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Abstract

This paper addresses Tikhonov like regularization methods with convex penalty function-
als for solving nonlinear ill-posed operator equations formulated in Banach or, more general,
topological spaces. We present an approach for proving convergence rates which combines
advantages of approximate source conditions and variational inequalities. Precisely, our tech-
nique provides both a wide range of convergence rates and the capability to handle general
and not necessarily convex residual terms as well as nonsmooth operators. Initially formu-
lated for topological spaces, the approach is extensively discussed for Banach and Hilbert
space situations, showing that it generalizes some well-known convergence rates results.

1 Introduction

In recent years because of numerous applications which occurred in imaging, natural sciences,
engineering, and mathematical finance a growing interest in different forms of regularization
methods for solving nonlinear ill-posed inverse problems in a Banach space setting could be
observed. This also led to new ideas for proving convergence rates of such methods in Banach
spaces (see, e.g., [2,5,11–13,15,18,20–28]). The main problem of handling ill-posed problems in
Banach spaces is the absence of spectral theoretic tools including generalized source conditions
with arbitrary index functions applied to the forward operator, which were essential for proving
results in the Hilbert space setting.

One way for obtaining convergence rates similar to the well-known Hilbert space results
is the idea of so-called approximate source conditions, which was originally developed for lin-
ear ill-posed problems in [14] (see also [6, 17]) and extended to nonlinear problems in Banach
spaces in [13]. Approximate source conditions, however, rely heavily on the traditional residual
structure being a p-th power of the discrepancy norm. Therefore they are not suited for investi-
gating convergence rates of variational regularization methods with general residual terms using
appropriate similarity measures. Such progressive variants of variational regularization were
suggested, comprehensively analyzed, and motivated by means of concrete examples in [23].

A second approach, which uses variational inequalities for proving convergence rates, was first
formulated in [18] and has also been extended to general residual terms in [23]. The drawback
of this second approach in its original form is its limitation to the standard convergence rate
O(δ) for noise level δ > 0 when the reconstruction error is measured by a Bregman distance.

In this paper, which is mainly based on the thesis [8], we present an alternative concept that
allows both a wide range of different convergence rates and the use of general residual terms.
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Moreover, we give some new insight into the interplay of source conditions and variational
inequalities by extending the ideas of [15] and [19] to a more general setting. Furthermore, we
address the question concerning the role and admissible intervals of an exponent p > 0 imposed
on the residual term in Tikhonov type regularization (see also [16]).

The paper is organized as follows: In Section 2 we introduce a Tikhonov type regularization
method for the stable approximate solution of nonlinear ill-posed operator equations in topo-
logical vector spaces with focus on Banach spaces. We formulate basic assumptions ensuring
well-definedness, stability and convergence of the method and we give a short discussion on
fundamental differences between the classical source conditions and variational inequalities. In
Section 3 we extend the concept of variational inequalities introduced in [18]. Moreover, we for-
mulate a first convergence rate result in that section. Based on Section 3 in Section 4, which is
the main section of this paper, we present the new approach of approximate variational inequal-
ities for proving convergence rates of variational regularization methods with general residual
term. In Section 5 we restrict our investigations to Banach spaces to clarify the interplay of
approximate source conditions and approximate variational inequalities. The final Section 6 is
devoted to some concluding remarks where also open questions are formulated. Some technical
proofs will be postponed to the appendix.

2 Problem, notation, and basic assumptions

Let F : D(F ) ⊆ U → V be an in general nonlinear operator possessing the domain D(F ) and
mapping between a real topological vector space U and a topological space V with topologies
τU and τV . We are going to study operator equations

F (u) = v0 (2.1)

expressing inverse problems with exact data v0 ∈ V on the right-hand side.
To ensure mathematical correctness we assume that U and V are Hausdorff spaces, which

implies that the limit of any convergent sequence is uniquely determined. The topologies τU und
τV should be regarded as “weak” topologies because as we will see later in infinite dimensional
Banach space settings they have to be weaker than the norm topologies. For this reason we
denote convergence with respect to the topology τU or τV by “⇀”.

Instead of the exact right-hand side v0 in (2.1) only noisy data vδ for some noise level δ > 0
are available. To clarify the meaning of δ we introduce a non-negative similarity functional
S : V × V → [0,∞], which not necessarily has to have metric properties, and demand

S(vδ, v0) ≤ δ and S(v0, vδ) ≤ δ. (2.2)

As approximate solutions of (2.1) we consider minimizers uδ
α over D(F ) of the Tikhonov type

functional
T δ

α (u) := S(F (u), vδ)p + αΩ(u) (2.3)

with a stabilizing functional Ω : U → [0,∞], a regularization parameter α > 0, and a prescribed
exponent 0 < p <∞. We set

D(Ω) := {u ∈ U : Ω(u) <∞} and D := D(F ) ∩D(Ω).

The setting described above can be modified in different ways: One is to set S̃(v1, v2) :=
S(v1, v2)

p and to bound S̃(vδ , v0) and S̃(v0, vδ) by δ. In this case all the results of this paper
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would remain true with p = 1, but convergence rates would look different since the noise level δ
then has a different meaning. In more detail, we then have

S(vδ, v0) ≤ δ, S(v0, vδ) ≤ δ ⇔ S̃(vδ , v0) ≤ δp, S̃(v0, vδ) ≤ δp.

To avoid difficulties in interpreting the convergence rates results of this paper we do not use
the S̃-setting, though some constants would become less complex. Another modification of our
setting is to replace the exponent p by a more general function ψ : [0,∞] → [0,∞], i.e. to write
ψ(S(F (u), vδ)) instead of S(F (u), vδ)p in the Tikhonov functional; this approach is carried out
in [3].

Throughout this paper we make the following assumptions.

Assumption 2.1.

(i) F : D(F ) ⊆ U → V is sequentially continuous with respect to τU and τV , i.e. uk ⇀ u with
u, uk ∈ D(F ) implies F (uk) ⇀ F (u).

(ii) D(F ) is sequentially closed with respect to τU , i.e uk ⇀ u with uk ∈ D(F ) and u ∈ U
implies u ∈ D(F ).

(iii) There exists a u ∈ D with F (u) = v0, in particular D 6= ∅.

(iv) The following assertions are fulfilled by S (for all sequences (vk)k∈N and (ṽk)k∈N in V and
v, ṽ ∈ V ):

(a) S(v, ṽ) = 0 if and only if v = ṽ.

(b) There exists a value s ≥ 1 with

S(v1, v2) ≤ sS(v1, v3) + sS(v3, v2) for all v1, v2, v3 ∈ V. (2.4)

(c) S is sequentially lower semi-continuous with respect to τV × τV , i.e. if vk ⇀ v and
ṽk ⇀ ṽ then S(v, ṽ) ≤ lim infk→∞ S(vk, ṽk).

(d) S(vk, v) → 0 implies vk ⇀ v.

(e) If S(vk, v) → 0, S(v, vk) → 0, and S(ṽ, v) <∞ then S(ṽ, vk) → S(ṽ, v).

(v) Ω is convex.

(vi) Ω is sequentially lower semi-continuous with respect to τU , i.e. uk ⇀ u implies Ω(u) ≤
lim infk→∞ Ω(uk).

(vii) For each α > 0 and each c > 0 the level sets

Mα(c) := {u ∈ D : T 0
α (u) ≤ c} (2.5)

are sequentially pre-compact with respect to τU , i.e. each sequence (uk)k∈N in Mα(c) has
a subsequence which converges with respect to τU .

