
Variational smoothness assumptions in convergence

rate theory—an overview

Jens Flemming∗

October 9, 2012

Key words: nonlinear ill-posed problems, Tikhonov regularization, convergence
rates, smoothness assumptions

MSC: 47J06, 47A52

Abstract

Variational smoothness assumptions are a concept for measuring
abstract smoothness of solutions to operator equations. Such assump-
tions are useful for analyzing regularization methods, especially for
proving convergence rates in Banach spaces and in more general set-
tings. We collect results from different papers published by several
authors during the last five years. The aim is to present an overview
of this relatively new concept to the interested reader without going
too deep into the details.

1 Ill-posed problems, regularization, convergence
rates

A frequently used model for practical problems are equations

F (x) = y, x ∈ dom(F ) ⊆ X, y ∈ Y (1.1)

between Banach spaces X and Y . The exact right-hand side y is typically
unknown. Instead, only noisy data yδ ∈ Y satisfying ‖y − yδ‖ ≤ δ are
available. The noise level is quantified by δ ≥ 0. For solving such equations
numerically the mapping F : dom(F ) → Y has to have nice properties.
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But often we are concerned with ill-posed problems causing numerical in-
stabilities. Next to questions on existence and uniqueness of solutions the
continuous dependence of solutions on the right-hand side is of great impor-
tance. In this article we assume that due to ill-posedness effects equation
(1.1) cannot be solved by standard algorithms which do not take care of
ill-posedness.

There are plenty of regularization methods yielding approximate solu-
tions to (1.1) in a numerically stable way (see [5,23,30]). Due to its flexibility
Tikhonov regularization is a popular technique. It consists in solving the
minimization problem

T δα(x) :=
1

p
‖F (x)− yδ‖p + αΩ(x)→ min

x∈dom(F )
. (1.2)

The convex and lower semi-continuous functional Ω : X → (−∞,∞] sta-
bilizes the minimization process and the regularization parameter α > 0
controls the trade-off between data fitting and stabilization. The power
p ≥ 1 is of minor importance. It can be used to make the minimization task
numerically more tractable. Although the techniques presented later in this
article can be applied to other regularization methods, too, we concentrate
on Tikhonov regularization.

For each parameter α > 0 a regularization method yields an approxi-
mate solution to (1.1). Two questions arise. How to choose α = α(δ, yδ)
to get a small approximation error? And, given a choice rule for α, what
is the relation between the noise level and the approximation error. To the
first question there exists a number of answers. In this article we touch
the issue of choosing the regularization parameter only peripherally. The
second question is typically answered by proving convergence rates. These
are asymptotic upper bounds for the approximation error in terms of the
noise level. Quantifying the approximation error in terms of the norm in X
is straight forward. But there are only few results providing upper bounds
for this case. Instead Bregman distances are used (see [4]). They allow to
prove convergence rates and in most situations they carry enough informa-
tion about the distance between regularized and exact solutions. Bregman
distances are defined as follows.

Definition 1.1. Let x̄ ∈ X have non-empty subdifferential ∂Ω(x̄) := {ξ̄ ∈
X∗ : Ω(x) ≥ Ω(x̄) + 〈ξ̄, x − x̄〉}. The Bregman distance with respect to Ω
and ξ̄ ∈ ∂Ω(x̄) between two elements x ∈ X and x̄ ∈ X is defined by

BΩ
ξ̄ (x, x̄) := Ω(x)− Ω(x̄)− 〈ξ̄, x− x̄〉.
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If X is a Hilbert space and if Ω(x) = 1
2‖x − x0‖2 with fixed x0 ∈ X

the subdifferential at x̄ contains only the element ξ̄ = x̄− x0 and the corre-
sponding Bregman distance is BΩ

ξ̄
(x, x̄) = 1

2‖x− x̄‖
2. On the other hand, if

X = l1(N) is the space of summable sequences and if Ω(x) := ‖x‖ the sub-
differential at x̄ may consist of many different elements. Depending on the
choice of ξ̄ the Bregman distance between two points can be zero although
the two points do not coincide. In such cases Bregman distances are not
suited for expressing the approximation error.

