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Abstract

Numerical solution of ill-posed operator equations requires regu-
larization techniques. The convergence of regularized solutions to the
exact solution usally can be guaranteed, but to obtain also estimates
for the speed of convergence one has to exploit some kind of smooth-
ness of the exact solution. We consider four such smoothness concepts
in a Hilbert space setting: source conditions, approximate source con-
ditions, variational inequalities, and approximate variational inequali-
ties. Besides some new auxiliary results on variational inequalities the
equivalence of the last three concepts is shown. In addition, it turns
out that the classical concept of source conditions and the modern
concept of variational inequalities are connected via Fenchel duality.

1 Introduction

The most challenging aspect in the analysis of regularization methods for
solving ill-posed operator equations is the derivation of convergence rates.
Such convergence rates describe the speed with which the regularized so-
lutions approximate the exact solution of an equation if the noise level of
the data goes to zero. In general this convergence can be arbitrarily slow
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for ill-posed problems (see [6, Section 3.2]). The classical concept of source
conditions as sufficient conditions for convergence rates has several disad-
vantages. The major drawback in recent years was their strong connection
to Hilbert spaces; apart from very few special cases, source conditions are
based on spectral theory. Another problem has been pointed out in [17,21]:
convergence rates obtained from source conditions cannot be optimal.

Therefore different new concepts have been developed in recent years.
The first of interest to us was the idea of approrimate source conditions
introduced in [14]. Later so called variational inequalities were introduced
to obtain convergence rates for nonlinear and nonsmooth operators in Ba-
nach spaces (see [15,26]). Variants of such inequalities are also used in [3].
Extensions to Tikhonov regularization with general fitting functionals are
given in [7,8,10,25]. An extension of variational inequalities are approzimate
variational inequalities introduced in [8].

This article tries to bring more structure into the growing set of smooth-
ness assumptions. Especially the role and interpretation of variational in-
equalities has to be clarified.

We restrict the study to the classical Hilbert space setting for linear ill-
posed problems: Let X and Y be Hilbert spaces and let A : X — Y be an
injective bounded linear operator with non-closed range R(A) # R(A). The
injectivity allows for a more clear exposition and the non-closed range is an
equivalent formulation of the assumption that the inverse of A is unbounded.
We aim to solve the ill-posed equation

Az =y°, zeX, (1.1)
for y° € R(A) approximately by minimizing the Tikhonov functional
T3(x) = || Az — °||* + of|=||? (1.2)

over x € X. Here, a > 0 is the regularization parameter controlling the
trade-off between stability and quality of approximation, and y° € Y is
some noisy version of the exact right-hand side y°. The noise level § > 0
bounds the noise, that is, we assume ||y® — y|| < 6. We could also consider
general linear regularization methods in Hilbert spaces (see [6, Chapter 4]),
but this would not give additional insights and would make the exposition
more complex.

We denote the exact solution of (1.1) by ' € X, that is, Azt = 3. The
unique minimizer of T will be denoted by 2% € X and we set x4 := x0.
Note that we drop the dependence of :Bg on the concrete choice of y because



we are only interested in the influence of the noise level § (and not of y°
itself) on the regularized solutions.

The question to be answered is how fast ||z2 — 2f| decays to zero if
the noise level § goes to zero and the regularization parameter « is suitably
chosen depending on §. The well-known estimate

Jof, =l < of =zl + 7o =o'l € o=+ o —alll (13
shows that the speed of convergence can be estimated by the decay of
|lza — || if o goes to zero. A similar estimate holds for general linear
regularization methods as described in [22]. Upper bounds for ||z, — zf||
which go to zero if « goes to zero are called profile functions in [16].

We will use the following type of functions several times.

Definition 1.1. A function f : [0,00) — [0,00) is called index function if
it is continuous and strictly monotonically increasing and if f(0) = 0.