In the sequel for simplicity we will use the terms “continuous”, “closed”, and so on instead
of “sequentially continuous”, “sequentially closed”, and so on if no confusion is to be expected.
By U∗ we denote the dual space of U , i.e. U∗ is the set of all τU -continuous linear functionals
on U . For ξ ∈ U∗ and u ∈ U we write ξ(u) if we evaluate the functional ξ at the point u.
If U is a Banach space and τU is the weak topology on U , then we exploit the usual notation
〈ξ, u〉U∗,U := ξ(u).
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Example 2.2. Let U and V be Banach spaces and let τU and τV be the corresponding weak
topologies, i.e.

uk ⇀ u ⇔ 〈ξ, uk〉U∗,U → 〈ξ, u〉U∗,U ∀ξ ∈ U∗. (2.6)

Then the similarity functional
S(v1, v2) := ‖v1 − v2‖V (2.7)

fulfills (iv) in Assumption 2.1 with s = 1. For a further discussion of this example see Section 5
below.

The next example, which is taken from [23], shows that next to norms also other similarity
functionals are of interest.

Example 2.3. Let (X, ρ) be a complete, separable metric space. By B(X) we denote the family
of all Borel subsets of X, i.e. B(X) is the σ-algebra generated by the ρ-open sets in X, and by
P (X) we denote the family of all Borel probability measures on X, i.e. P (X) is the family of
all measures µ : B(X) → [0,∞) satisfying µ(X) = 1. For 1 ≤ q < ∞ and some x0 ∈ X (the
concrete choice has no influence on the definition) we set

V :=

{

µ ∈ P (X) :

∫

X
ρ(•, x0)

q dµ <∞

}

(2.8)

and as topology τV we choose the narrow topology on V , i.e. a series (µk)k∈N in V converges to
µ ∈ V with respect to τV if and only if

∫

X
f dµk →

∫

X
f dµ (2.9)

for all continuous and bounded real functions f defined on X.
For defining the similarity functional S we introduce the set Γ(µ1, µ2) ⊆ P (X × X) (with

µ1, µ2 ∈ V ) consisting of all measures µ ∈ P (X × X) satisfying µ((πi)
−1(A)) = µi(A) for all

A ∈ B(X) and i = 1, 2, where π1(x1, x2) := x1 and π2(x1, x2) := x2. Then the similarity
functional S defined by

S(µ1, µ2) :=

(

inf
µ∈Γ(µ1,µ2)

∫

X×X
ρq dµ

)
1
q

, µ1, µ2 ∈ V, (2.10)

is a metric, the Wasserstein metric. Thus, items (iv)(a) and (iv)(b) of Assumption 2.1 are
satisfied with s = 1. Items (c) and (d) follow from [9, Lemma 1] and [1, Proposition 7.1.5],
respectively. By (b) we have

−S(vk, v) ≤ S(ṽ, vk) − S(ṽ, v) ≤ S(v, vk)

and thus item (e) is satisfied, too.
This similarity functional has been applied to flow, mass transport, and image registration

problems. For details on applications and some references we refer to [23].

In connection with the exponent p in (2.3) from time to time we will make use of the
inequality

(a+ b)p ≤ cp(a
p + bp) (2.11)
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for a ≥ 0 and b ≥ 0 with

cp :=

{

1 if 0 < p < 1,

2p−1 if p ≥ 1.
(2.12)

Under Assumption 2.1 one can show that there exist minimizers of the Tikhonov functional
(2.3) for all p > 0 and that these minimizers are stable with respect to perturbations of the data
vδ. The ideas of corresponding proofs given in Section 2 of [18] and in [23] can be applied to
our general setting, and we note that hence existence and stability of minimizers can be ensured
also in the case of exponents 0 < p < 1 in Example 2.2. With the exception of [23] and [4] that
case was mostly faded out in the literature.

To formulate assertions about convergence of a series of minimizers as δ tends to zero we
need the concept of Ω-minimizing solutions: An element u† ∈ D is called Ω-minimizing solution
if

F (u†) = v0 and Ω(u†) = inf{Ω(u) : u ∈ D, F (u) = v0}. (2.13)

Under Assumption 2.1 one can show that there exists an Ω-minimizing solution. The following
theorem was proven in [23].

Theorem 2.4. Assume that Assumption 2.1 is satisfied. Let (δk)k∈N be a sequence in R mono-
tonically decreasing to zero, let α : (0, δ1] → (0,∞) be a parameter choice with α(δ) → 0 and
δp

α(δ) → 0 as δ → 0, and let αk := α(δk) and vk := vδk . Then every sequence (uk)k∈N in U with

uk ∈ argmin{S(F (u), vk)p + αΩ(u) : u ∈ D} has a τU -convergent subsequence and the limit of
each τU -convergent subsequence is an Ω-minimizing solution. If the Ω-minimizing solution is
unique then (uk) converges to this Ω-minimizing solution.

To express convergence rates we use Bregman distances, which have become quite popular
in recent years for this purpose. In this context, let

ũ ∈ DB := {u ∈ U : ∂Ω(u) 6= ∅} and ξ ∈ ∂Ω(ũ) ⊆ U∗,

where ∂Ω(u) denotes the subdifferential of Ω at u. Then the functional

Bξ(u, ũ) := Ω(u) − Ω(ũ) − ξ(u− ũ), u ∈ U,

is called Bregman distance with respect to Ω, ũ, and ξ. In the sequel we always assume that
there exists an Ω-minimizing solution u† ∈ DB .

At the end of this section we want to mention the two basic concepts occurring in the
literature for proving convergence rates of Tikhonov type regularization of ill-posed equations.
Classical source conditions, as, e.g., in a Banach space setting ξ = F ′(u†)∗ η, η ∈ V ∗, and in
Hilbert spaces u† = ϕ(F ′(u†)∗F ′(u†))w, w ∈ U , i.e. sourcewise representations of an element ξ
of the subdifferential of Ω for an Ω-minimizing solution or of an Ω-minimizing solution itself,
are the main ingredient for proving convergence rates. Note that Hilbert space type source
conditions are also available if U is a Banach space and V is a Hilbert space (see [25]). Such
classical kinds of source conditions express the smoothness of the solution with respect to the
operator and they alone are responsible for possible convergence rates in common linear ill-posed
equations; exceptions, where also other factors influence the rates, are, e.g., sparsity constraint
settings (see [4, 10]). If we are concerned with nonlinear operators F , then in addition we have
to take into account structural conditions which express the nonlinearity. For nonlinear ill-posed
equations classical source conditions and nonlinearity conditions together control convergence
rates. Their interplay, however, is rather complicated.
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Originally in [18] (see also [27]) an extended concept of source conditions was presented
for obtaining convergence rates for the Banach space situation of Example 2.2. It is based on
variational inequalities, which have to hold on appropriate level sets Mα(c) of the Tikhonov type
functional (2.3). In [13, 15, 19] an additional exponent κ ∈ (0, 1] was introduced and motivated
such that the variational inequalities attain the form

〈ξ, u† − u〉U∗,U ≤ β1Bξ(u, u
†) + β2‖F (u) − F (u†)‖κ

V . (2.14)

If such a variational inequality holds, then a convergence rate Bξ(u
δ
α(δ), u

†) = O(δκ) as δ → 0

can immediately be derived without additional knowledge (i.e. without nonlinearity conditions
or assumptions on solution smoothness) when appropriate a priori parameter choices are used.
Both the classical source conditions and the structural conditions of nonlinearity result into one
parameter, namely the exponent κ that alone controls the rate.

3 Variational inequalities and convergence rates

In this section we extend the concept of variational inequalities introduced in [18]. At first we
state some simple properties of the level sets defined in (2.5).

Proposition 3.1. Let u† be an Ω-minimizing solution and let ̺ > 0 be an arbitrary constant.
Then for 0 < α1 ≤ α2 we have

(i) Mα1(̺) ⊇Mα2(̺),

(ii) Mα1(̺α1) ⊆Mα2(̺α2),

(iii)
⋂

α>0
Mα(̺α) = {u ∈ D : F (u) = v0, Ω(u) ≤ ̺}.

