the proof can be completed. �

In the light of theorem 2 this yields the following strengthening and generalization of [4,
theorems 3.1 and 3.2].

Corollary 2. Let 0 < η < ν, and suppose that x ∈ R(Hη) but x 
∈ R(Hν). Then

dν(R) = o(R−η/(ν−η)) as R → ∞, (14)

and

fx(α) = o(αη) as α → 0, (15)

for an arbitrary regularization gα , which has ϕ(t) = tν, t > 0, as qualification.

Proof. By lemma 3 we deduce from the assumption that Fx(α) = o(αη). Now, theorem 2,
in the little-o ‘o’ cases, yields both (14) and (15). �

This explains that optimal decay rates for the regularization error based on general
smoothness in terms of index functions ψ in (4) cannot be obtained, as this was already
mentioned after lemma 1. This can also be seen from [22]. In addition, we refer to the
discussion on lower bounds in [13], and also the study [21, section 4].

We finally mention that sharp bounds for the profile function fx yield sharp bounds for
the overall error, and this was emphasized in [25, theorem 2.6]. In particular, for Tikhonov
regularization as in remark 1, given noisy measurements yδ = Ax + δξ, ‖ξ‖ � 1, we assign
the family of approximate solutions xδ

α := Rαyδ = (A∗A + αI)−1A∗yδ, α > 0. Then, in any
of the cases (I)–(III) in theorem 2 the order of reconstruction of x from noisy measurements
obeys

sup
ξ

{
inf
α>0

‖xδ
α − x‖, ‖Ax − yδ‖ � δ

} � δ
κ

κ+1/2 , δ → 0.

Thus, there are always noise instances ξ such that one cannot beat the rate δκ/(κ+1/2) by any
means of choice of the regularization parameter α. It is also pointed out in corollary 2.8
ibid. that any reconstruction rate δμ/(μ+1/2) necessarily yields that x ∈ R((A∗A)�) for all
0 < � < μ. We will not dwell into this, but refer to [25] for further details.

10
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5. Examples

We turn to discussing examples in connection with the theoretical results. The following
lemma will be useful.

Lemma 4. Let ψ be any index function and x ∈ X any element. For λ > 0 let
uλ := (λ + ψ2(H))−1ψ(H)x. Then

dψ(‖uλ‖) = λ‖(λ + ψ2(H))−1x‖, λ > 0.

Proof. Set R := ‖uλ‖. The element uλ obeys the equation

ψ(H)(ψ(H)uλ − x) = −λuλ,

and it is thus a minimizer of ‖ψ(H)w−x‖2 with a constraint of the form ‖w‖ � R. Therefore,

dψ(‖uλ‖) = ‖ψ(H)uλ − x‖ = λ‖(λ + ψ2(H))−1x‖,
which proves the assertion. �

The first example is based on a non-compact multiplication operator, in particular it points
at the limitations of the bounds from theorem 1 when the distance functions do not obey some
�2-condition.

Example 3. The authors in [10, 12] have discussed injective multiplication operators in
L2(0, 1) with non-closed range, and [12, example 4.6], or [10, section 3, example 2], will
guide us, here. Precisely, we focus on the non-compact operator

[Hx](s) := m(s)x(s), 0 < s < 1, (16)

with the multiplier function m ∈ L∞(0, 1) possessing an essential zero. Below, we shall
restrict to cases where m is strictly increasing and continuous for 0 < s < 1 with limit
conditions limt→0 m(t) = 0 and limt→1 m(t) = 1. It is evident for such multiplication
operators that

F 2
x (t) =

∫
{s∈(0,1): 0<m(s)�t}

x2(s) ds =
∫ m−1(t)

0
x2(s) ds, 0 < t � 1. (17)

This distribution function is continuous with Fx(1) = ‖x‖ and can be extended continuously
as Fx(t) = ‖x‖ for all 1 < t < ∞. So we can easily derive the following representation for
an arbitrary function h ∈ L2((0,∞), dF 2

x ), namely that

‖h(H)x‖2 =
∫ ∞

0
h2(t) dF 2

x (t) =
∫ 1

0
h2(m(s))x2(s) ds. (18)

We now restrict to the case that x ≡ 1 is a constant function; hence, F 2
x (t) = m−1(t), 0 <

t � 1. We note that 1 ∈ R(H) if and only if 1/m ∈ L2(0, 1), and hence we shall confine
ourselves to distance functions d1(R), R > 0, with respect to the benchmark ψ(t) = t, t > 0.

