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Abstract

Standard methods for regularizing ill-posed nonlinear equations
rely on derivatives of the nonlinear forward mapping. Thereby stronger
structural properties of the concrete problem are neglected and the de-
rived algorithms only show mediocre efficiency.

We concentrate on nonlinear mappings with quadratic structure
and develop a derivative-free regularization method that allows us
to apply classical techniques known from linear inverse problems to
quadratic equations. In fact, regularization of a quadratic problem can
be reduced to regularization of one linear problem and a downstream
inversion of a well-posed quadratic mapping.

The motivation for considering problems with quadratic structure
in more detail comes from applications in laser optics where kernel-
based autoconvolution-type equations have to be solved.

1 Introduction

In the early nineties of the previous century regularization of nonlinear ill-
posed equations F (x) = y became an important and widely discussed topic
in mathematical research [4]. Many methods and algorithms have been
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suggested and are passably understood now [14, 18, 19]. Most of these reg-
ularization techniques linearize the problem, regularize the linearization by
classical methods designed for linear problems, then linearize at a new point,
and so on. For example this is the case for Landweber and Gauss-Newton
methods. But also nonlinear Tikhonov regularization, which at first sight is
derivative-free, finally gets linearized for the sake of minimization [17]. All
these techniques have proven useful but nonetheless we sould ask: Can we
do better?

First we quickly fix the setting. We seek for a stable approximate solution
of

F (x) = y (1.1)

with F : X → Y mapping between real separable Hilbert spaces X and Y .
Typically, the right-hand side y is only known approximately, that is, we
have yδ from Y such that ‖y− yδ‖ ≤ δ for some noise level δ ≥ 0. Note that
for our purposes we may assume that the nonlinear mapping F is defined
on the whole space X.

All well-established derivative-based regularization techniques have a
common weak point. To ensure convergence of regularized solutions to an
exact solution of (1.1) and to derive corresponding convergence rates one has
to assume that the derivative F ′[x0] at some point x0 (often the unknown
exact solution) represents the nonlinear mapping F in a sufficiently precise
way [14,19]. In mathematical terms one assumes that

‖F (x)− F (x0)− F ′[x0](x− x0)‖ ≤ c‖F (x)− F (x0)‖γ1‖x− x0‖γ2 (1.2)

for sufficiently many x, see [10,13] and references therein. Depending on γ1
and γ2 the derived convergence rate results are more or less strong.

Unfortunately, there are nonlinear mappings which do not satisfy esti-
mates (1.2) or the corresponding constants γ1 and γ2 have to be chosen
in a way that only provides quite weak conclusions from such a nonlinear-
ity condition. This is the case for autoconvolution problems [6, 7, 9]: for
X = L2(0, 1) and Y = L2(0, 2) we define F by(

F (x)
)
(s) :=

∫
R
x(t)x(s− t) dt, (1.3)

where x is set to zero outside (0, 1). For this concrete ill-posed nonlinear
mapping the only known combination of constants in (1.2) is γ1 = 0 and γ2 =
2, which constitutes a very weak connection between F and its derivative.

If the derivative does not carry enough information about F we have to
look for other, derivative-free, regularization techniques. Especially autocon-
volution-type mappings posses a strong structure of quadratic type. Below
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we will give a precise definition of the term quadratic mapping. Although
the term quadratic sounds very familiar handling quadratic mappings is not
a trivial task. To give the reader an idea of what a quadratic mapping can
do with the three-dimensional space we provide Figure 1.

Figure 1: Example of a quadratic mapping acting in R3. Upper left: unit
sphere. Upper right: image set of unit sphere under (x1, x2, x3) 7→ (x21 +√

2x2x3, x
2
2 +
√

2x1x3, x
2
3 +
√

2x1x2). Lower left: same as upper right, but
from opposite direction. Lower right: same as upper right but with cap
removed to see the overlap.

Our idea is to decompose an ill-posed quadratic mapping into a well-
posed quadratic part and an ill-posed linear operator. The latter can be
inverted by classical regularization techniques and the quadratic part will
turn out to be invertible without serious trouble.