Proof. Item (i) is trivial. Item (ii) follows from

T 0
α2

(u) = S(F (u), v0)p + α1Ω(u) − (α1 − α2)Ω(u)

≤ ̺α1 − (α1 − α2)Ω(u) = ̺α2 + (α1 − α2)(̺− Ω(u)) ≤ ̺α2

for all u ∈ Mα1(̺α1) and (iii) from S(F (u), v0)p ≤ α(̺ − Ω(u)) for all α > 0 and for u ∈
⋂

α>0Mα(̺α).

The next proposition shows the importance of the level sets Mα(̺α).

Proposition 3.2. Let u† be an Ω-minimizing solution, ᾱ > 0, and

̺ > cp s
p Ω(u†) . (3.1)

Further let δ 7→ α(δ) be an a priori parameter choice satisfying

α(δ) → 0,
δp

α(δ)
→ 0 as δ → 0 (3.2)

and let uδ
α(δ) ∈ argmin{T δ

α(δ)(u) : u ∈ D} for δ > 0. Then there exists some δ̄ > 0, such that

uδ
α(δ) ∈Mᾱ(̺ᾱ) holds for all δ ∈ (0, δ̄].
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Proof. Because α(δ) → 0 and δp

α(δ) → 0 as δ → 0 there exists some δ̄ > 0 with α(δ) ≤ ᾱ and
δp

α(δ) ≤ ̺
2cpsp − 1

2Ω(u†) for all δ ∈ (0, δ̄]. For the sake of brevity we write α instead of α(δ). For

δ ∈ (0, δ̄] we now have (in analogy to [13, p. 5])

T 0
ᾱ (uδ

α) ≤
(

sS(F (uδ
α), vδ) + sδ

)p
+ ᾱΩ(uδ

α)

≤ cps
p
(

S(F (uδ
α), vδ)p + αΩ(uδ

α) + δp + (ᾱ− α)Ω(uδ
α)
)

≤ cps
p
(

δp + αΩ(u†) + δp + ᾱ−α
α αΩ(uδ

α)
)

≤ cps
p
(

2δp + αΩ(u†) + ᾱ−α
α

(

S(F (uδ
α), vδ)p + αΩ(uδ

α)
)

)

≤ cps
p
(

δp + ᾱ
αδ

p + ᾱΩ(u†)
)

≤ cps
pᾱ
(

2 δp

α + Ω(u†)
)

≤ ̺ᾱ.

We now give the basic definition of a variational inequality in a stronger sense.

Definition 3.3. An Ω-minimizing solution u† satisfies a variational inequality, if there exist a
ξ ∈ ∂Ω(u†) and constants ̺ fulfilling inequality (3.1), ᾱ > 0, β1 ∈ [0, 1), β2 ≥ 0, and κ > 0, such
that

−ξ(u− u†) ≤ β1Bξ(u, u
†) + β2S(F (u), F (u†))κ (3.3)

holds for all u ∈Mᾱ(̺ᾱ).

As one would expect, a variational inequality with κ = κ0 implies a variational inequality
with κ = κ1 for each κ1 ∈ (0, κ0). The only changing constant in Definition 3.3 is the factor
β2 = β2(κ). This follows immediately from

β2(κ0)S(F (u), F (u†))κ0 = β2(κ0)S(F (u), F (u†))κ0−κ1S(F (u), F (u†))κ1

≤ β2(κ0)(̺ᾱ)
κ0−κ1

p S(F (u), F (u†))κ1

because u ∈Mᾱ(̺ᾱ) implies S(F (u), F (u†))p ≤ ̺ᾱ.
For κ = 1 and for the case of topological spaces with general similarity functional S Def-

inition 3.3 was introduced in [23]. The definition was already presented earlier in [18] for the
Banach space situation with norm as similarity functional S. For that situation and κ ∈ (0, 1]
this variational inequality (3.3) appeared also in [13, proof of Theorem 3.3].

The connection between classical source conditions and variational inequalities will be dis-
cussed in Section 5.

We now give a first convergence rate result, which will be proven later in a more general
context.

Theorem 3.4. Let u† be an Ω-minimizing solution which satisfies a variational inequality in
the sense of Definition 3.3 with 0 < κ < p and let δ 7→ α(δ) be an a priori parameter choice with
cδp−κ ≤ α(δ) ≤ cδp−κ for sufficiently small δ and constants c > 0, c > 0. Then

Bξ(u
δ
α(δ), u

†) = O(δκ) as δ → 0. (3.4)

Note that the a priori parameter choice in Theorem 3.4 restricts the admissible values for
the exponent κ to the interval (0, p). As we will see this restriction is due to the proof technique
using Young’s inequality. On the other hand, the following proposition provides an upper bound
for κ in a variational inequality (3.3) if Ω, S, and F satisfy a quite weak smoothness assumption.
A special case of this proposition was already formulated as Proposition 4.3 in the paper [19]
(cf. also [15]).
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Proposition 3.5. Let u† be an Ω-minimizing solution which satisfies a variational inequality
in the sense of Definition 3.3. If there exist a q > 0, a u ∈ U with ξ(u) < 0, and a t0 > 0, such
that u† + tu ∈Mᾱ(̺ᾱ) holds for all t ∈ [0, t0], the limits

LΩ := lim
t→+0

Ω(u† + tu) − Ω(u†)

t
, LS := lim

t→+0

S(F (u† + tu), F (u†))q

t
,

i.e. the directional derivatives in u† in direction u of Ω and S(F (•), F (u†))q, exist, and LΩ =
ξ(u) is valid, then κ ≤ q must hold.

Proof. Let κ > q. For each t ∈ (0, t0] inequality (3.3) then implies

−ξ(tu) ≤ β1

(

Ω(u† + tu) − Ω(u†) − ξ(tu)
)

+ β2S(F (u† + tu), F (u†))κ

and thus

−ξ(u) ≤ β1

(

Ω(u†+tu)−Ω(u†)
t − ξ(u)

)

+ β2

(

S(F (u†+tu),F (u†))q

t

)
κ
q
t

κ
q
−1
.

Passage to the limit t→ +0 gives ξ(u) ≥ 0, which is a contradiction to ξ(u) < 0.

Remark 3.6. Under the standing assumptions of this paper on F, D(F ), Ω, and u† one can
easily show that for Banach spaces U and V and S(v1, v2) := ‖v1 − v2‖V the Proposition 3.5
applies for q = 1 when F and Ω are Gâteaux differentiable in u†. So in this case only variational
inequalities (2.14) with κ ≤ 1 can be satisfied if the singular case ξ = Ω′(u†) = 0 is excluded.

4 Approximate variational inequalities

The aim of this section is to formulate convergence rates results without assuming that a varia-
tional inequality is satisfied. As in the method of approximate source conditions (see [6] and [13])
we use distance functions d : [0,∞) → [0,∞) measuring the violation of a prescribed benchmark
condition. However, here we have a variational inequality (3.3) as benchmark condition and the
distance functions are defined in a completely different manner.

If a benchmark inequality of type (3.3) is not satisfied then there exists at least one u ∈
Mᾱ(̺ᾱ) with

−ξ(u− u†) > β1Bξ(u, u
†) + β2S(F (u), F (u†))κ.

Thus the “maximum violation” of a variational inequality (3.3) may be expressed by

sup
u∈Mᾱ(̺ᾱ)

(

−ξ(u− u†) − β1Bξ(u, u
†) − β2S(F (u), F (u†))κ

)

. (4.1)

The question whether the satisfaction of the benchmark inequality can be forced by increasing
the factor β2 leads to the definition of an approximate variational inequality.