In addition we need the notion of conjugate functions: Given a convex
function f : R — (—o00, 00| the conjugate function f* : R — (—o0,00] of f is
defined by f*(s) := sup;er(st — f(t)) (see [1, Section 2.3]). Most functions
occuring in this article will be defined only for nonnegative arguments. If
we calculate the conjugate of such a function then we implicitly assume that
it is infinite for negative arguments.

The structure of the remaining part of this article is as follows: The
four smoothness concepts under consideration are presented in Section 2
and some results from literatur describing their interplay are collected in
Section 3. The main sections of this article are Section 4 and Section 5. In
Section 4 we prove new connections among the three more modern smooth-
ness assumptions and in Section 5 we give an alternative proof for one re-
sult from Section 4. The main results are formulated in Theorem 4.1 and
Theorem 4.5. Finally, in Section 6 we draw some conclusions and make
suggestions for further investigations.

2 Four smoothness concepts

In this section we present four concepts expressing the smoothness of the
exact solution z' of (1.1) and yielding convergence rates for the regularized
solutions z,. These approaches are termed

e source condition,



e approximate source condition,
e variational inequality,
e approximate variational inequality.

For each approach we state the corresponding convergence rate result in a
separate subsection. In part these convergence rates look quite complex.
Therefore in the fifth and last subsection we summarize them for the impor-
tant special case of power-type rates.

2.1 Source conditions

Source conditions represent the classical concept for expressing solution
smoothness in Hilbert spaces.

Definition 2.1. The exact solution z! satisfies a (general) source condition
with respect to an index function 4 if

!l =9(A*A)w for some w € X. (2.1)
The proof of the following convergence rates theorem can be found in [22].

Theorem 2.2. Let z! satisfy a source condition with respect to a concave
index function 9. Then

lza —afl| = O(W(a)) ifa—o0.

The concavity assumption on i implies that 1 is a qualification for the
Tikhonov method in the sense of [22]. The same convergence rate holds for
general linear regularization methods if ¥ is a qualification of the method.

In [21] it was shown that for each € X there is an index function ¥
and a source element w € X such that a source condition z = Y(A*A)w is
satisfied. Since w can be written as w = 9(A* A)w for some index function
U and some w € X, too, we have x = (¥ o 0)(A*A)w and ¥ o U decays
faster to zero than ¥. Thus, convergence rates derived from (general) source
conditions always can be improved somewhat, that is, they are not optimal.

2.2 Approximate source conditions

An extension of source conditions is the concept of approximate source con-
ditions. The idea is to measure the violation of a prescribed benchmark
source condition by considering the distance of the exact solution z' to cer-
tain subsets of the space X.



Definition 2.3. For a given index function v, the benchmark function, we
define the distance function dy : [0,00) — [0,00) of the exact solution z' by

dy(R) := inf {|(A* ADw — =] : w € X, ||Jw| < R}. (2.2)

The term distance function is used because dy(R) is the distance of xt
to the image 1)(A*A)Bgr(0) of the closed ball Bg(0) C X with radius R
centered at zero.

One can show that the distance function d, is monotonically decreas-
ing and tends to zero if R — oco. If 2T ¢ R(¢(A*A)) then dy is positive
and strictly monotonically decreasing. These results and further details on
approximate source conditions can be found in [14], the paper where the
concept has been introduced, and [16].

The proof of the following theorem is given in [16].

Theorem 2.4. Let v be a concave index function such that x7 ¢ R(1(A*A))
and let dy, be the distance function (2.2) for x7. Then

lza — 2'|l = O(¥ ()@~ (¥(a))) if a— 0,

. dy(R)
where ®(R) 1= ~5—=.

Note that also majorants of the distance function d,, yield convergence
rates if dy is replaced by such a majorant. Again the convergence rates
result can be extended to general linear regularization methods if instead of
concavity of 1) we assume that ) is a qualification of the chosen method.