A well-known result from the theory of ill-posed problems states that
without additional assumptions convergence rates cannot be proven (see
[5, Proposition 3.11]). All ingredients of the regularization process have
to play together well. The operator and the exact solutions are the main
objects to be controlled. But also the stabilizing functional Ω and properties
of the underlying spaces have to be incorporated into sufficient conditions
for convergence rates. A widely applicable formulation of such sufficient
conditions are variational smoothness assumptions (often also referred to
as variational inequalities). This technique has been developed by different
researchers during the past five years and the aim of the present article is to
provide an overview of the state of the art. Up to now results are scattered
over a number of papers using different notations and conventions and are
therefore hardly accessible to a broader audience.

In the next section we introduce variational smoothness assumptions and
derive convergence rates. Section 3 shows relations to source conditions,
which are the classical concept for proving convergence rates. Approximate
source conditions are an extension of source conditions which also can be
related to variational smoothness assumptions, see Section 4. Some spe-
cializations in Hilbert space settings as well as some remarks on so-called
converse results are collected in Section 5. Finally, in Section 6 we draw
some conclusions and formulate open problems.

2 Variational smoothness assumptions (VSA)

The formal definition of a variational smoothness assumption is as follows.

Definition 2.1. Let x† be a solution of (1.1) and let ξ† ∈ ∂Ω(x†), M ⊆
dom(F ), and β ∈ (0, 1]. Further, let ϕ : [0,∞) → [0,∞) be a concave and
non-decreasing function with ϕ(0) = 0 and limt→0 ϕ(t) = 0. A variational
smoothness assumption is an inequality

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ϕ(‖F (x)− F (x†)‖) (2.1)
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holding for all x ∈M .

We give some details on the components of a variational smoothness
assumption.

• The constant β ∈ (0, 1] has no influence on the convergence rate ob-
tained from a variational smoothness assumption. But in some cases
β < 1 allows to prove the validity of a variational smoothness assump-
tion which would not hold for β = 1. We exclude β > 1 to guarantee
convexity of x 7→ βBΩ

ξ†
(x, x†)− Ω(x) + Ω(x†).

• The solution x† is the one for which the variational smoothness as-
sumption provides a convergence rate. Since the Bregman distance
is always non-negative it is easily seen that x† minimizes Ω over all
solutions belonging to the set M .

• A function with the properties of ϕ is sometimes called concave index
function. This function completely determines the convergence rate
obtainable from a variational smoothness assumption. One can show
that convex functions ϕ automatically lead to the trivial case where the
exact solution x† is a minimizer of Ω over the set M (see [7, Proposi-
tion 12.10] for general ϕ or [20, Proposition 4.3] for monomials). Thus,
restriction to concave ϕ is reasonable.

• In the definition of variational smoothness assumptions we do not ex-
plicitly pose assumptions on the mapping F . Nonlinear as well as
non-differentiable mappings can be handled.

• The set M ⊆ dom(F ) can be regarded as the set of interesting points.
To prove convergence rates M has to contain all regularized solutions
xδα under consideration. Given a parameter choice (δ, yδ) 7→ α(δ, yδ)
this means ⋃

δ∈(0,δ̄]

⋃
yδ:‖y−yδ‖≤δ

argmin
x∈dom(F )

T δα(δ,yδ)(x) ⊆M

for some δ̄ > 0. Typical choices are

M =
{
x ∈ dom(F ) : 1

p‖F (x)− y‖p + ᾱΩ(x) ≤ c
}

with fixed ᾱ > 0 and c > 0 (see [17]) or simply M = dom(F ).
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Different degrees of generality of the following convergence rate theorem
can be found in [17, Theorem 4.4], [1, Theorem 4.3], [11, Corollary 3.1], [6,
Theorem 2.14].

Theorem 2.2. Let x† be a solution of (1.1) which satisfies a variational
smoothness assumption with β, ξ†, ϕ, M and denote the Tikhonov regular-
ized solutions by xδα. Then there exist a priori and a posteriori parameter
choices (δ, yδ) 7→ α(δ, yδ) such that

BΩ
ξ†

(
xδα(δ,yδ), x

†) = O(ϕ(δ)) if δ → 0.