We will derive results for the quantities under consideration for different multipliers m for
which 1 
∈ R(H). In our considerations we shall need the family wα := χ(α,1](H)H−11, for
which 1 − Hwα = χ(0,α](H)1, thus ‖1 − Hwα‖ = Fx(α). Also, representation (18) yields
that

‖wα‖2 =
∫ 1

m−1(α)

1

m2(s)
ds. (19)

The following cases for multipliers are of interest.

11
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• m(s) = √
s : this is the limiting case for 1 
∈ R(H). Here we have Fx(α) = α, 0 < α � 1

and hence Fx(α) � α, i.e. item (I) in theorem 2 is satisfied with κ = 1, but we cannot
apply this theorem with ν = 1 and benchmark ψ(t) = t, t > 0, since the required
strict inequality κ < ν fails. This is reflected in the following behavior of the distance
function, and we shall use lemma 4 with function ψ(t) = t, t > 0, which gives
d1(g(λ)) = h(λ), λ > 0 with

g(λ) := ‖uλ‖ =
√∫ 1

0

t

(λ + t)2
dt =

√
ln

λ + 1

λ
− 1

λ + 1
,

and h(λ) := λ‖(λ + H 2)−1x‖ =
√∫ 1

0

λ2

(λ + t)2
dt =

√
λ

λ + 1
.

The re-parametrization u := λ
λ+1 ∈ (0, 1) yields d1(g̃(u)) = √

u, for the decreasing
function g̃(u) := √

u − ln u − 1, u ∈ (0, 1). First, for u ∈ (0, 1) we have
− ln u > − ln u + u − 1, and we obtain that

d1(
√− ln u) � d1(

√− ln u + u − 1) = √
u, 0 < u < 1.

For u := e−R2
this results in the upper bound d1(R) � e−R2/2 for R > 0.

For the lower bound, given R > 0 we find uR with R := g̃(uR), and hence
d1(R) = d1(g̃(uR)) = √

uR . From g̃(e−(R2+1)) > R we conclude that uR > e−(R2+1),
hence d1(R) > e−(R2+1)/2 = e−1/2e−R2/2, R > 0. Thus, d1(R) � e−R2/2 as R → ∞,
expressing a very high decay rate of the distance function.
This yields, for some unspecified constants 0 < c � c < ∞, and for c :=
(2 max{γ0, γ∗})2 � 4, see remark 4, that

cαc � ‖rα(H)1‖ � c

√
α2 log

(
1

α2

)
, 0 < α � ᾱ. (20)

Indeed, for the upper estimate we observe 
1(R) � e−R2/2 for R � 1. Thus,


−1
1 (α) �

√
ln 1

α2 for α small enough, and the upper bound in theorem 1 gives

‖rα(H)1‖ � cd1
(

−1

1 (α)
) = cα
−1

1 (α) � c

√
α2 ln

1

α2
.

By similar arguments we obtain the lower bound:

‖rα(H)1‖ � c̃d1
(√

c
−1
1 (α)

)
� c̃d1

(√
c ln

1

α2

)
� c̃ exp

(
−1

2

(
c ln

1

α2
+ 1

))

= c̃ exp(− 1
2 )αc.

We observe from (20) that theorem 1 does not give precise bounds for the profile function.
For Tikhonov regularization we can derive the behavior of the profile function, and it

behaves like fx(α) �
√

α2 log( 1
α2 ) as α → 0. Indeed, in view of the upper bound in (20),

we only need a lower bound, and this can be derived as

f 2
x (α) = ‖rα(H)1‖2 =

∫ 1

0

α2

(
√

s + α)2
ds � cα2 log(1/α),

for α small enough and some constant c > 0, such that the upper bound in (20) has the
right order of magnitude. Note also the different rates of increase for the distribution
function (Fx(α) � α) and the profile function.