2.3 Variational inequalities

The concepts of source conditions and of approximate source conditions
were originally developed for linear ill-posed problems in Hilbert spaces be-
cause they rely on spectral theory for selfadjoint operators. Only for the
two source conditions T € R((A*A)'/?) = R(A*) and z! € R(A*A) and
for approximate source conditions with benchmark function () = /2 or
Y(t) = t generalizations to nonlinear problems in Banach spaces are known
(see [4,13,24]). But to obtain convergence rates for nonlinear problems
source conditions have to be combined with assumptions on the structure
of nonlinearity and on properties of the involved spaces.

A new smoothness concept combining all assumptions needed to obtain
convergence rates for nonlinear and even for nonsmooth problems in Banach
spaces has been introduced in [15] in form of variational inequalities. Exten-
sions can be found in [7,8,13,25]. Such variational inequalities also can be



formulated for general stabilizing functionals and non-metric fitting terms
in Tikhonov regularization as well as for arbitrary measures expressing the
distance between exact and regularized solutions. Besides their wide field
of applicability, the main advantage is that no additional assumptions, e.g.
assumptions on the structure of nonlinearity, have to be posed to obtain
convergence rates.

A drawback is that by now variational inequalities provide convergence
rates primarily for Tikhonov regularization (exception can be found [11,12,
20]). But as we will see below, at least for linear problems in Hilbert spaces
they can be used to obtain rates for any linear regularization method.

To understand the content of information in a variational inequality we
consider them here in the standard Hilbert space setting for Tikhonov regu-
larization. Thanks to spectral theory we can extend the concept somewhat,
which will bring more insight into the nature of variational inequalities.

Definition 2.5. The exact solution z' satisfies a variational inequality with
constant 8 > 0, modifier function ¢, and benchmark function 1 if

Bllz — 2t* < Jlz)|* — llz"]1* + (v (A" A) (= — «h)]) (2.3)

holds for all x € X. The functions ¢ and v are assumed to be index
functions.

Remark 2.6. The original variational inequality introduced for Tikhonov
regularization
IF () = y°|I” + af2(z) — min
€T

in [15] reads
—(¢, 2 —a¥) < BiBe(w, ") + Bo||F () — F(a')]

and has to hold for all  in a certain subset of X, where X and Y are
Banach spaces. The functional B¢ is the Bregman distance with respect to
a subgradient ¢ of the Tikhonov stabilizing functional Q at z and F is a
nonlinear operator. Equivalently one can write

(1= B1)Be(x,2) < Qx) — Qah) + Baf|[F(2) — Fah)],
which becomes
(1= Bz — =] < |l=)* = [l27]]* + Bal| A(z — =)

for Q = |+||*> and a linear operator A = F in Hilbert spaces, that is, we
obtain (2.3) with modifier function ¢(t) = f[ot and benchmark function



Y(t) = t'/2. The additional modifier function ¢ has been introduced in
[2,13]. General benchmark functions v are an extension available in Hilbert
spaces.

Before we come to the convergence rates result we give some additional
information on variational inequalities in Hilbert spaces. At first we prove
some restrictions on the constant 8 and the modifier function ¢.

Proposition 2.7. If 2 # 0 satisfies a variational inequality with constant
B, modifier function ¢, and benchmark function i, then the following asser-
tions are true:

(i) B<1,
(ii) B =1 implies p(t) > ct for some ¢ >0 and all t > 0.

(iii) t = O(p(t)) ift— 0,

Proof. The variational inequality (2.3) for x := zf — ¢Z with ¢ > 0 and
|Z|| = 1 reads

Bt? < =2tz 2) + % + (Y (A% A)F||t),

which by multiplication with 1/¢, substitution of ¢ for || (A*A)Z||¢t, and
minor rearrangements is equivalent to
2(2,2)  _ o(t)

g—1
—t+ — < . (2.4)
[W(A*A)Z|]>  [lp(A*A)z]| = ¢
Assume that § > 1. Since the range of ¥(A*A) is not closed we find a
sequence (Zp)nen in X with ||Z,] = 1 and ¢(A*A)Z, — 0. In addition we
can choose this sequence in such a way that (xf,7,) > 0. For each fixed ¢
from (2.4) we now get

p) o p-1
27 (A A) a2
and the right-hand side goes to infinity if n — co. Thus, ¢ has to be infinite
at each ¢ > 0, which is a contradiction. Therefore g < 1.
Assuming [ = 1, inequality (2.4) reads