Definition 4.1. An Ω-minimizing solution u† satisfies an approximate variational inequality
(approximate inequality for short) if there exist a ξ ∈ ∂Ω(u†) and constants ̺ fulfilling (3.1),
ᾱ > 0, β1 ∈ [0, 1), and κ > 0, such that the function d : [0,∞) → R defined by

d(r) := − min
u∈Mᾱ(̺ᾱ)

(

ξ(u− u†) + β1Bξ(u, u
†) + rS(F (u), F (u†))κ

)

satisfies d(r) → 0 as r → ∞.

At first we formulate some basic properties of the distance function d, the proofs will be
postponed to the appendix.
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Proposition 4.2. Let u† be an Ω-minimizing solution which satisfies an approximate inequality
in the sense of Definition 4.1. Then we have:

(i) 0 ≤ d(r) <∞ holds for all r ≥ 0.

(ii) The minimum in the definition of d is attained.

(iii) d is continuous.

(iv) d is monotonically decreasing.

(v) If d(r) > 0 holds for all r ≥ 0, then d is strictly monotonically decreasing.

Obviously an Ω-minimizing solution satisfies a variational inequality in the sense of Defini-
tion 3.3 if and only if it satisfies an approximate inequality in the sense of Definition 4.1 and
there exists an r0 ≥ 0 with d(r0) = 0.

If u† satisfies an approximate inequality with constant ᾱ = α0 then it satisfies an approximate
inequality with ᾱ = α1 for all α1 ∈ (0, α0] and with the same other constants. Later we will
see that the constant ᾱ from Definition 4.1 does not appear explicitly in the formulation of
convergence rates. So for the sake of plausibility of Definition 4.1 the distance function d should
be independent of ᾱ. The next two propositions give some insight into this problem, where the
first one is quite technical but is needed as a preparation for the second. The proofs will be
postponed to the appendix.

Proposition 4.3. Let u† be an Ω-minimizing solution which satisfies an approximate inequality
in the sense of Definition 4.1 with d(r) > 0 for all r ≥ 0. Further let (rk)k∈N be a sequence in
(0,∞) with rk → ∞ and let (uk)k∈N be a sequence of elements uk ∈ Mᾱ(̺ᾱ) which realize the
minimum in the definition of d, such that uk ⇀ ũ holds for some ũ ∈ D. Then we get

F (ũ) = v0, Ω(ũ) ≤ ̺, and ξ(ũ− u†) = −β1

1−β1
(Ω(ũ) − Ω(u†)).

Proposition 4.4. Let u† be an Ω-minimizing solution which satisfies an approximate inequality
in the sense of Definition 4.1 with d(r) > 0 for all r ≥ 0 and let dα for α ∈ (0, ᾱ] be the function
defined in analogy to d with ᾱ replaced by α. If there exists no u ∈ U with F (u) = v0, Ω(u) = ̺
and ξ(u− u†) = −β1

1−β1
(̺− Ω(u†)) then the following assertions are true:

(i) For all α ∈ (0, ᾱ] there exists an rα ≥ 0, such that d(r) = dα(r) holds for all r ≥ rα.

(ii) For all α ∈ (0, ᾱ] there exists an rα ≥ 0, such that for all r ≥ rα all elements of Mᾱ(̺ᾱ)
which realize the minimum in the definition of d(r) lie in Mα(̺α).

Proposition 4.4 (i) states that the distance function d, or in more detail its behaviour at
infinity, is independent of ᾱ if all solutions of F (u) = v0 are regular in the sense that they do
not coincide with certain boundary points of the set {u ∈ U : Ω(u) ≤ ̺}.

The following Lemma prepares the main theorem of this paper.

Lemma 4.5. Let u† be an Ω-minimizing solution which satisfies an approximate inequality in
the sense of Definition 4.1 with 0 < κ < p. Further let α 7→ α(δ) be a parameter choice
fulfilling the condition (3.2) from Proposition 3.2 and let δ̄ be the corresponding constant from
that proposition. Then there exist constants K1 > 0, K2 > 0, and K3 > 0, such that

Bξ(u
δ
α(δ), u

†) ≤ K1
δp

α(δ) +K2α(δ)
κ

p−κ r
p

p−κ +K3d(r) (4.2)

holds for all r ≥ 0 and all δ ∈ (0, δ̄].
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Proof. For the sake of brevity we write α instead of α(δ). Proposition 3.2 and the definition of
d(r) give us the inequality

−ξ(uδ
α − u†) ≤ β1Bξ(u

δ
α, u

†) + rS(F (uδ
α), F (u†))κ + d(r) (4.3)

for all δ ∈ (0, δ̄]. Using S(vδ, v0) ≤ δ, S(v0, vδ) ≤ δ, and T δ
α (uδ

α) ≤ T δ
α (u†), from this inequality

we now get

αBξ(u
δ
α, u

†) = S(F (uδ
α), vδ)p + αΩ(uδ

α) − αΩ(u†) − αξ(uδ
α − u†) − S(F (uδ

α), vδ)p

≤ δp − αξ(uδ
α − u†) − S(F (uδ

α), vδ)p

≤ δp + αβ1Bξ(u
δ
α, u

†) + αrS(F (uδ
α), F (u†))κ + αd(r) − S(F (uδ

α), vδ)p

≤ δp + αβ1Bξ(u
δ
α, u

†) + αrsκcκ
(

S(F (uδ
α), vδ)κ + δκ

)

+ αd(r) − S(F (uδ
α), vδ)p,

where cκ in analogy to cp is given by

cκ :=

{

1 if 0 < κ < 1,

2κ−1 if κ ≥ 1.

Thus we have

Bξ(u
δ
α, u

†) ≤ 1
α(1−β1)

(

2δp + αcκrs
κδκ − δp + αcκrs

κS(F (uδ
α), vδ)κ

−S(F (uδ
α), vδ)p + αd(r)

)

. (4.4)

Now we apply the inequality (a modification of Young’s inequality)

ab− εap1 ≤
bp2

(εp1)p2/p1p2
, (4.5)

where a, b ≥ 0, ε > 0, p1, p2 > 1 and 1
p1

+ 1
p2

= 1 have to hold, once with

a := δκ, b := αcκrs
κ, ε := 1, p1 := p

κ , p2 := p
p−κ

and once with S(F (uδ
α), vδ) instead of δ. We get

Bξ(u
δ
α, u

†) ≤ 1
α(1−β1)

(

2δp + 2(cκs
κ)

p
p−κ

(

κ
p

)

κ
p−κ p−κ

p α
p

p−κ r
p

p−κ + αd(r)

)

= 2
1−β1

δp

α + 2(cκs
κ)

p
p−κ
(

κ
p

)

κ
p−κ p−κ

p(1−β1)α
κ

p−κ r
p

p−κ + 1
1−β1

d(r).

Now we can prove the convergence rate theorem from Section 3.

Proof of Theorem 3.4. Because u† satisfies a variational inequality it also satisfies an approxi-
mate inequality with a distance function d for which there exists an r0 ≥ 0 with d(r) = 0 for all
r ≥ r0. So the assertion follows immediately from Lemma 4.5 with r := r0.
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Theorem 4.6. Let u† be an Ω-minimizing solution which satisfies for some 0 < κ < p an
approximate inequality in the sense of Definition 4.1 with d(r) > 0 for all r ≥ 0. For r > 0 we
define

Ψ(r) := d(r)
p−κ

κ r−
p

κ and Φ(r) := d(r)
1
κ r−

1
κ . (4.6)

Further let α 7→ α(δ) be a parameter choice with δp = α(δ)d
(

Ψ−1(α(δ))
)

for sufficiently small
δ > 0. Then we have the convergence rate

Bξ(u
δ
α(δ), u

†) = O
(

d(Φ−1(δ))
)

as δ → 0 . (4.7)

Proof. For the sake of brevity we write α(δ) instead of α. Because d is strictly monotonically
decreasing Ψ and Φ are strictly monotonically decreasing, too. Thus the inverse functions Ψ−1

and Φ−1 exist and are strictly monotonically decreasing.
Lemma 4.5 with r := Ψ−1(α), i.e.