12
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Table 1. This table summarizes the asymptotic behavior of the quantities of interest in cases
(a)–(c). Note that the upper and lower bound for fx(α) in the case m(s) = √

s differ.

m(s) Fx(α) fx(α) d1(R)

√
s α αc,

√
α2 log( 1

α2 ) e−R2/2

s
√

α
√

α 1/R

e1−1/
√

s 1/ log(1/α) 1/ log(1/α) 1/ log(R)

• m(s) = s: this is an intermediate case, and we shall see that the main results are sharp,
here. In this case Fx(α) = √

α, 0 < α � 1, and by applying theorem 2 with ν = 1 and
κ = 1/2 we immediately find both, the corresponding rates for the distance function d1

as

c
1

R
� d1(R) � c

1

R
, 0 < R0 � R < ∞,

as well as for the profile functions fx as

c̃
√

α � ‖rα(H)1‖ � ĉ
√

α, 0 < α � ᾱ.

• m(s) = e1−1/
√

s : this is an example of the other limiting case, where theorem 2 also
cannot be applied. Such multiplier function m results in a logarithmic increase for the
distribution function, since m−1(α) = 1/(1+log(1/α))2, and hence Fx(α) � 1/ log(1/α)

as α → 0. To bound the distance function from above we use (19) to see that ‖wα‖ � 1/α.
Thus, d1(R) � 1/ log(R), R > 0. The right-hand side in corollary 1 yields a lower
bound for the distance function. Indeed, this gives c

log(R/d1(R))
� d1(R), and thus, since

log(ξ) � cξ/2, ξ � 2/c,

c

2

1

d1(R)
� c

1

d1(R)
− log

(
1

d1(R)

)
� log(R), R � R0,

such that d1(R) � 1/ log(R), which expresses a very low decay rate of the distance
function as R → ∞. On the other hand, the function 1/d1 obeys a �2-condition in
this case, and the bounds from theorem 1, and corollary 1, provide the right order of
magnitude, such that also in this case we have the exact asymptotics for all quantities of
interest.

We summarize the derived asymptotic results in table 1.

Example 4. We use once more the multiplication operator (16), now with m(s) = √
s, but

we consider the function

x(s) :=
√

s−1/2 log(1/s), 0 < s < 1.

By using (17), and partial integration, we see that

F 2
x (t) =

∫ t2

0
s−1/2 log(1/s) ds = 2t log(1/t2) + 2

∫ t2

0
s−1/2ds � t log(1/t),

as t → 0. If we now fix the benchmark ψ(t) = t , then we see that d1(R) � R−1 log(R). This
is a non-polynomial, but still moderate, behavior. Let us consider the quantity

ηsup := sup{η > 0 : d1(R) = O(R−η/(1−η))} ∈ (0, 1], (21)

and we see that for x from above it holds ηsup = 1/2, but the supremum is not attained here.
On the other hand, it still holds that x ∈ R(Hμ) for all μ < 1/2. Revisiting [4, corollary

13
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3.3] we must note that the one-to-one correspondence of exponents in distance function and
Hölder-type source conditions mentioned there in corollary 3.3, ibid., has to be rendered more
precisely as ηsup = sup{μ > 0 : x ∈ R(Hμ)}.

Example 5. The authors in [16] studied the compact integration operator A in L2[0, 1], given
as

[Ax](t) :=
∫ t

0
x(τ) dτ, 0 � t � 1.

These authors computed the asymptotics of the distance function for the constant function
x ≡ 1 with benchmark A∗. Since R(A∗) = R(H 1/2) this corresponds to ψ1/2(t) = √

t , and
it was proved there that d1/2(R) � 1/R as R → ∞. Within the present context this can be
seen by evaluating the asymptotics of Fx, since we know the singular system {σi, ui, vi}∞i=1
of the integration operator A with singular values σi = 1

π(i−1/2)
� i−1 and singular functions

ui(t) = √
2 cos((i − 1/2)πt), 0 � t � 1, i = 1, 2, . . . . Then 〈1, ui〉 � i−1 and consequently

∞∑
i=k

〈1, ui〉2 �
∞∑
i=k

1

i2
� 1

k
� σk as k → ∞.