2(x', T) o(t)
(A A =t

and therefore gives

o 2(xt, %) . S
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and £ () > cforall t > 0.
For general 3 < 1 inequality (2.4) with fixed Z such that (z',%) > 0

provides £ Q > ¢ for some ¢ > 0 and all sufficiently small ¢ > 0. O

Example 2.8. If the modifier function ¢ in Proposition 2.7 is of power-
type, that is ¢(t) := at” with a > 0 and £ > 0, then ¢t = O(¢(t)) (if t — 0)
implies k < 1. This bound for x is already known from [19]. In the case
B =1 a variational inequality with a power-type modifier function can only
hold if k =1 and a > ¢, where ¢ is from (ii) in Proposition 2.7.

The next two propositions show that, at least for modifier functions ¢
of power-type, the constant § in a variational inequality can be changed
without corrupting the inequality. Only the modifier function ¢ has to be
adjusted slightly if it is not linear.

Proposition 2.9. An element =¥ € X satisfies a variational inequality with
constant § < 1, benchmark function 1, and modifier function ¢(t) = at,
a > 0, if and only if

_ a .
[(2f, 8] < S lw (A" A3
for all z € X with ||Z|| = 1.

Note that this equivalent formulation is independent of (.

Proof. As at the beginning of the proof of Proposition 2.7 we see that the
variational inequality is equivalent to

g1 2(at, )
—1 4+ — —a <0
[p(A*A)z[]>" [l (A*A)z]|
for all Z with ||Z|| = 1 and all ¢ > 0. For t — 0 we get m —a <0 and
if % — a < 0 then the above inequality is obviously satisfied. O

Proposition 2.10. An element =¥ € X satisfies a variational inequality
with constant B < 1, benchmark function 1, and modifier function ¢(t) =
at®, where a > 0 and k € (0,1), if and only if

(!, &)] < 255 (1=0) 7 07w [ (A" A 75 (2.5)

for all ¥ € X with ||Z|| = 1.



Proof. As at the beginning of the proof of Proposition 2.7 we see that the
variational inequality is equivalent to

51 2(at, )

— 41— (1-k)
10 = pane T waaa @ <0

for all Z with ||Z]| = 1 and all ¢ > 0. Since f is twice continuously differ-
entiable and strictly concave, seeking for zeros of the derivative we find the
global maximum at

1
o (= (A )F|?\ 7
1-p
with
2(xt, &) 1-3 =k 1
ft* :*~—2—H< " = az2—x,
M e NGRS TV DB
Simple rearrangements show that f(t*) < 0 is equivalent to the asserted
inequality. O

Corollary 2.11. A wvariational inequality with constant (1 < 1, bench-
mark function v, and modifier function o(t) = at®, where a > 0 and
k € (0,1), holds if and only if a variational inequality with constant Ba < 1,
benchmark function 1, and modifier function (t) = bt" is satisfied, where

_ (LB~
b= (1_ ﬁ;) a.
Proof. The equivalent formulation (2.5) is the same for both variational
inequalities. ]

Since a variational inequality with § = 1 always implies a variational
inequality with arbitrary § < 1 we will focus on the case 8§ < 1 in the
sequel.

The following convergence rates theorem is a special case of the main
theorems in [10] and [7], from which one can deduce the proof. As one sees
in [7], the assumptions on ¢ can be weakend slightly; but the price would
be a more complex formulation of the theorem.

Theorem 2.12. Let the exact solution x' satisfy a variational inequality
with a modifier function ¢ such that @ = @(\/*) is concave and with the
benchmark function ¥(t) = t'/2. Then

loa —atl = O(y/2( ) (@) iFa—o,

where (p~1)* denotes the conjugate function of ¢~' (see end of Section 1).