Other approaches can be found in the literature. In [3] a specific problem
of autoconvolution-type is solved by so called local regularization. General
quadratic equations are solved in [17] by Tikhonov regularization with em-
phasis on gradient-based minimization of the Tikhonov functional.

The idea to decompose nonlinear mappings into a well-posed nonlinear
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part and an ill-posed linear one is not totally new. For example so called
state space regularization [2] uses decomposition techniques and the degree
of ill-posedness can be studied via suitable decompositions [11].

Quadratic autoconvolution-type mappings appear for example in laser
optics. For measuring ultra-short laser pulses physicists from Max Born
Institute for Nonlinear Optics and Short Pulse Spectroscopy in Berlin, Ger-
many, developed the so called SD SPIDER method [8,15]. The data of inter-
est and the measurable data are connected by a kernel-based autoconvolution-
type mapping (

F (x)
)
(s) :=

∫
R
k(s, t)x(t)x(s− t) dt, (1.4)

with a complexvalued kernel function k : (0, 2) × (0, 1) → C. The square-
integrable functions x and F (x) with supports (0, 1) and (0, 2) are com-
plexvalued, too. As a first step we restrict our attention to realvalued
functions. But our decomposition approach in principle works also for the
complex case. Another possible application are problems in Schlieren to-
mography [16] where the pressure field of ultrasound transducers has to be
reconstructed and the technique of appearence potential spectroscopy [1].

The remaining part of the article is organized as follows. The next
section contains material on quadratic mappings. Most things are quite
standard, but up to now not prevalent in the inverse problems community.
The decomposition approach is presented and analyzed in Section 3, and
Section 4 contains some hints on discretizing quadratic equations.

2 Quadratic mappings and their properties

First we provide the definition of quadratic mappings. Remember that X
and Y are real separable Hilbert spaces throughout this article and that a
bilinear mapping B : X ×X → Y is bounded if ‖B(x, u)‖ ≤ c‖x‖‖u‖ for all
x and u from X and for some nonnegative constant c. The smallest constant
c in this estimate will be denoted by ‖B‖. As known for linear operators
boundedness and continuity of bilinear mappings are equivalent.

Definition 2.1. A mapping F : X → Y is quadratic if there is a bounded
bilinear mapping B : X ×X → Y such that F (x) = B(x, x) for all x in X.

In the definition we assume that the underlying bilinear mapping is
bounded. This assumption guarantees that the corresponding quadratic
mapping is continuous. Before we prove this fact we have to show that there
is a one-to-one correspondence between quadratic mappings and symmetric
bounded bilinear mappings.
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Proposition 2.2. For each quadratic mapping F there is a uniquely deter-
mined symmetric bounded bilinear mapping BF such that F (x) = BF (x, x)
for all x in X.

Proof. One easily verifies that BF defined by

BF (x, u) := F

(
x+ u

2

)
− F

(
x− u

2

)
(2.1)

for x and u from X is bilinear, bounded, and symmetric.
If there is another symmetric bounded bilinear mapping B with F (x) =

B(x, x) for all x, then exploiting symmetry and bilinearity of B we imme-
diately see

BF (x, u) = F

(
x+ u

2

)
− F

(
x− u

2

)
= B

(
x+ u

2
,
x+ u

2

)
−B

(
x− u

2
,
x− u

2

)
= B(x, u)

for all x and u, that is, BF = B.

Throughout this article BF denotes the underlying symmetric bilinear
mapping for F .

Proposition 2.3. Quadratic mappings are Lipschitz continuous on bounded
sets. In more detail, each quadratic mapping F satisfies

‖F (x)− F (u)‖ ≤ 2r‖BF ‖‖x− u‖ (2.2)

for all x and u with ‖x‖ ≤ r and ‖u‖ ≤ r.

Proof. Exploiting the symmetry of BF we obtain

‖F (x)−F (u)‖ = ‖BF (x+u, x−u)‖ ≤ ‖BF ‖‖x+u‖‖x−u‖ ≤ 2r‖BF ‖‖x−u‖.

To specify the term ill-posed for quadratic mappings we use the well-
known subsequential formulation [5].