We know from [25, remark 2.2] that for all μ > 0 the asymptotics
∑∞

i=k〈x, ui〉2 � σ
4μ

k is
equivalent to Fx(α) � αμ. Here we apply this for μ = 1/4 and x ≡ 1. Then we have
Fx(α) � α1/4, and we can use theorem 2 with κ = 1/4 and ν = 1/2 to see that fx(α) � α1/4,
and also that d1/2(R) � 1/R, which concisely reproves the result from [16].
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Appendix. Proof of theorem 1

We first provide the necessary ingredients to prove theorem 1. In our followup analysis we
will approximate the unknown minimizing element v in the definition of dψ(R) within some
suitable family vα and wα , respectively, and we introduce these, here. We (formally) assign

vα := gα(ψ2(H))ψ(H)x, (A.1)

and

wα := gα(H)Hψ(H)−1x, 0 < α � ᾱ, (A.2)

where in case of wα we have to assume that the operator gα(H)Hψ(H)−1 is a bounded one.
For spectral cutoff the element wα is finite without any constraint on the function ψ , since
there wα = ∫ ∞

α
ψ(t)−1 dEtx for α > 0. Otherwise, for general regularization we provide the

following sufficient conditions.

Lemma 5. If the function t �→ ψ2(t)/t is non-increasing, then

‖gα(H)Hψ(H)−1‖ � max {γ0, γ∗}
ψ(α)

, 0 < α � ᾱ.

Thus, the element wα is well defined in this case.

14
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Proof. It is enough to show that t |gα(t)| /ψ(t) � max {γ0, γ∗} /ψ(α). If t > α then the
monotonicity of ψ allows us to conclude that

t |gα(t)| /ψ(t) � γ0/ψ(α).

Otherwise, if t � α then

t |gα(t)| /ψ(t) = √
t |gα(t)|

√
t

ψ(t)
� γ∗√

α

√
α

ψ(α)
,

and the proof is complete. �

Remark 5. A look at example 3, see (19), reveals that we used exactly the construction wα

corresponding to (A.2) and for spectral cutoff.

Remark 6. Note that for ψ(t) = √
t, t > 0, both elements vα and wα coincide. The proofs

given below will distinguish between the two cases that ψ tends to zero slower than t �→ √
t

(low-benchmark case) and faster than t �→ √
t (high-benchmark case).

The following is obvious:

‖x − ψ(H)vα‖ = ‖rα(ψ2(H))x‖ (A.3)

and

‖x − ψ(H)wα‖ = ‖rα(H)x‖. (A.4)

A.1. Low-benchmark case

Here we assume that the function ψ2(t)/t is non-increasing , and hence the element wα from
(A.2) is well-defined.

Lemma 6. If the function ψ2(t)/t is non-increasing then

dψ

(
2 max{γ0, γ∗}
−1

ψ (ψ(α))
)

� ‖rα(H)x‖, 0 < α � ᾱ. (A.5)

Proof. Given α, we let R from ψ(α) = 
ψ(R), and denote by v the minimizing element for
dψ(R). By using the element wα from (A.2) we have by (A.4) that

dψ(‖wα‖) � ‖rα(H)x‖,

such that it is enough to bound ‖wα‖, appropriately:

‖wα‖ � ‖gα(H)Hψ−1(H)(x − ψ(H)v)‖ + ‖gα(H)Hψ−1(H)ψ(H)v‖
� max{γ0, γ∗}dψ(R)

ψ(α)
+ γ0R

� 2 max{γ0, γ∗}R max

{

ψ(R)

ψ(α)
, 1

}
= 2 max {γ0, γ∗} R.

From this the proof can easily be completed. �
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A.2. High-benchmark case

We turn to the the high-benchmark case, where ψ tends to zero faster than t �→ √
t , and we

start with the following observation.