Proof. Using the variational inequality (2.3) with z = z, and exploiting
that x, is a minimizer of the Tikhonov functional with exact data y° we
obtain

Bllza — at* < llzall® = 27* + (| A(za = 2N])

= L(|A(za — 2N[]” + allzal? — all2"]?)
+ @(||A(za — 2N)) = Ll A(zo — 21|

< (| A(za — 2N)) — L[| Alza — 2|7

< stl>110>(<p(t) — i) = iglg(@(t) —&t)

= stl>110>(t 297 M) = 5@ (a).

O

Since the O-expression in Theorem 2.12 looks somewhat abstract we
should mention that there exists an a priori parameter choice § — «(J) such
that

) .
||$a(5) — a:T|| = (’)( @(5)) ifd =0

under the assumptions of Theorem 2.12 (see [2,7,10] for details).

This theorem will be extended in Remark 4.6 to cover general benchmark
functions ¢ and general linear regularization methods. In the recent liter-
ature variational inequalities were only used in connection with Tikhonov
regularization because the technique of the proof heavily relies on the struc-
ture of the Tikhonov functional.

2.4 Approximate variational inequalities

Before variational inequalities have been extended from power-type to gen-
eral modifier functions in [2] the concept of approximate variational inequal-
ities was introduced in [8]. The idea is to measure the violation of a varia-
tional inequality (2.3) with the modifier function ¢(t) = ct, ¢ > 0, since this
is the modifier function with fastest decay to zero if t — 0.

Definition 2.13. The exact solution z! satisfies an approzimate variational
inequality with constant 8 € (0, 1) and benchmark function 1) if the distance
function Dy, : [0,00) — [0, 00) defined by

Dy(r) = Slel)g(ﬂHw —at2 = Jlalf? + llaT? = rllv (A" A) (2 — 2T)]))

goes to zero for r — oo. The benchmark function v is assumed to be an
index function.
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The distance function D, is nonnegative, convex, and monotonically
decreasing. If Dy(r) > 0 for all » > 0 then D, is strictly decreasing.
Further details on approximate variational inequalities can be found in [8].
Also the proof of the following theorem is given there, but for a more general
setting.

Theorem 2.14. Let the exact solution ' satisfy an approzimate variational
inequality with the benchmark function t — tY/2 and with a distance function
Dy,. Then

|20 — 2| = O(Va¥~!(Va)) ifa—0,

Dy (r) '

where W(r) :=

As for approximate source conditions the distance function Dy, can be
replaced by some majorant. An extension to general benchmark functions
v will be given in Remark 4.6.

2.5 Summary for power-type smoothness assumptions

Because the above convergence rates results are quite general we summarize
them for situations where all the appearing index functions are monomials.
Note that a constant factor in any index function does not influence the
convergence rate. The above convergence rate theorems provide the rate

|zo — 2T = O(a*) ifa — 0
if one of the following four conditions is satisfied:
e a source condition with J(¢) = t#, p € (0,1];

e an approximate source condition with benchmark function ¢ (t) = t",
0 < p < n <1, and distance function dy(R) = (’)(Rﬁ) if R — o0;

4
e a variational inequality with modifier function ¢ (t) = tTHo € (0,3],
and benchmark function 1 (t) = v/t;

e an approximate variational inequality with benchmark function ¥ (t) =
—4
Vt and distance function Dy(r) = O(r 1—2l;) if r — oo, p € (0,1).

11



3 Known results on interconnections

First we look at equivalent formulations for source conditions. It is obvious
that a source conditions with index function v is satisfied if and only if the
distance function d, from the corresponding approximate source condition
is zero for large arguments. In addition from [26, Section 3.2] we know
that a source condition with v holds if and only if a variational inequality
with benchmark v and modifier function ¢(¢) = at, a > 0, is satisfied.
The following proposition repeats this result with our notation and with a
different proof.