For different formulations of a priori parameter choices we refer to [11,
Corollary 3.1], [6, Theorem 2.14], [19, Theorem 1]. For α choosen by the
Morozow discrepancy principle the theorem is proven in [7, Theorem 4.25],
[19, Theorem 2].

We close this section with remarks on the historical development of vari-
ational smoothness assumptions and on possible extensions.

In [17] the concept of variational smoothness assumptions replacing clas-
sical source conditions in Banach spaces appeared for the first time. The
authors of [17] used the somewhat misleading name variational inequality
in the abstract and denoted this variational formulation as source condition
in a passage of the paper. But basically they did not give a name to such
conditions. Later on the term variational inequalities was used by several au-
thors for similar approaches. Only the case ϕ(t) = ct, t > 0, was considered
in [17]. A step towards general ϕ was undertaken in [15, inequality (3.8)]
where a variational smoothness assumption with monomial ϕ appears in
a proof. Other papers dealing with monomial ϕ are [8, 20]. Variational
smoothness assumptions with general concave ϕ as in the definition above
appeared almost simultanously in [1, 6, 11].

Extensions of variational smoothness assumptions have been suggested
in two directions. On the one hand the Bregman distance can be re-
placed by other functionals and on the other hand the data fitting term
x 7→ 1

p‖F (x) − yδ‖p in the Tikhonov functional can be replaced by a more
general fitting term. Convergence rates based on variational smoothness
assumptions for error measures different from Bregman distances have been
shown in [11, Corollary 3.1] and in [7, Theorem 4.11]. In both papers arbi-
trary error measures are applicable. Examples for non-Bregman error terms
can be found for instance in [2, Lemmas 4.4 and 4.6]. Alternative data
fitting functionals in combination with variational smoothness assumptions
appeared for the first time in [28] (only ϕ(t) = ct, c > 0, is considered) and
a deeper analysis was carried out in [6, 7]. As we will see in the succeeding
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sections, for standard Tikhonov regularization in Banach spaces as consid-
ered in this article variational smoothness assumptions have only a slightly
broader range of applications than source conditions or approximate source
conditions. But in case of non-standard data fitting terms or non-Bregman
error measures convergence rates cannot be obtained via classical techniques
whereas the concept of variational smoothness assumptions provides a pow-
erful tool even in such generalized settings.

Next to Tikhonov regularization, variational smoothness assumptions
yield convergence rates for iteratively regularized Newton methods (see [21,
22]) and for the residual method (see [13]).

3 VSA and source conditions

Source conditions of the form

∂Ω(x†) ∩ ran(F ′[x†]∗) 6= ∅ (3.1)

are the standard tool for obtaining convergence rates in Banach spaces (see
[4]). Here again x† is a solution of (1.1) for which convergence rates are
desired. The opertor F ′[x†]∗ : Y ∗ → X∗ is the adjoint of a bounded linear
operator F ′[x†] : X → Y which is some kind of linearization of F in x†. In
case of a convex or at least star-shaped (with respect to x†) domain dom(F )
we can define F ′[x†] as a bounded linear extension of the mapping

x 7→ lim
t→0

1

t

(
F (x† + t(x− x†))− F (x†)

)
, x ∈ dom(F ).

If x† is an interior point of dom(F ) and F is Fréchet differentiable at x†

then F ′[x†] coincides with the Fréchet derivative. In the following we always
assume that there exists such a bounded linearization F ′[x†].

Source conditions have the advantage that in many cases interpretations
in form of differentiability of x†, boundary conditions, or similar properties
are accessible. In contrast, interpreting variational smoothness assumptions
is up to now a very difficult task. Thus, it seems to be useful to reveal the
close connection between classical source conditions and certain variational
smoothness assumptions, namely those with linear ϕ.

As a first information in this direction we cite a result from [9], which
was already proven in [29, Propositions 3.35 and 3.38] under stronger as-
sumptions.