Definition 2.4. A quadratic mapping F : X → Y is well-posed if for
each convergent sequence (yk)k∈N in Y with limit y in Y each sequence
(xk)k∈N of preimages xk from F−1(yk) has a convergent subsequence and
the corresponding limit belongs to F−1(y). Otherwise F is ill-posed.
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The formulation of our decomposition approach in Section 3 requires
a notion of quadratic isometry. It is well known that a linear operator
preserves inner products if and only if it preserves norms. In the quadratic
case there are (strong) isometries, which preserve both inner products and
norms, and there are (weak) isometries, which only preserve norms. Below
we provide a simple example of a weak isometry which is not strong. But
first the exact definitions.

Definition 2.5. A quadratic mapping F : X → Y is a strong isometry
if 〈F (x), F (u)〉 = 〈x, u〉2 for all x and u from X and a weak isometry if
‖F (x)‖ = ‖x‖2 for all x.

Obviously, each strong isometry is also weak.

Example 2.6. Define F : R2 → R2 by

F (x) =

[
x21 − x22
2x1x2

]
.

Then ‖F (x)‖2 = (x21 − x22)2 + 4x21x
2
2 = ‖x‖2 for all x, but〈

F

([
1
0

])
, F

([
0
1

])〉
= −1 6= 0 =

〈[
1
0

]
,

[
0
1

]〉
.

Thus, F is a weak isometry but not a strong one.

An example of a strong quadratic isometry in infinite-dimensional spaces
will be given in Section 3. Figure 2 visualizes a strong quadratic isometry
mapping between R2 and R3.

Figure 2: Example of a strong quadratic isometry acting between R2 and
R3. The element (x1, x2) is mapped to (x21,

√
2x1x2, x

2
2). Left-hand side:

unit disc in R2. Right-hand side: image set of unit disc.

For checking isometric properties of quadratic mappings we provide the
following criterion.
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Proposition 2.7. Let (ei)i∈N be an orthonormal basis in X. A quadratic
mapping F : X → Y is a strong isometry if and only if the following two
conditions hold:

(i) ‖BF (ei, ej)‖ =

{
1, j = i,
1√
2
, j < i.

(ii) The set {BF (ei, ej) : i ∈ N, j ≤ i} is an orthogonal system.

Proof. Necessity follows from calculation of 〈BF (ei, ej), BF (ek, el)〉. With
(2.1) we obtain

〈BF (ei, ej), BF (ek, el)〉 =
1

2
〈ei, ek〉〈ej , el〉+

1

2
〈ei, el〉〈ej , ek〉

=


1, i = j = k = l,
1
2 , i = k 6= l = j or i = l 6= k = j,

0, else,

which directly yields the two condions in the proposition.
For sufficiency we observe〈

F

( ∞∑
i=1

xiei

)
, F

( ∞∑
k=1

ukek

)〉

=

∞∑
i=1

∞∑
j=1

∞∑
k=1

∞∑
l=1

xixjukul〈BF (ei, ej), BF (ek, el)〉

=
∞∑
i=1

∞∑
j=1

xixjuiuj =

( ∞∑
i=1

xiui

)2

=

〈 ∞∑
i=1

xiei,
∞∑
k=1

ukek

〉2

.

As one might expect from an isometry, each strong quadratic isometry is
continuously invertible. Note that quadratic mappings cannot be injective
because F (x) = F (−x) for all x. Thus, we have to use a slightly generalized
notion of continuous invertibility. In view of Definition 2.4 strong quadratic
isometries always are well-posed.

Proposition 2.8. Let F : X → Y be a strong quadratic isometry and denote
by F−1(y) the full preimage of F at some point y. If a sequence (yk)k∈N in
Y converges to some y in Y and if (xk)k∈N is a sequence of corresponding
preimages xk from F−1(yk), then (xk)k∈N decomposes into two subsequences
(x+k )k∈N and (x−k )k∈N such that x+k → x and x−k → −x, where x is a preimage
of y.
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Proof. Define index sets

I+ := {k ∈ N : 〈xk, x〉 ≥ 0} and I− := {k ∈ N : 〈xk, x〉 < 0}.

We only consider the case that both sets have infinitely many elements.
Then (x+k )k∈N is the subsequence (xk)k∈I+ and (x−k )k∈N is the subsequence
(xk)k∈I− .