α
κ

p−κ r
p

p−κ = Ψ(r)
κ

p−κ r
p

p−κ = d(r),

implies
Bξ(u

δ
α, u

†) ≤ K1
δp

α + (K2 +K3)d(Ψ
−1(α)) = (K1 +K2 +K3)d(Ψ

−1(α))

for sufficiently small δ ≤ δ̄ and from

Φ(Ψ−1(α)) = d(Ψ−1(α))
1
κ Ψ−1(α)−

1
κ =

(

δp

α

)
1
κ Ψ−1(α)−

1
κ

= δ
p

κ

(

α
κ

p−κ Ψ−1(α)
p

p−κ

)
κ−p

κp
α

1
p
− 1

κ = δ
p

κ

(

d(Ψ−1(α))
)

κ−p

κp α
1
p
− 1

κ

= δ
p
κ

(

δp

α

)

κ−p

κp α
1
p
− 1

κ = δ

we conclude Ψ−1(α) = Φ−1(δ), which proves the assertion.

Remark 4.7. If instead of d only a strictly monotonically decreasing majorant d̄ of d is available
then Lemma 4.5 and Theorem 4.6 also hold with d replaced by d̄.

The following proposition that uses the notation of Theorem 4.6 gives some further insight
into the convergence rates results of this paper. The proof will be postponed to the appendix.

Proposition 4.8. Under the assumptions of Theorem 4.6 we have the limit condition

lim
δ→0

ζ(δ) = 0 for ζ(δ) :=
δκ

d(Φ−1(δ))
, (4.8)

which is equivalent to δκ = o(d(Φ−1(δ))) as δ → 0.

Hence there is a deficit in the convergence rate expressed by the function ζ coming from the
fact that a variational inequality in the sense of Definition 3.3 holds only in an approximate
manner. The slower the distance function d(r) > 0 declines to zero as r → ∞ the greater is the
deficit.

Proposition 3.5 told us that under weak assumptions there is an upper bound q > 0 for κ
in a variational inequality. Now the question arises, whether there is also an upper bound for
κ in an approximate inequality. The next proposition does not answer this specific question,
but it shows that the maximal rate which can be obtained with the approach of approximate
inequalities as described in this paper is bounded by δq. The proof will be postponed to the
appendix.
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Proposition 4.9. Let the assumptions of Proposition 3.5 be satisfied with some q > 0, but let
u† satisfy here an approximate inequality in the sense of Definition 4.1 with d(r) > 0 for all
r ≥ 0. Then, with the notation of Theorem 4.6,

δq = O(d(Φ−1(δ))) as δ → 0

is valid.

Example 4.10. If we assume that a distance function d has a majorant d̄ of the form d̄(r) = ar−b

with a > 0 and b > 0 then the auxiliary functions in Theorem 4.6 become

Ψ(r) = a1r
−b(p−κ)−p

κ and Φ(r) = a2r
−b−1

κ (4.9)

with constants a1, a2 > 0 and thus the theorem provides the convergence rate

Bξ(u
δ
α(δ), u

†) = O
(

δ
b

b+1
κ) if α(δ) = a3δ

p− b
b+1

κ, (4.10)

with a constant a3 > 0.

If an Ω-minimizing solution satisfies a variational inequality, then Theorem 3.4 gives us the
corresponding convergence rate. Now an interesting question is whether in this case also an
approximate inequality with higher κ is satisfied and, if so, does Theorem 4.6 provide the same
rates as Theorem 3.4? The next proposition answers this question. The proof will be postponed
to the appendix.

Proposition 4.11. Let u† be an Ω-minimizing solution which satisfies a variational inequality
in the sense of Definition 3.3 with 0 < κ < p and let µ ∈ (κ, p) be such that u† does not satisfy
a variational inequality with κ replaced by µ. Then u† satisfies an approximate inequality in the
sense of Definition 4.1 with κ replaced by µ and the rate obtained from the approximate inequality
with µ by Theorem 4.6 is not lower than the rate obtained from the variational inequality with
κ by Theorem 3.4.

Remark 4.12. The idea to introduce approximate variational inequalities in the way it was
done in Definition 4.1 arose from the question, whether one can force a variational inequality in
the sense of Definition 3.3 to hold by increasing the constant β2. Thus, we replaced β2 by r and
examined the corresponding distance function d. The question which remains to answer is as
follows: what happens if we replace β2 by any continuous and strictly monotonically increasing
function r 7→ f(r) satisfying f(0) = 0 and f(r) → ∞ if r → ∞? Then we would have to examine
the corresponding distance function df .

Obviously we have df (r) = d(f(r)) and thus, df (r) → 0 as r → ∞ if and only if d(r) → 0 as
r → ∞. In other words: An approximate variational inequality with r replaced by f(r) holds
if and only if it holds in its original form. One easily checks that after minor modifications all
assertions of this section also hold for d replaced by df , but at some points we have to look
carefully. For example, the auxiliary functions in Theorem 4.6 would read

Ψf (r) := df (r)
p−κ

κ f(r)−
p

κ and Φf (r) := df (r)
1
κ f(r)−

1
κ .

Thus, the idea that the convergence rate depends on f seems to be obvious. But noting Φf (r) =
Φ(f(r)) and thus Φ−1

f (δ) = f−1(Φ−1(δ)), we see df

(

Φ−1
f (δ)

)

= d
(

Φ−1(δ)
)

, i.e. the convergence
rate (and analogously the parameter choice) is independent of f . This observation shows that
it suffices to consider f(r) = r.
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5 Source conditions and variational inequalities

An important question which remains to be answered is the interplay of approximate source
conditions and approximate inequalities. Note that we discussed the relationships between
classical source conditions and variational inequalities in the last paragraph of Section 2 (see
also [15]).

At first we want to show that the concept of approximate variational inequalities described in
this paper is a generalization of the concept of approximate source conditions in Banach spaces
as introduced in [13]. So in this section our focus is on the situation of Example 2.2 and we let U
and V be reflexive Banach spaces with τU and τV describing the corresponding weak topologies.
We set S(v1, v2) := ‖v1−v2‖V for v1, v2 ∈ V , i.e. we are concerned with the Tikhonov functional

T δ
α (u) = ‖F (u) − vδ‖p

V + αΩ(u) (5.1)

with ‖vδ − v0‖V ≤ δ. In Example 2.2 we mentioned that item (iv) of Assumption 2.1 is satisfied
with s = 1. We moreover assume that F , D(F ) and Ω are chosen such that the other items of
Assumption 2.1 are satisfied, too.

For the remaining part of this section let u† ∈ DB (defined below Theorem 2.4) be an
Ω-minimizing solution. Because sequentially weakly pre-compact subsets of reflexive Banach
spaces are bounded, for all α there is a constant Kα > 0 such that

‖u− u†‖U ≤ Kα for all u ∈Mα(̺α) (5.2)

holds.
We make the following additional assumptions.

Assumption 5.1. Let us assume that:

(i) D(F ) is starlike with respect to u†, i.e. for all u ∈ D(F ) there is a t0 > 0, such that
u† + t(u− u†) ∈ D(F ) holds for all t ∈ [0, t0].

(ii) There is a bounded linear operator F ′(u†) : U → V , such that

∥

∥

∥

∥

F (u† + t(u− u†)) − F (u†)

t
− F ′(u†)(u− u†)

∥

∥

∥

∥

V

→ 0 as t→ +0

holds for all u ∈ D.