Theorem 3.1. Assume dom(F ) = X and that there exists a linearization
F ′[x†] as described above.
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(i) If x† satisfies the source condition (3.1) and the nonlinearity condition

‖F ′[x†](x− x†)‖ ≤ cNL‖F (x)− F (x†)‖ for all x ∈ X (3.2)

with cNL ≥ 0, then there exist ξ† ∈ ∂Ω(x†) and c > 0 such that the
variational smoothness assumption (2.1) holds with ϕ(t) = ct, M = X,
β = 1.

(ii) If a variational smoothness assumption (2.1) holds with ϕ(t) = ct for
some c > 0 and with M = X and β ∈ (0, 1], then x† satisfies the
source condition (3.1).

Note that the nonlinearity condition (3.2) can be replaced by several
other assumptions on the nonlinearity structure. The theorem remains true
but perhaps with a different function ϕ in the first part. From the theorem
we deduce that in case of a bounded linear operator F we have full equiv-
alence between source conditions and variational smoothness assumptions
with linear ϕ and with M = X.

Variational smoothness assumptions with linear ϕ but holding only on
a set M which is smaller than X can be characterized in terms of a special
variant of source conditions, so-called projected source conditions.

Given a convex set C ⊆ dom(F ) we define the normal cone NC(x†) :=
{ξ ∈ X∗ : 〈ξ, x − x†〉 ≤ 0 for all x ∈ X}. Assuming a projected source
condition in Banach spaces means that there are ξ† ∈ ∂Ω(x†) and η† ∈ Y ∗
such that

F ′[x†]∗η† − ξ† ∈ NC(x†). (3.3)

The term ‘projected’ is used because in case of a reflexive, strictly convex,
and smooth Banach space X condition (3.3) can be reformulated as

x† = PC
(
x† + J∗(F

′[x†]∗η† − ξ†)
)

(see [7, page 190]). Here PC : X → C denotes the well-defined metric
projector onto the convex set C and J∗ : X∗ → X is the well-defined inverse
of the duality mapping on X. Projected source conditions naturally appear
in the context of convexly contrained Tikhonov regularization

1

p
‖F (x)− yδ‖p + αΩ(x)→ min

x∈C
.

First results on convexly constraint Tikhonov regularization can be found
in [25]. The following theorem has been published in original form in [9]
and with shortened and simplified proof in [7, Proposition 12.26 and Theo-
rem 12.29]. It reveals a close connection between projected source conditions
and variational smoothness assumptions with linear ϕ and M = C.
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Theorem 3.2. Let C ⊆ dom(F ) be convex with x† ∈ C, assume that there
exists a linearization F ′[x†] as described above, and define dom(Ω) := {x ∈
X : Ω(x) <∞}.

(i) If x† satisfies the projected source condition (3.3) and the nonlinearity
condition (3.2), then there exist ξ† ∈ ∂Ω(x†) and c > 0 such that the
variational smoothness assumption (2.1) holds with ϕ(t) = ct, M = C,
β = 1.

(ii) Assume dom(Ω) ∩ int(C) 6= ∅ or that Ω is continuous at a point of
dom(Ω) ∩ C. If a variational smoothness assumption (2.1) holds with
ϕ(t) = ct for some c > 0 and with M = C and β ∈ (0, 1], then x†

satisfies the projected source condition (3.1).

Summarizing the results presented in this section we can say that varia-
tional smoothness assumptions with linear ϕ are nothing else than classical
source conditions combined with a nonlinearity condition. But one should be
aware of the fact, that up to now it is not clear how to express higher order
source conditions in Banach spaces (see [14, 26, 27]) by variational smooth-
ness assumptions. In case of linear operators in Hilbert spaces higher order
source conditions based on the operator A∗A can be shown to be closely
connected with certain variational smoothness assumptions (see [7, Chap-
ter 13]).