Since F is a strong isometry we have

‖x+k − x‖
2 = ‖x+k ‖

2 − 2〈x+k , x〉+ ‖x‖2 = ‖yk‖ − 2
√
〈yk, y〉+ ‖y‖.

The first summand converges to ‖y‖ and the second to −2‖y‖. Thus,

‖x+k − x‖
2 → 0.

Analogously, we obtain

‖x−k − (−x)‖2 = ‖x−k ‖
2 + 2〈x−k , x〉+ ‖x‖2 = ‖yk‖ − 2

√
〈yk, y〉+ ‖y‖ → 0.

The second equality follows from 〈x−k , x〉
2 = 〈yk, y〉 and 〈x−k , x〉 < 0.

We close our short run-through of quadratic mappings with the intro-
duction of adjoint bilinear mappings.

Definition 2.9. A bounded bilinear mapping B∗ : X×Y → X is the adjoint
of the symmetric bounded bilinear mapping B : X ×X → Y if

〈x,B∗(u, y)〉 = 〈B(x, u), y〉 = 〈u,B∗(x, y)〉

for all x and u in X and all y in Y .

Proposition 2.10. Each symmetric bounded bilinear mapping B : X×X →
Y has a uniquely determined adjoint.

Proof. For y in Y and u in X the mapping x 7→ 〈B(x, u), y〉 is a bounded
linear functional on X. Thus, there is some ū in X with 〈x, ū〉 = 〈B(x, u), y〉
for all x. Setting B∗(u, y) := ū and exploiting symmetry of B we see

〈x,B∗(u, y)〉 = 〈B(x, u), y〉 = 〈B(u, x), y〉 = 〈u,B∗(x, y)〉

for all x, u, y. Obviously, B∗ is bilinear and bounded, thus, an adjoint of
B. Uniqueness of the adjoint follows by construction.
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3 Regularization of quadratic mappings by decom-
position

Here is our main theorem.

Theorem 3.1. Each quadratic mapping F : X → Y can be decomposed
into a strong quadratic isometry Q : X → `2(N) and a densely defined linear
operator A : `2(N)→ Y such that

F (x) = AQ(x) (3.1)

for all x in X.

The proof is constructive and will be given in the following. The two
lemmas provide a possible choice of the quadratic part Q and the linear
part A. But as we will discuss later, other choices are possible and maybe
advantageous.

For easier handling of indices we define the mapping κ : {(i, j) ∈ N×N :
1 ≤ j ≤ i} → N by

κ(i, j) := j +
i(i− 1)

2
. (3.2)

This is a bijection.

Lemma 3.2. Let (ei)i∈N be an orthonormal basis of X. The mapping Q :
X → `2(N) defined by

(
Q(x)

)
κ(i,j)

:=

{√
2〈x, ei〉〈x, ej〉, j < i,

〈x, ei〉2, j = i
(3.3)

for (i, j) in N×N with 1 ≤ j ≤ i and x in X is a strong quadratic isometry.

Proof. The underlying symmetric bilinear mapping of Q is given by

(
BQ(x, u)

)
κ(i,j)

:=

{
1√
2

(
〈x, ei〉〈u, ej〉+ 〈x, ej〉〈u, ei〉

)
, j < i,

〈x, ei〉〈u, ei〉, j = i.
(3.4)

Thus, BQ(ei, ej) is one or 1√
2

at position κ(i, j) if i = j or i 6= j, respectively,

and zero at all other positions. The assertion of the lemma now follows from
Proposition 2.7.
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Lemma 3.3. Let (ei)i∈N be an orthonormal basis of X and let F : X → Y
be quadratic. The mapping A : `2(N)→ Y defined by

Az :=

∞∑
i=1

 i−1∑
j=1

√
2zκ(i,j)BF (ei, ej) + zκ(i,i)BF (ei, ei)

 (3.5)

for all z which yield a convergent series is linear and its domain is dense in
`2(N).

Proof. Linearity is obvious and since BF is bounded we have ‖BF (ei, ej)‖ ≤
c for some constant c and all i and j. Thus, the dense subspace `1(N) of
`2(N) belongs to the domain of A.

Now the proof of the main theorem is quite simple.