Proposition 3.1. An element x' satisfies a variational inequality with con-
stant < 1, benchmark function v, and modifier function p(t) = at,
a > 0, if and only if there exists some w € X with [|w| < § such that
ot = (A*A)w.

Proof. The variational inequality is satisfied if and only if
fl@) = Bllz — 2T = Jl]* + [|27]* = allp (A" A) (@ —2T)|| < 0

for all 2 € X. Since f(z') = 0 and f is concave, this happens if and only if
f has a global maximum at z. The subdifferential of —f at z' is given by

(~f)(at) = {201 + a(A"Aw : w € X, |Jul| < 1}

and thus, 0 € 9(—f)(z') if and only if there exists some w € X with |Jw|| < 1
and 2 = (A*A) (- w). O

As for source conditions, the distance function D, from the approximate
variational inequality is zero for large arguments if and only if a variational
inequality with benchmark ¢ and modifier function ¢(t) = at, a > 0, is
satisfied. Therefore we have the following relations:

source variational
& condition & inequality with <
with ¢ ¥ and @(t) = at

dy(R) =0
for large R

Dy(r) =0
for large r

More interesting is the situation if the benchmark smoothness is higher
then the smoothness of zf. So assume that a source condition with index
function 9(t) = t*, p € (0,1), is satisfied, but not with index function
Y(t) =t”, v € (u, 1]. Then the following is true:

12



e The distance function dy from the approximate source conditions is
bounded by

dy(R) = O(R*1) if R — oo
(see [5] and for more general functions ¥ and v also [16]).

e The exact solution ' satisfies a variational inequality with benchmark

¢ and modifier function p(t) = atits for some a > 0 (see [19]).

In addition the following relations between smoothness concepts are
given in the literature:

e A variational inequality with benchmark function ¥ and modifier func-
tion p(t) = t", k € (0,1), implies an approximate variational inequal-
ity with benchmark function ¢ and distance function

Dy(r) = O(r%) if r — o0
(see [8]).

e An approximate source condition with benchmark function ¢ and dis-
tance function dy, implies an approximate variational inequality with
benchmark function 1 and distance function Dy(r) = (’)(di(r)) if
r — o00. This can be proven analogously to Lemma 5.4 in [§].

e An approximate source condition with benchmark function ¢ and dis-
tance function dy(R) > 0 for all R > 0 implies a variational inequality
with benchmark function 1) and modifier function p(t) = ct©~1(t) for
some ¢ > 0, where O(R) := %di(R). This can be proven analogously

to Theorem 5.2 in [2].

In the light of the known cross connections the idea of approximate
variational inequalities seems to be the most general concept.

4 New results on interconnections

In this section we prove two new results which completely clarify the connec-
tions between variational inequalities, approximate variational inequalities,
and approximate source conditions in Hilbert spaces. In essence we show
that all three contain exactly the same information about the exact solution
xt.

The first main theorem shows that variational inequalities can carry the
same information as approximate variational inequalities.

13



Theorem 4.1. By M we denote the family of all modifier functions ¢ for
which x' satisfies a variational inequality with constant 3 and benchmark
function 1. Then x' satisfies an approzimate variational inequality with
distance function

Dy = min(—p)*(—+) (pointwise minimum)
peM

and the minimum is attained for ¢(t) = —Dj(—t).

The *-notation was introduced at the end of Section 1. Note that
(—p)*(=r) = r(e™1)"(3).