4 VSA and approximate source conditions

Source conditions (3.1) in Banach spaces provide only one fixed convergence
rate in the sense that either the source condition is satisfied for a solution
x† or not. In the first case a convergence rate can be proven and in the
second no rates are obtained. To extend the range of rates the concept of
approximate source conditions has been developed in [15, 16]. The idea is
to measure the violation of a benchmark source condition via a distance
function

d(r) := inf{‖ξ† − F ′[x†]∗η‖ : η ∈ Y ∗, ‖η‖ ≤ r}, r ≥ 0, (4.1)

and to prove rates in terms of this distance function. Here again ξ† ∈ ∂Ω(x†)
is a subgradient of Ω. One can show that the function d is non-negative, non-
increasing, lower semi-continuous, and convex (see, e.g., [7, Section 12.1.3]).
If the benchmark source condition (3.1) is not satisfied, then d is strictly
decreasing. Convergence rates in terms of d can only be proven if d(r)→ 0
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for r → ∞, which is the case if and only if ξ† belongs to the closure of
ran(F ′[x†]∗). The obtained rate is the better the faster d decays to zero at
infinity.

Variational smoothness assumptions as a very flexible sufficient condition
for convergence rates should cover the concept of approximate source condi-
tions in some way. To establish a connection between these two concepts we
first introduce distance functions based on variational smoothness assump-
tions. Then we show that there is a one-to-one correspondence between such
distance functions and functions ϕ in variational smoothness assumptions.
Finally, we present connections between both types of distance functions.

The idea to express the violation of a benchmark variational smooth-
ness assumption in terms of a distance function has been published as ap-
proximate variational inequality or approximate variational smoothness as-
sumption in [8]. In analogy to approximate source conditions we define the
distance function

Dβ(r) := sup
x∈M

(
βBΩ

ξ†(x, x
†)−Ω(x)+Ω(x†)−r‖F (x)−F (x†)‖

)
, r ≥ 0, (4.2)

which measures the violation of a variational smoothness assumption with
linear ϕ. One can show that the function Dβ is non-negative, non-increasing,
lower semi-continuous, and convex (see, e.g., [7, Section 12.1.5]).

Distance functions Dβ and functions ϕ in a variational smoothness as-
sumption can be transformed into each other via the calculus of conjugate
functions. The conjugate function f∗ : X∗ → (−∞,∞] of a lower semi-
continuous and convex function f : X∗ → (−∞,∞] is defined by

f∗(ξ) := sup
x∈X

(
〈ξ, x〉 − f(x)

)
, ξ ∈ X∗,

and is itself lower semi-continous and convex. The following result has been
published in [7, Theorem 12.32].

Theorem 4.1. Let x† be a solution of (1.1) and fix ξ† ∈ ∂Ω(x†), β ∈ (0, 1],
and M ⊆ dom(F ).

(i) If the distance function Dβ defined by (4.2) decays to zero at infinity,
then x† satisfies a variational smoothness assumption (2.1) with ϕ(t) =
−D∗β(−t).

(ii) By Φ denote the set of all non-decreasing, concave functions ϕ with
ϕ(0) = 0 and limt→0 ϕ(t) = 0 for which a variational smoothness
assumption (2.1) is satisfied and assume Φ 6= ∅. Further assume
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Dβ(0) > 0. Then the distance function Dβ defined by (4.2) is the
pointwise minimum of r 7→ (−ϕ)∗(−r) over ϕ ∈ Φ. The minimum is
attained at ϕ(t) = −D∗β(−t).

The theorem states that there is a one-to-one correspondence between
distance functions Dβ and functions ϕ in a variational smoothness assump-
tion. In other words, variational smoothness assumptions and approximate
variational smoothness assumptions are equivalent concepts. Consequently,
for establishing a connection between variational smoothness assumptions
and approximate source conditions it suffices to relate distance functions Dβ

to distance functions d, defined in (4.2) and (4.1), respectively. Such rela-
tions are not as strong as one might expect. The following results are col-
lected from [1, Theorem 5.2] and [7, Proposition 12.33 and Theorem 12.35].

Theorem 4.2. Assume that A := F is bounded and linear with dom(A) =
X and let the distance functions d and Dβ be defined by (4.1) and (4.2),
respectively.

(i) If M in the definition of Dβ is bounded, then there is a constant c > 0
such that

Dβ(r) ≤ cd(r) for all r ≥ 0.

(ii) If there are q > 1 and cq ≥ 0 such that

1

q
‖x− x†‖q ≤ cqBΩ

ξ†(x, x
†) for all x ∈M,

where M is from the definition of Dβ, then there is a constant c > 0
such that

Dβ(r) ≤ cd(r)
q
q−1 for all r ≥ 0.