Proof of Theorem 3.1. With Q from (3.3) and A from (3.5) we have F (x) =
AQ(x) for all x in X. Since F (x) is defined for each x, in particular we see
that the range of Q belongs to the domain of A.

The constructed decomposition in the proof of the main theorem is not
the only one. Choosing another quadratic isometry Q one can improve the
properties of A. If, for instance, A in the proof is injective and bounded, we
can write it as A = ÃU with selfadjoint Ã : Y → Y and a linear isometry
U : `2(N) → Y . This follows from the polar decomposition of the adjoint
A∗. Then Q̃ := UQ is again a strong quadratic isometry and F = ÃQ̃.

With the decomposition (3.1) at hand regularization of a quadratic map-
ping F reduces to regularization of one possibly unbounded linear operator.
At least if A is bounded, which always is the case after discretization, this
can be done by standard techniques. Some care has to be taken if the
chosen regularization method uses the norm in the space of preimages of
A, since this is the `2(N)-norm and not the norm in X. Using Tikhonov
regularization

‖Az − yδ‖2 + α‖z‖2 → min
z∈`2(N)

for example, the standard norm penalty corresponds to ‖x‖4 in X because
‖Q(x)‖2 = ‖x‖4. Techniques that directly influence certain properties of
the searched for function should also be used with care. For instance, total
variation regularization for A would penalize the variation of Q(x) and not
the variation of x. Other regularization methods like truncated singular
value decomposition or landweber iteration work without any difficulties.
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The interested reader finds information about regularization of unbounded
linear operators in [12]

After inverting A by some regularization method we have to invert the
strong quadratic isometry Q. As shown in Proposition 2.8 such mappings
are continuously invertible and therefore no regularization is required. Only
the fact that the regularized solution zδ, which results from invertion of
A, typically lies in the orthogonal complement of the nullspace of A and
possibly not in the range of Q has to be handled somehow. This can be
done by projecting zδ onto the range of Q, that is, by solving

1

2
‖Q(x)− zδ‖2 → min

x∈X
. (3.6)

Since the range of Q in general is not convex, existence of minimizers is not
obvious. The following theorem shows that there are minimizers and how
to calculate them. The adjoint B∗Q of BQ has been defined in Definition 2.9.

Theorem 3.4. If Q is a weak quadratic isometry and if the bounded linear
operator x 7→ B∗Q(x, zδ) is compact, then the minimization problem (3.6) has
a solution. If this operator has positive eigenvalues all global minimizer at-
tain the form

√
λx where λ is the largest eigenvalue and x is a corresponding

normed eigenvector. If there are no positive eigenvalues, then the minimizer
is the null element.

Proof. At first we simplify the minimization problem (3.6) by setting x := tu
where t ≥ 0 and ‖u‖ = 1. In a first step we can miminize over t for each u
and in a second step we can minimize over u with constraint ‖u‖ = 1.

The minimum with respect to t of

hu(t) :=
1

2
‖Q(tu)− zδ‖2 =

1

2
t4 − t2〈Q(u), zδ〉+

1

2
‖z‖2

is at

t =

{
0, 〈Q(u), zδ〉 ≤ 0,√
〈Q(u), zδ〉, 〈Q(u), zδ〉 > 0.

(3.7)

Thus, for each u with ‖u‖ = 1 we have

min
t≥0

hu(t) =

{
1
2‖z

δ‖2, 〈Q(u), zδ〉 ≤ 0,
1
2‖z

δ‖2 − 1
2〈Q(u), zδ〉2, 〈Q(u), zδ〉 > 0.

If 〈Q(u), zδ〉 ≤ 0 for all u in X the solution to (3.6) is x = 0. If there is
some u with 〈Q(u), zδ〉 > 0 the minimization problem (3.6) is equivalent to

〈Q(u), zδ〉2 → max
‖u‖=1

〈Q(u),zδ〉>0
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and thus to
〈Q(u), zδ〉 → max

‖u‖=1
. (3.8)

Now let λ̄ be the largest eigenvalue of u 7→ B∗Q(u, zδ) and denote by ū a
corresponding normed eigenvector, that is,

B∗Q(ū, zδ) = λ̄ū. (3.9)

Then
〈Q(ū), zδ〉 = 〈ū, B∗Q(ū, zδ)〉 = λ̄〈ū, ū〉 = λ̄

and for all other normed elements u in X we obtain

〈Q(u), zδ〉 = 〈u,B∗Q(u, zδ)〉 ≤ ‖B∗Q(u, zδ)‖ ≤ λ̄‖u‖ = λ̄.