The convexity of Ω and Assumption 5.1 (i) imply that D is then also starlike with respect
to u†. In the sequel we denote by F ′(u†)∗ : V ∗ → U∗ the adjoint operator of F ′(u†), where U∗

and V ∗ are the dual spaces of U and V with respect to the norm topologies. The handling of
weakly continuous linear functionals becomes much simpler by the fact that a linear functional
on a Banach space is weakly continuous if and only if it is continuous with respect to the norm
topology.

We now define what we understand under source conditions.

Definition 5.2. The Ω-minimizing solution u† satisfies a source condition if there exists an
element ξ ∈ ∂Ω(u†) with ξ ∈ R(F ′(u†)∗). The Ω-minimizing solution u† satisfies an approximate

source condition if there exists an element ξ ∈ ∂Ω(u†) with ξ ∈ R(F ′(u†)∗) and we define the
corresponding distance function d̃ : [0,∞) → [0,∞) by

d̃(r) := min{‖ξ − F ′(u†)∗η‖U∗ : η ∈ V ∗, ‖η‖V ∗ ≤ r}.

13



As mentioned in [13] the distance function d̃ is well-defined, non-negative, finite and mono-
tonically decreasing. If u† satisfies a source condition, then it obviously also satisfies an approx-
imate source condition and there is an r0 ≥ 0 with d̃(r) = 0 for all r ≥ r0. If u† satisfies an

approximate source condition with ξ ∈ R(F ′(u†)∗)\R(F ′(u†)∗) then d̃(r) > 0 holds for all r ≥ 0
and d̃ is strictly monotonically decreasing.

The following definition was used in [13] and [15,19].

Definition 5.3. Let c1, c2 ≥ 0. The operator F is said to be nonlinear of degree (c1, c2) with
respect to Ω, u† and ξ ∈ ∂Ω(u†) if there exist constants ̺ fulfilling (3.1), ᾱ > 0, and K > 0,
such that

‖F (u) − F (u†) − F ′(u†)(u− u†)‖V ≤ K‖F (u) − F (u†)‖c1
V Bξ(u, u

†)c2

holds for all u ∈Mᾱ(̺ᾱ).

The following lemma is an adaption of results in [13]. The proofs of this lemma will be given
in the appendix.

Lemma 5.4. Let the Ω-minimizing solution u† satisfy an approximate source condition and let
F be nonlinear of degree (c1, c2) with respect to Ω, u†, and ξ with c2 ∈ [0, 1) and c1 ∈ (0, 1− c2].
Then for any r0 > 0 there exists a constant β ≥ 0 such that

−〈ξ, u− u†〉U∗,U ≤ c2Bξ(u, u
†) + βr

1
1−c2 ‖F (u) − F (u†)‖

c1
1−c2
V +Kᾱd̃(r)

holds for all u ∈Mᾱ(̺ᾱ) and all r ≥ r0.

If u† satisfies an approximate source condition and F is nonlinear of degree (c1, c2) with
respect to Ω, u†, and ξ where c2 ∈ [0, 1) and c1 ∈ (0, 1 − c2], then the following convergence
rates were obtained in [13] (with κ = c1

1−c2
and p > 1): In case d̃(r) = 0 for all sufficiently large

r the rate
Bξ(u

δ
α(δ), u

†) = O(δκ) as δ → 0 if c1δ
p−κ ≤ α(δ) ≤ c2δ

p−κ (5.3)

was shown and in case d̃(r) > 0 for all r the rate

Bξ(u
δ
α(δ), u

†) = O
(

d̃(Φ̃−1(δ))
)

as δ → 0 if δp = α(δ)d̃
(

Ψ̃−1(α(δ))
)

(5.4)

was stated, where

Ψ̃(r) := d̃(r)
p−κ

κ r
− p

c1 and Φ̃(r) := d̃(r)
1
κ r

− 1
c1 .

The next theorem compares these rates with the rates obtained in Section 4. The proof will be
given in the appendix.

Theorem 5.5. Let the Ω-minimizing solution u† satisfy an approximate source condition and
let F be nonlinear of degree (c1, c2) with respect to Ω, u† and ξ with c2 ∈ [0, 1), c1 ∈ (0, 1 − c2],
and c1

1−c2
< p. Then for any r0 > 0 the Ω-minimizing solution u† satisfies an approximate

inequality in the sense of Definition 4.1 with 0 < κ = c1
1−c2

< p and β1 = c2. The convergence
rate obtained from the approximate variational inequality is not lower than the corresponding
rate (5.3) or (5.4) obtained from the approximate source condition.
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If u† satisfies a source condition then by the proof of Theorem 5.5 u† also satisfies a variational
inequality and Theorem 3.4 and [13, Theorem 3.3] provide the same convergence rate. In analogy
we have: If u† satisfies an approximate source condition then u† also satisfies an approximate
inequality and the rates obtained in Theorem 4.6 are not lower than the rates in [13, Theorem
4.3].

Remark 5.6. In [18] and [13] it has been shown that in the case c1 = 0 and c2 = 1 a source
condition ξ = F ′(u†)∗η with K‖η‖V ∗ < 1 implies a variational inequality with κ = 1. The
converse result that a variational inequality with κ = 1 implies the source condition is true if F
and Ω are Gâteaux differentiable in u† (see [27, Proposition 3.38]). However, the authors note
that convergence rates results are missing up to now in the case c1 = 0 and c2 = 1 when u†

only satisfies an approximate source condition in the sense of Definition 5.2 with d̃(r) > 0 for
all r ≥ 0. Some progress concerning that point will be shown in the forthcoming paper [3].

Now that we know about a basic relationship between approximate source conditions and
variational inequalities we conclude this section by repeating from [15] the interplay of classical
Hölder type source conditions and variational inequalities in Hilbert spaces. So let U and V
be Hilbert spaces and let F = A be a bounded linear operator. Taking the standard Tikhonov
functional

T δ
α (u) = ‖Au− vδ‖2

V + α‖u‖2
U

the subdifferential of Ω = ‖•‖2
U at u ∈ U is the singleton {〈•, 2u〉U} (where 〈•, •〉U denotes

the inner product), i.e. we set ξ = 〈•, 2u†〉U , and the corresponding Bregman distance is
Bξ(•, u†) = ‖• − u†‖2

U . To legitimize the extended concept of variational inequalities for κ 6= 1
in [15] the following is stated:

If u† satisfies a source condition of type u† ∈ R((A∗A)
µ

2 ) with µ ∈ (0, 1) then u† satisfies a
variational inequality

〈u† − u, 2u†〉U ≤ β1‖u− u†‖2
U + β2‖A(u− u†)‖κ

V (5.5)

with κ = 2µ
1+µ . For µ = 1 this holds too, as we saw in the Banach space setting above. Because

of Proposition 3.5 such a relationship cannot hold for µ > 1. In [15, Proposition 5.7] also the
following converse result is formulated: If u† satisfies a variational inequality (5.5) with exponent
κ then it satisfies a source condition of type u† ∈ R((A∗A)

µ

2 ) for all µ ∈ (0, κ
2−κ).