(iii) If β = 1 and if x† is an interior point of M (from the definition of
D1), then there is a constant c > 0 such that

Dβ(r) ≥ cd(r) for all r ≥ 0.

As we see from the theorem only in few cases Dβ and d show the same
behavior. The reason lies in the choice of the X∗-norm to measure the
distance of ξ† to a source condition, cf. (4.1). The norms in X and x∗

have no influence on the Tikhonov functional and therefore they also do not
influence the convergence rate. The next and last theorem of this section
reformulates the definition of distance functions Dβ in a way which shows a
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better measure for the distance between ξ† and a source condition, namely
a certain Bregman distance in X∗ (compare the case β = 0 in the following
theorem with (4.1)). The theorem has been published in [7, Theorem 12.37].

Theorem 4.3. Let A := F be bounded and linear with dom(A) = X and
let β ∈ (0, 1), ξ† ∈ ∂Ω(x†), and x† ∈ M ⊆ X. Further, assume that M is
convex and denote the indicator function of M by δM (zero on M , infinity
outside M). Then x† ∈ ∂(Ω + δM )(ξ†) and the distance function Dβ defined
by (4.2) is given by

Dβ(r) = (1− β) inf
{
B

(Ω+δM )∗

x†

(
ξ† + 1

1−β (A∗η − ξ†), ξ†
)

: η ∈ Y ∗, ‖η‖ ≤ r
}
.

5 VSA in Hilbert spaces

In the previous two sections we have seen that in Banach spaces there is a
strong connection between source conditions and variational smoothness as-
sumptions whereas the relation between approximate source conditions and
variational smoothness assumptions is comparatively weak. In the following
we discuss three results in a Hilbert space setting: equivalence of approx-
imate source conditions and variational smoothness assumptions, relations
between general source conditions and variational smoothness assumptions,
and a converse result.

In the present sections we assume that X and Y are Hilbert spaces and
that A : X → Y is linear and bounded. By xδα we denote the minimizers of
the classical Tikhonov functional

x 7→ 1

2
‖Ax− yδ‖2 +

α

2
‖x‖2,

that is, p = 2 and Ω(x) = 1
2‖x‖

2 in (1.2). In all cases where variational
smoothness assumptions or approximate variational smoothness assump-
tions appear we use M := X for the underlying set M . Due to the lin-
earity of A and to the structure of the Tikhonov functional this is no serious
restriction.

Applying Theorem 4.3 to this Hilbert space setting we immediately ob-
tain the following result.

Theorem 5.1. Let Dβ and d be the distance functions defined by (4.2) and
(4.1), respectivley. If β < 1 then

Dβ(r) =
1

2(1− β)
d(r)2 for all r ≥ 0.
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Thus, for linear operators in Hilbert spaces approximate variational
smoothness assumptions (and therefore also variational smoothness assump-
tions) are a reformulation of approximate source conditions. Consequently,
all results obtained for approximate source conditions in the literature so far
also apply to (approximate) variational smoothness assumptions in Hilbert
spaces.

In contrast to Banach spaces Hilbert spaces allow not only one source
condition but a wide range of different general source conditions, which of
course provide a wide range of different convergence rates. A general source
condition has the form

x† ∈ ran
(
ϑ(A∗A)

)
with a concave index function ϑ : (0,∞) → (0,∞), that is, ϑ is concave,
strictly increasing, and continuous with limt→0 ϑ(t) = 0. The corresponding
convergence rate is

‖xα − x†‖ = O(ϑ(α)) if α→ 0.

Here xα := x0
α denotes the Tikhonov minimizer for exact data and x† is the

norm-minimizing solution to the linear equation (1.1). From the well-known
estimate

‖xδα − x†‖ ≤
δ

2
√
α

+ ‖xα − x†‖

one then obtains a rate for ‖xδα − x†‖. The following theorem connects
general source conditions to approximate source conditions. Proofs can be
found in [18, Theorem 5.9] and [7, Theorem 13.10].