Therefore, ū solves (3.8) and in view of (3.7) the solution of (3.6) is given
by

x =
√
〈Q(ū), zδ〉ū =

√
λ̄ū.

Remember that 〈Q(u), zδ〉 > 0 for some u and thus λ̄ > 0.

The strong isometry Q from Lemma 3.2 satisfies the assumptions of
Theorem 3.4 because the adjoint x 7→ B∗Q(x, zδ) is compact, as the following
proposition shows.

Proposition 3.5. Let Q be defined by (3.3) and let (ei)i∈N be the corre-
sponding orthonormal basis of X. Then x 7→ B∗Q(x, zδ) has a symmetric

matrix representation Czδ in RN×N given by

(Czδ)i,j =

{
1√
2
zδκ(i,j), j < i,

zδκ(i,j), j = i.
(3.10)

Here, κ is the index map defined in (3.2). The mapping x 7→ B∗Q(x, zδ) is a
Hilbert-Schmidt operator and thus compact.

Proof. From

〈ej , B∗Q(x, zδ)〉 = 〈BQ(x, ej), z
δ〉 =

〈
BQ

( ∞∑
i=1

〈x, ei〉ei, ej

)
, zδ

〉

=

∞∑
i=1

〈x, ei〉〈BQ(ei, ej), z
δ〉
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we see

(Czδ)i,j = 〈BQ(ei, ej), z
δ〉

=

∞∑
k=1

(
k−1∑
l=1

(
BQ(ei, ej)

)
κ(k,l)

zδκ(k,l) +
(
BQ(ei, ej)

)
κ(k,k)

zδκ(k,k)

)

and by the definition of BQ, see (3.4), for j ≤ i we have

(
BQ(ei, ej)

)
κ(k,l)

=


1√
2
, j < i and k = i and l = j,

1, j = i and k = l = i,

0, else.

To show the Hilbert-Schmidt property we estimate

∞∑
i=1

‖B∗Q(ei, z
δ)‖2 =

∞∑
i=1

∞∑
j=1

〈ej , B∗Q(ei, z
δ)〉2 =

∞∑
i=1

∞∑
j=1

(Czδ)2i,j ≤ 2‖zδ‖2,

that is, the series at the left-hand side converges.

At the end of this section we discuss an issue that only becomes visible at
the second sight. As mentioned before, classical regularization techniques for
the linear part A in our decomposition yield solutions zδ in the orthogonal
complement N (A)⊥ of the nullspace of A. If A is not injective it might
happen that N (A)⊥ is not a subset of the range R(Q) of Q. Then the
projection (3.6) onto R(Q) could lead to a solution xδ for which Q(xδ) is
not of the form zδ + z0 with z0 ∈ N (A). In other words, the projection onto
the range of Q perhaps corrupts our solution.

If A is injective or if N (A)⊥ is a subset of R(Q) the mentioned problem
does not occur. Thus, we should try to use only injective linear parts A,
which can be achieved, for example, by choosing a suitable discretization.
This idea will be put in concrete terms in the next section. Another approach
would be to modify classical regularization techniques in a way which yields
solutions not lying in N (A)⊥. In case of Tikhonov regularization this can
be achieved by choosing a suitable penalty. But further research on such
approaches and on the structure of R(Q) is necessary.

4 Influence of the discretization

In this section we first discuss a simple discretization technique for quadratic
mappings and then apply it to an autoconvolution equation.
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Choosing an orthonormal basis (ei)i∈N in X and defining Xn to be the
linear hull of the first n basis elements, we approximate elements from X by
elements from the finite-dimensional subspace Xn. The image of Xn under
a quadratic mapping F : X → Y is a manifold of dimension at most n and
the linear hull of this manifold has dimension of at most n(n+1)

2 . This can
be seen from

F (x) = BF

 n∑
i=1

〈x, ei〉ei,
n∑
j=1

〈x, ej〉ej

 =

n∑
i=1

n∑
j=1

〈x, ei〉〈x, ej〉BF (ei, ej)