Lemma 7. Let gα be any regularization. Then

dψ((γ0 + γ∗)
−1
ψ (

√
α)) � ‖rα(ψ2(H))x‖, 0 < α � ᾱ. (A.6)

If, in addition the function t �→ √
t is a qualification of the regularization then

‖rα(ψ2(H))x‖ � (γ + γ∗)dψ

((

−1

ψ (
√

α)
))

, 0 < α � ᾱ. (A.7)

Proof. We consider the family vα from (A.1). In a first step we bound the norm of vα . To
this end let R be obtained from

√
α = 
ψ(R), and denote v the element realizing the distance

function dψ(R). Then we have that

‖vα‖ � ‖gα(ψ2(H))ψ(H)(x − ψ(H)v)‖ + ‖gα(ψ2(H))ψ2(H)v‖
� γ∗√

α
dψ(R) + γ0R = (γ∗ + γ0)R = (γ∗ + γ0)


−1
ψ (

√
α),

by the choice of R.
Since the distance function is decreasing we obtain that

dψ

(
(γ0 + γ∗)
−1

ψ (
√

α)
)

� dψ(‖vα‖) � ‖x − ψ(H)vα‖ = ‖rα(ψ2(H))x‖,

which yields (A.6).
Now, suppose that gα has qualification as stated. Then we can argue, with element v as

before, that

‖rα(ψ2(H))x‖ � ‖rα(ψ2(H))(x − ψ(H)v)‖ + ‖rα(ψ2(H))ψ(H)v‖ � γ1dψ(R) + γ
√

αR

= (γ1 + γ )dψ(R)

= (γ1 + γ )dψ

((

−1

ψ (
√

α)
))

.

The proof is complete. �

In order to establish the required bound from theorem 1 we need to bound ‖rα(ψ2(H))x‖
from above. To this end we provide some estimate for regularization from a single function.

Lemma 8. Suppose that ψ is an index function such that ψ2(t)/t is non-decreasing. If
the function g gives rise for a linear regularization and if the accompanying function r has a
non-increasing absolute value, and if |r(1)| > 0, then∣∣∣∣r

(
ψ2(t)

ψ2(α)

)∣∣∣∣ � γ1

|r(1)| r
(

t

α

)
, t, α > 0. (A.8)

Consequently, ∣∣rψ2(α)(ψ
2(t))

∣∣ � γ1

|r(1)| |rα(t)| .

Proof. We consider two cases. If t � α then 0 < ψ2(t)/ψ2(α) � 1, and hence∣∣∣∣r
(

ψ2(t)

ψ2(α)

)∣∣∣∣ � |r(0)| = γ1 � γ1

|r(1)| |r(1)| � γ1

|r(1)|
∣∣∣∣r

(
t

α

)∣∣∣∣ .
16
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Otherwise, if t > α then ψ2(t)

t
>

ψ2(α)

α
, and hence ψ2(t)

ψ2(α)
> t

α
, such that the monotonicity of

x �→ |r(x)| yields∣∣∣∣r
(

ψ2(t)

ψ2(α)

)∣∣∣∣ �
∣∣∣∣r

(
t

α

)∣∣∣∣ ,
and the proof is complete, since 1 � γ1/ |r(1)|. �

For Tikhonov regularization this is fulfilled with γ1/ |r(1)| = 2.

Remark 7. Note that in case of spectral cutoff we have the equality
∣∣rψ2(α)(ψ

2(t))
∣∣ = |rα(t)|

for arbitrary index function ψ .

The bound for the high-benchmark case is now given in

Lemma 9. Let gα be a regularization which is obtained from a single function g with the
non-increasing function r, |r(1)| > 0. Then

dψ((γ0 + γ∗)
−1
ψ (ψ(α))) � γ1

|r(1)| ‖rα(H)x‖, α > 0.

Proof. We shall apply lemma 7 with α := ψ2(α) and obtain that

dψ((γ0 + γ∗)
−1
ψ (

√
α)) � ‖rψ2(α)(ψ

2(H))x‖, α > 0,

such that an application of lemma 8 allows us to complete the proof. �

Proof of theorem 1.
Lemmas 6 and 9 yield the first assertion in theorem 1. The upper bound was established

in proposition 2, by noting that γ1 + γ � 2 max {γ1, γ }. �
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Mathematical Textbooks) (Stuttgart: Teubner)
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