Theorem 5.2. Let A be compact and injective and assume that x† =
ϑ(A∗A)w with ‖w‖ = 1 and x† /∈ ran

(
(A∗A)

1
2

)
.

(i) If σ(t) :=
√
t

ϑ(t) defines an index function, then

d(r) ≤ r
√
σ−1

(
r−1
)

for all sufficiently large r.

(ii) If ϑ2 is concave, then

d(r) ≤
(
−ϑ(•2)

)∗
(−r)

for all r ≥ 0, where f∗ denotes the conjugate function of f (cf. previous
section).
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Some calculations show that the convergence rate obtained from the
estimates for the distance function d in the theorem are the same as directly
obtained from a general source condition with ϑ.

Summarizing the results presented up to now we see that variational
smoothness assumptions generalize classical source conditions, approximate
source conditions, and also general source conditions. With respect to gen-
eral source conditions it remains to answer whether there is equivalence to
variational smoothness assumptions (or to approximate source conditions,
which is the same in Hilbert spaces).

The answer is ‘no’ for the following reason. As already mentioned in [24]
there is no maximal general source condition. This means that if x† satisfies
a general source condition with some index functions ϑ then there is always
another index function which decays faster to zero if the argument goes
to zero than ϑ and x† satisfies a general source condition with this faster
decaying function. On the other hand approximate source conditions always
yield the best possible rate. This result is made precise by the following
theorem which is proven in [10] in a more general version. A simplified
proof of the theorem as stated here can be found in [7, Theorem 13.11].

Theorem 5.3. Assume d(r) > 0 for all r ≥ 0 and d(r) → 0 if r → ∞.

Define Φ(r) := d(r)
r for r ∈ (0,∞). Then

1
2d
(

3
2Φ−1(

√
α)
)
≤ ‖xα − x†‖ ≤ 2d

(
Φ−1(

√
α)
)

for all α > 0.

If d(3
2r) ≥ cd(r) for some c > 0 the theorem states that ‖xα − x†‖ ∼

d
(
Φ−1(

√
α)
)
. In other words, the decay of the distance function d at infinity

completely determines the regularization error. The condition d(3
2r) ≥ cd(r)

is satisfied if d decays not too fast, for example if d(r) ∼ r−a for some a > 0.
Since from general source conditions we never obtain the best possible

convergence rate, approximate source conditions (and therefore also varia-
tional smoothness assumptions) cannot be equivalent to general source con-
ditions.

The results of this section can be extended to general benchmark source
conditions, that is A∗ in the definition of the distance function and A in the
definition of variational smoothness assumptions are replaced by ψ(A∗A)
with an index function ψ. Some of the results also hold for general linear
regularization schemes. The interested reader finds these things in [10] and
[7, Chapter 13].
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6 Conclusions and open problems

From the results summarized in this article we see that the concept of
variational smoothness assumptions introduced in 2007 and extended sev-
eral times during the last years generalizes many other notions of abstract
smoothness, especially classical source conditions, approximate source con-
ditions, and general source conditions. In addition variational smoothness
assumptions and their extensions only mentioned but not discussed in this
article allow to prove convergence rates for regularization techniques not
covered by source conditions. Thus, variational smoothness assumption are
a unified and powerful tool for the anaylsis of regularization methods. Their
interpretation is not straight forward, but having the relations to source
conditions and approximate source conditions in mind, they appear to be
not as abstract as they seem to be at the first look.

Concrete interpretations without detour via other smoothness concepts
are subject to present and future research. The survey of the field of appli-
cations for which source conditions do not work but variational smoothness
assumptions provide convergence rates is still in progress. A first compelling
example can be found in [3].

Another open problem is concerned with the fact that the convergence
rate obtainable from variational smoothness assumptions in the form pre-
sented in the article is bounded by the rate O(δ) for the Bregman distance.
But one knows that higher rates are possible. Extending the concept of
variational smoothness assumptions to cover also these higher rates is an
important task for future research. A first partial result has been obtained
in [12].
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[18] B. Hofmann and P. Mathé. Analysis of profile functions for general
linear regularization methods. SIAM Journal on Numerical Analysis,
45(3):1122–1141, 2007.
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