Proof. Let z' satisfy a variational inequality with modifier function . Then

Blle = 2t — [lz)® + [l = rllv (A" A) (@ — 2T
< ([ (A*A) (@ — b)) = rllv(A*A) (@ — )]
Sigg(w(t)—rt)z?;g(—rt—(— )(1) = (=¢)" (=)

for all » > 0 and all x € X, that is, Dy(r) < (—¢)*(—r) for all r > 0.
On the other hand, given Dy, we have

Blle =z * = [|lz[* + [|l2T[|* < r[l¢(A* A)(x — 2T)[| + Dy(r)
for all » > 0 and all z € X. Therefore
Blle — 2> = [|2[* + |||
< inf (rllv(A" A)(@ = 2| + Dy (1))
= - igg(*!\w(A*A)(ﬂf —a")|lr — Dy(r))
= —Dj(—[lp (A" A) (z — =N)|)),

that is, z! satisfies a variational inequality with modifier function (t) =
Dy (-1). O

Remark 4.2. Since the proof of Theorem 4.1 does not use any tools re-
stricted to Hilbert spaces, the theorem also holds for variational inequalities
in Banach spaces settings as introduced in Remark 2.6.

In preparation of the second main theorem we prove two lemmas. The
first one provides a simplified expression for D,.

14



Lemma 4.3. Let x' satisfy an approzimate variational inequality with con-
stant 8 < 1, benchmark function v, and distance function Dy, and let x, € X
be a mazimizer in the definition of Dy(r), that is,

Dy(r) = Bllzr — a|* — fla|* + [lT|? — r[[o(A* A) (2 — 2T)]

Then Dy(r) = (1 — B)||z, — 21|

Proof. If x, = a' then Dy(r) = 0 by the definition of Dy(r). So assume
that z, # 2. Then the gradient of

z = Blle =z = [|lz]* + [l2T[|* — v (A* A) (= — 1))
at x, has to be zero, that is,

VP (A" A) (2, — af)

26(x, —z) — 2z, — 7 = 0. (4.1)
[ (A*A) (@, — 21|
Applying (e, z, — ') at both sides we get
—rllp(A*A) (@, — 2T)|| = =28z, — 2T|* + 2(z,, 2, — 2T)

and therefore
Dy(r) = Bllzr — t|? — [la,|* + |2T]* - 28]z, — 2T||* + 2(2r, 2, — &)
= (1= 8)||zr — 2>
O

The second lemma connects the minimizers from the definition of dy(5)
(approximate source condition) with the maximizers of Dy(r) (approximate
variational inequality).

Lemma 4.4. Let zt ¢ R(Y(A*A)) satisfy an approzimate variational in-
equality with constant 8 < 1, benchmark function ¥, and distance function
Dy and let wg € argmin{|[y(A*A)w — 27| : w € X, |w| < R}. Then

z, =l + ﬁ(w(A*A)wT/Q —aT)
is a mazimizer in the definition of Dy(r), that is,

Dy(r) = Bllr — a|* — fla|® + [lT|? — 7]l (A* A) (2 — 2T)]

15



Proof. By the definition of wg there exists some Lagrange multiplier A > 0
with N

Y(A*A) (P(A* A)wg — 2T = — 5w (4.2)
For A = 0 we would get 2! = 1)(A* A)wg which contradicts 2T ¢ R()(A*A)).
Thus A > 0 and therefore ||wg| = R. Defining x, as in the lemma and using
(4.2) one easily verifies (4.1), which is equivalent to the fact that z, is a
maximizer in the definition of Dy (r). O

The second main theorem shows that approximate variational inequali-
ties are equivalent to approximate source conditions.

Theorem 4.5. Let 27 ¢ R(Y(A*A)) satisfy an approvimate variational
inequality with constant G < 1, benchmark function 1, and distance function
Dy, and let dy, be the distance function from the approximate source condition
with respect to . Then

Dy(r) = ﬁdi(%) for allr > 0.

Proof. The assertion is an immediate consequence of the preceding two lem-
mas (apply the first lemma to x, from the second lemma). O

Remark 4.6. Combining the two theorems of this section, from a varia-
tional inequality with concave benchmark function ¢ and modifier function
o(t) =t k€ (0,1), we get an approximate source condition with distance
function

dy(R) = O(RZ-9) if R — oo
and thus the convergence rate
2o — zT|| = O(p() %) if o — 0.