6 Conclusions and open questions

The following diagram should help to understand the cross-connections between the different
approaches for obtaining convergence rates. In this context, ⇒ stands for an implication and
→ stands for “as good or better as”. This, however, is only a very rough characterization of the
interplay which the reader can find in detail in the corresponding theorems, propositions and
remarks.

rates ⇐
source

condition
⇒

approximate
source condition

⇒ rates

l ⇓ ⇓ ↑

rates ⇐
variational
inequality

⇒
approximate

variational

inequality

⇒ rates
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As we have seen from Proposition 3.5, Remark 3.6, and Proposition 4.9 for the Banach space
setting when (2.7) and (5.1) are under consideration the proven convergence rates of Section 3
and Section 4 are because of the occurring limitation κ ≤ 1 by construction not faster than
Bξ(u

δ
α(δ), u

†) = O(δ) as δ → 0. Therefore with the technique of variational inequalities (2.14)
and also with the corresponding approximate inequalities we are captured in the low rate world.
A higher rate world for that Banach space setting was structured, for example, by the recent
papers [12,22], where under higher source conditions, for p > 1, and provided that the space V
is smooth enough rates up to Bξ(u

δ
α(δ), u

†) = O(δ4/3) can be proven.
In our low rate world the rates are additionally limited by the inequality κ < p. Up to now

the literature considered preferably the case p > 1, where this inequality gives no restriction. In
the case 0 < p ≤ 1, however, for which our approach also applies, this gives a serious restriction.
One can interpret the condition κ < p then as follows: The exponent 0 < p < 1 seems to be a
qualification of the chosen method (similar to the qualification of linear regularization methods,
see [7]) which itself defines an upper bound for convergence rates. If the smoothness of the
solution u† grows further, i.e. p < κ ≤ 1, then the convergence rate does not follow. Note that
the boundary situation 0 < κ = p ≤ 1 shows the so-called exact penalization effect studied in [5]
for p = 1, where the rate Bξ(u

δ
αfix

, u†) = O(δ) was proven under the source condition ξ = F ′(u†)∗η
whenever the regularization parameter αfix > 0 was chosen fixed but small enough. From the
proof of Lemma 4.5 yielding the estimate (4.4) we immediately obtain the corresponding rate
Bξ(u

δ
αfix

, u†) = O(δp) whenever a variational inequality is satisfied with exponent 0 < p = κ ≤ 1
and the regularization parameter αfix > 0 is fixed and small enough. However, it is an open
problem to answer the question whether the rates O(δmin{κ,p}) for 0 < p < 1 can be improved
or not.

An advantage of our new approach for the low rate world is the fact that the items (ii) and
(iii) of Proposition 3.1 tell us that {Mα(̺α) : α > 0} in some sense is a family of neighbourhoods
of solutions u† to the equation F (u) = v0. We recall that if a variational inequality holds on
a level set Mᾱ(̺ᾱ) then it holds on each level set Mα(̺α) with 0 < α < ᾱ. Hence, satisfying
a variational inequality means that there exists an arbitrarily small neighbourhood of u† such
that a variational inequality holds on this neighbourhood. Or, in other words, convergence rates
depend only on the behaviour of the three functionals ξ(• − u†), Bξ(•, u†) and S(F (•), F (u†))
in an arbitrarily small neighborhood of the set of solutions. Looking at the problem from such
functional point of view this suggests the conjecture that some kind of variational inequality
like tools may exist, which is able to integrate higher source conditions and would lead us to
the higher rate world. For example, we see that S and F themselves are not important, only
their combination S(F (•), F (u†)) is of interest. Hence one could ask in this context how the
mentioned functionals reflect the combination of source conditions and structure of nonlinearity
in case of higher smoothness. This should be forthcoming work.
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Appendix

Proof of Proposition 4.2.

(i) Because T 0
ᾱ (u†) = ᾱΩ(u†) ≤ ̺ᾱ we have u† ∈ Mᾱ(̺ᾱ) and therefore d(r) ≥ 0. For r ≥ 0

we get the estimate
d(r) ≤ C(ξ(u†),Ω(u†)) + sup

u∈Mᾱ(̺ᾱ)
|ξ(u)| (A.1)

with a constant C <∞ depending on ξ(u†) and Ω(u†) only. Assume there exists a sequence
(uk)k∈N in Mᾱ(̺ᾱ) with |ξ(uk)| → ∞. Then from Assumption 2.1 (vii) the existence of
a τU -convergent subsequence (ukl

)l∈N follows; let ũ ∈ U be its limit. The continuity of ξ
implies |ξ(ukl

)| → |ξ(ũ)| and therefore the boundedness of the sequence (|ξ(ukl
)|). This

contradicts |ξ(uk)| → ∞. Thus

sup
u∈Mᾱ(̺ᾱ)

|ξ(u)| <∞,

i.e. d(r) <∞.

(ii) We define gr : U → R ∪ {+∞} by

gr(u) := ξ(u− u†) + β1Bξ(u, u
†) + rS(F (u), F (u†))κ. (A.2)

The continuity of ξ and F and the lower semi-continuity of Ω and S together imply
the lower semi-continuity of gr. Now let (uk)k∈N be a sequence in Mᾱ(̺ᾱ) satisfying
gr(uk) → infu∈Mᾱ(̺ᾱ) gr(u). Then there exists a τU -convergent subsequence (ukl

)l∈N with
limit ũ ∈ U , especially we get ũ ∈Mᾱ(̺ᾱ) (because T 0

ᾱ is lower semi-continuous), and

gr(ũ) ≤ lim inf
l→∞

gr(ukl
) = lim

l→∞
gr(ukl

) = inf
u∈Mᾱ(̺ᾱ)

gr(u)

holds. Thus, gr(ũ) = infu∈Mᾱ(̺ᾱ) gr(u).

(iii) For r ≥ 0 let gr be defined as in the proof of item (ii) and let ur ∈Mᾱ(̺ᾱ) be a minimizer
of gr. Further, define gt and ut analogously to gr and ur. Then for all r, t ≥ 0 we have

d(r) − d(t) = min gt − min gr ≤ gt(ur) − gr(ur) = (t− r)S(F (ur), F (u†))κ

and

−(d(r) − d(t)) = min gr − min gt ≤ gr(ut) − gt(ut) = (r − t)S(F (ut), F (u†))κ,

and together with ur, ut ∈Mᾱ(̺ᾱ) this implies

|d(r) − d(t)| ≤ (̺ᾱ)
κ
p |r − t|, (A.3)

i.e. d is continuous.

(iv) The assertion follows directly from the definition of d.
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(v) We assume that there is an r ≥ 0 for which gr (set as in the proof of (ii)) has a minimizer
ũ ∈Mᾱ(̺ᾱ) satisfying F (ũ) = v0. Then for each t ≥ 0 we get

ξ(ũ− u†) + β1Bξ(ũ, u
†)

= ξ(ũ− u†) + β1Bξ(ũ, u
†) + tS(F (ũ), F (u†))κ

≥ min
u∈Mᾱ(̺ᾱ)

(

ξ(u− u†) + β1Bξ(u, u
†) + tS(F (u), F (u†))κ

)

= −d(t)

and thus d(t) → 0 as t→ ∞ implies ξ(ũ− u†) + β1Bξ(ũ, u
†) ≥ 0. But this contradicts

ξ(ũ− u†) + β1Bξ(ũ, u
†)

= ξ(ũ− u†) + β1Bξ(ũ, u
†) + rS(F (ũ), F (u†))κ

= min
u∈Mᾱ(̺ᾱ)

(

ξ(u− u†) + β1Bξ(u, u
†) + rS(F (u), F (u†))κ

)

= −d(r) < 0.

So for each r ≥ 0 each minimizer ũ ∈ Mᾱ(̺ᾱ) of gr satisfies the inequality
S(F (ũ), F (u†)) > 0. Now for 0 ≤ t < r we have (gt defined analogously to gr)

d(r) = − min
u∈Mᾱ(̺ᾱ)

gr(u) = −gr(ũ) = −gt(ũ) − (r − t)S(F (ũ), F (u†))κ

< −gt(ũ) ≤ − min
u∈Mᾱ(̺ᾱ)

gt(u) = d(t),

i.e. d is strictly monotonically decreasing.

Proof of Proposition 4.3. The definitions of uk and d(rk) imply

−rkS(F (uk), F (u†))κ = d(rk) + ξ(uk − u†) + β1Bξ(uk, u
†).