=

n∑
i=1

 i−1∑
j=1

2〈x, ei〉〈x, ej〉BF (ei, ej) + 〈x, ei〉2BF (ei, ei)


for x in Xn, because the set {BF (ei, ej) : i ∈ N, j ≤ i} contains at most
n(n+1)

2 elements.
With such a discretization the quadratic isometry Q in Lemma 3.2 maps

an element x to some element Q(x) in `2(N) which has zeros at all but the

first n(n+1)
2 components. Due to Theorem 3.4 the inversion of Q requires

the calculation of the largest eigenvalue and a corresponding eigenvector
of a symmetric (n × n)-matrix. There are several methods for doing this
numerically, the power method, the inverse power method, or the Rayleigh
quotient iteration, to name a few.

Discretization in the data space Y can be realized by a linear discretiza-
tion operator Pm : Y → Rm. The linear part in our decomposition approach
then can be seen as a matrix with m rows and n(n+1)

2 columns. The columns
are exactly the discretized versions PmBF (ei, ej) of BF (ei, ej).

As discussed at the end of the previous section the linear part in the
decomposition should be injective, that is, the corresponding matrix should
have full rank. The rank of this matrix can be influenced by the choice of the
orthonormal basis (ei)i∈N. We demonstrate this fact for the autoconvolution
equation (1.3).

Let X = L2(0, 1), Y = L2(0, 2), and(
BF (x, u)

)
(s) :=

∫
R
x(t)u(s− t) dt, (4.1)

where x and u are set to zero outside (0, 1). For given grid points t0, t1, . . . , tn
in [0, 1] with 0 = t0 < t1 < · · · < tn = 1 we set

ei(t) :=

{
(ti − ti−1)−

1
2 , ti−1 ≤ t < ti,

0, else.

14



Then F (x) for x from the linear hull Xn of {e1, . . . , en} is a piecewise linear
function with grid points si,j := ti + tj and (F (x))(0) = 0 = (F (x))(2).

Thus, the number of grid points (n+1)(n+2)
2 − 2 = n(n+1)

2 + n − 1 is larger

than the maximal dimension of the image set’s linear hull, which is n(n+1)
2 .

The functions BF (ei, ej) are supported on [si−1,j−1, si,j ] and are one
between si−1,j and si,j−1. Besides the four mentioned points there are no
other grid points where BF (ei, ej) is not differentiable.

The canonical choice ti = i
n for the grid points leads to grid points

si,j = i+j
n in the image space and the dimension of the image set’s linear

hull can be at most 2n − 1, which is less than n(n+1)
2 . In other words, the

discretized linear part in our decomposition is not injective.
But if we choose non-equispaced grid points t0, t1, . . . , tn such that all

si,j are different we can be sure that the image set’s linear hull has max-

imal dimension n(n+1)
2 and the linear part is injective. The simplest way

for constructing non-equispaced grid points is a small random shift of equi-
spaced ones. First numerical experiments have shown that this idea works.
However, systematic non-equispaced choices such that all si,j differ are also
possible.

5 Conclusions

Paying attension to the quadratic structure of autoconvolution and other
ill-posed problems allows to develop new specialized regularization meth-
ods that exploit well-known techniques from the world of ill-posed linear
equations.

The proposed method replaces the ill-posed nonlinear quadratic problem
by one ill-posed linear equation and an eigenvalue problem. The linear equa-
tion can be regularized using classical techniques and the eigenvalue problem
can be solved numerically by standard algorithms. Most notable only the
easier to find largest eigenvalue is of interest, together with a corresponding
eigenvector.

First numerical experiments have shown that the method works as ex-
pected from the theoretical results in this article. These numerical results
and a comparision of our method to other ones [3, 17] are in preparation.

The developed notions of quadratic isometries and adjoint bilinear map-
pings give rise to further investigations from a functional analytic view point
up to questions related to spectras of nonlinear mappings and their value
for solving ill-posed inverse problems.
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Another important issue for research in the near future is the adaption
of the proposed method to complexvalued functions, which appear in the
driving application, the SD SPIDER method mentioned in the introduction.
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