Analogously we can derive convergence rates from approximate variational
inequalities with general benchmark function. Assuming that v is a qual-
ification of a general linear regularization method variational inequalities
also provide convergence rates for this method. Till now a direct (with-
out detour via approximate source conditions) proof of convergence rates
for general linear regularization methods given a variational inequality is
missing.

It remains to investigate the relation between source conditions and the
other three smoothness concepts. This question is addressed in [9] and the
answer given there is that approximate source conditions provide also lower
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bounds for the regularization error |z, — 2°||. If the distance function dy
decays not too fast, then the lower bound obtained in [9] coincides with
the well-known upper bound provided by the concept of approximate source
conditions. In this sense approximate source conditions yield optimal rates.
Since one knowns (see [23]) that power-type rates O(a*) do not imply the
corresponding source condition zf € R((A*A)#), source conditions are less
powerful than approximate source conditions and therefore, as shown in
this article, also less powerful than variational inequalities and approximate

variational inequalities.

5 Fenchel duality between source conditions and
variational inequalities

The equivalence of approximate variational inequalities and approximate
source conditions is not by chance but comes from Fenchel duality. The idea
to consider the Fenchel dual of the minimization problem in the definition
of the distance function dy of an approximate source condition is taken
from [18].

We proceed the other way round, that is, we derive the Fenchel dual of
the maximization problem in the definition of the distance function D, of
an approximate variational inequality.

Setting f(z) := fl|lz—a'||* —||z|]*+||=T]* and g(z) := —r|lz—p(A* AT
for z € X the Fenchel dual of

Blla =t = ll]* + [|l2T* = r[l(A*A) (@ — 21| — max
zeX
is given by

(=) (A" A)u) + (—g9)"(v) — 5%1)1(1

with (—f)* and (—g)* being the conjugate functions of —f and —g (intro-
duced at the end of Section 1); see [1] for details. The calculation of the
conjugate functions leads to

(=f)"(w)

g (I5ull?® = Blu, 2T) + |l2T)1?)

and
(—9)*(w) = (P(A" Au,2) + rxr(u)
with xr(u) = 0 for ||u|| < r and x,(u) = oo outside the r-ball. Hence, the
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objective function of the dual problem becomes

(=" (=p(A"A)u) + (—9)"(u)
= 125 (139 (A" Al + B (A* Ayu, ) + ||27|?)
+ (VA" A)u, ab) + e (u)
= rllv (A" A) (u) — &M + rxe (u).

Thus, also via Fenchel duality we obtain Dy (r) = ﬁdfﬁ (%)

6 Conclusions and open questions

We have seen that in the standard Hilbert space setting the three modern
concepts for expressing solution smoothness (approximate source conditions,
variational inequalities, approximate variational inequalities) coincide and,
taking into account [9], that source conditions contain less accurate infor-
mation about the exact solution z! than the other three concepts. By the
way it turned out that the modifier function in a variational inequality con-
tains the same information as the distance function for approximate source
conditions or approximate variational inequalities.

A consequence is that the power of variational inequalities shows not
up until we look at nonlinear problems in Banach spaces. Though our
results do not apply to such more general settings, at least extensions in
this direction are possible and have to be investigated in future. Especially
the expression obtained when calculating the Fenchel dual of approximate
variational inequalities in Banach spaces (with linear operator) suggests to
modify the definition of approximate source conditions by replacing the norm
by a certain Bregman distance. This approach looks very promising because
for norm based distance functions in Banach spaces one needs additional
assumptions to connect the Bregman distance for which convergence rates
shall be shown with the norm used for defining the distance function (cf.
[13]). Thus, further investigation of the duality approach in Banach spaces
could lead to new and simplified proofs of convergence rates.

Another important point for future work is the calculation of distance
functions for concrete examples. Despite the simple structure of approx-
imate source conditions a direct calculation of distance functions is very
difficult. First attempts can be found in [9,18]. In part the results there
also take advantage of Fenchel duality.
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