From the continuity of ξ and the lower semi-continuity of Ω for ε > 0 and sufficiently large k ∈ N

we get
−rkS(F (uk), F (u†))κ ≥ d(rk) + ξ(ũ− u†) + β1Bξ(ũ, u

†) − ε

and therefore

S(F (uk), F (u†))κ ≤ −1
rk

(

d(rk) + ξ(ũ− u†) + β1Bξ(ũ, u
†) − ε

)

.

Passage to the limit k → ∞ gives S(F (uk), F (u†))κ → 0 and with Assumption 2.1 (iv)(d) this
implies F (uk) ⇀ v0. On the other hand Assumption 2.1 (i) implies F (uk) ⇀ F (ũ) and therefore
F (ũ) = v0.

The second assertion follows from

Ω(ũ) ≤ lim inf
k→∞

Ω(uk) ≤ lim inf
k→∞

1
ᾱT

0
ᾱ (uk) ≤ ̺.

To prove the third and last assertion we first observe

−ξ(ũ− u†) − β1Bξ(ũ, u
†) = −ξ(ũ− u†) − β1Bξ(ũ, u

†) − rkS(F (ũ), F (u†))κ

≤ d(rk) → 0,
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which gives
−ξ(ũ− u†) − β1Bξ(ũ, u

†) ≤ 0. (A.4)

For ε > 0 and k ∈ N sufficiently large the continuity of ξ and the lower semicontinuity of Ω
imply

0 ≥ −rkS(F (uk), F (u†))κ = d(rk) + ξ(uk − u†) + β1Bξ(uk, u
†)

≥ d(rk) + ξ(ũ− u†) + β1Bξ(ũ, u
†) − ε.

By passage to the limit k → ∞ we get ξ(ũ− u†) + β1Bξ(ũ, u
†) ≤ ε and from the arbitrariness of

ε we obtain
−ξ(ũ− u†) − β1Bξ(ũ, u

†) ≥ 0. (A.5)

Inequalities (A.4) and (A.5) together imply

−ξ(ũ− u†) = β1Bξ(ũ, u
†)

and substituting the Bregman distance by its definition gives the assertion.

Proof of Proposition 4.4. Assertion (i) is a direct consequence of (ii). We give an indirect proof
of assertion (ii). We assume that there exist an α ∈ (0, ᾱ] and a sequence (rk)k∈N in (0,∞) with
rk → ∞, such that for each rk there exists an element uk ∈Mᾱ(̺ᾱ) which realizes the minimum
in the definition of d(rk) and which satisfies uk /∈Mα(̺α). Because of Assumption 2.1 (vii) and
the lower semi-continuity of T 0

ᾱ the sequence (uk)k∈N has a convergent subsequence, which we
again denote by (uk)k∈N, with limit ũ ∈Mᾱ(̺ᾱ).

Proposition 4.3 now implies

F (ũ) = v0, Ω(ũ) ≤ ̺ and ξ(ũ− u†) = −β1

1−β1
(Ω(ũ) − Ω(u†)). (A.6)

From uk /∈Mα(̺α) in addition we get

Ω(uk) > ̺− 1
αS(F (uk), v

0)p

for all k ∈ N and thus S(F (uk), F (u†)) → 0 (cf. proof of Proposition 4.3) implies Ω(uk) > ̺− ε
for ε > 0 and sufficiently large k ∈ N. Together with Ω(uk) ≤ ̺ this gives Ω(uk) → ̺. Therefore
from

0 ≥ −rkS(F (uk), F (u†))κ = d(rk) + ξ(uk − u†) + β1

(

Ω(uk) − Ω(u†) − ξ(uk − u†)
)

by passage to the limit we conclude

0 ≥ (1 − β1)ξ(ũ− u†) + β1(̺− Ω(u†))

and together with (A.6) we get

−β1

1−β1
(Ω(ũ) − Ω(u†)) = ξ(ũ− u†) ≤ −β1

1−β1
(̺− Ω(u†)) ≤ −β1

1−β1
(Ω(ũ) − Ω(u†)),

i.e. especially Ω(ũ) = ̺ is true. Substituting this equality into (A.6) gives a contradiction to
the assumptions of the proposition.

Proof of Proposition 4.8. With r := Φ−1(δ), i.e. δ = Φ(r), we have

ζ(δ) =
δκ

d(Φ−1(δ))
=

Φ(r)κ

d(r)
=
d(r)r−1

d(r)
=

1

r
=

1

Φ−1(δ)
. (A.7)

From Φ−1(δ) → ∞ as δ → 0 we conclude
(

Φ−1(δ)
)−1

→ 0 as δ → 0. Therefore we have (4.8).
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Proof of Proposition 4.9. Assume that the assertion is not true, i.e. we have

d(Φ−1(δ))

δq
→ 0 as δ → 0 . (A.8)

As in the proof of Proposition 3.5, but starting with the inequality

−ξ(ũ− u†) ≤ β1Bξ(ũ, u
†) + rS(F (ũ), F (u†))κ + d(r)

for ũ = u† + tu ∈Mᾱ(̺ᾱ) and r ≥ 0 instead of (3.3), for t ∈ (0, t0] and r ≥ 0 we get

−ξ(u) ≤ β1

(

Ω(u†+tu)−Ω(u†)
t − ξ(u)

)

+ r
(

S(F (u†+tu),F (u†))q

t

)
κ
q
t

κ
q
−1

+ d(r)
t .

Now we choose r(t) := Φ−1(t
1
q ), i.e. we have t = Φ(r(t))q. On the one hand this (together with

(A.8)) implies

d(r(t))

t
=
d(Φ−1(t

1
q ))

t
→ 0 as t→ +0

and on the other hand this implies

r(t)t
κ
q
−1

=
r(t)Φ(r(t))κ

t
=
d(r(t))

t
→ 0 as t→ +0.

So all terms of the above inequality tend to zero as t→ +0 and thus ξ(u) ≥ 0 is valid, which is
a contradiction to the assumption ξ(u) < 0.

Proof of Proposition 4.11. Let ̺, ᾱ, β1, and β2 be the constants from the variational inequality
satisfied by u†. For all u ∈Mᾱ(̺ᾱ) and all r > 0 then

− ξ(u− u†) − β1Bξ(u, u
†) − rS(F (u), F (u†))µ

≤ β2S(F (u), F (u†))κ − rS(F (u), F (u†))µ

follows, and the Young-type inequality (4.5) with

a :=
(

rS(F (u), F (u†))µ
)

κ
µ , b := β2r

− κ
µ ,

ε := 1, p1 :=
µ

κ
, p2 :=

µ

µ− κ

implies

d(r) ≤ max
Mᾱ(̺ᾱ)

(

−ξ(u− u†) − β1Bξ(u, u
†) − rS(F (u), F (u†))µ

)

≤
(

κ
µ

)
κ

µ−κ µ−κ
µ β

µ

µ−κ

2 r
− κ

µ−κ ,

i.e. u† satisfies an approximate inequality and the corresponding distance function d has a
majorant d̄ of the form d̄(r) = ar−b with a > 0 and b = κ

µ−κ .
Equation (4.10) with κ replaced by µ thus gives

Bξ(u
δ
α(δ), u

†) = O(δ
b

b+1
µ) = O(δ

κ
µ

µ) = O(δκ) (A.9)

for the parameter choice α(δ) = cδp− b
b+1

µ = cδp− κ
µ

µ = cδp−κ with a constant c > 0. This is
exactly the convergence rate which is stated by Theorem 3.4.
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Proof of Lemma 5.4. For r ≥ 0 let ηr ∈ V ∗ be an element for which the minimum in the
definition of d̃(r) is attained. Then for u ∈Mᾱ(̺ᾱ) we have

−〈ξ, u− u†〉U∗,U

≤
∣

∣〈F ′(u†)∗ηr + ξ − F ′(u†)∗ηr, u− u†〉U∗,U

∣

∣

=
∣

∣〈ηr, F
′(u†)(u− u†)〉V ∗,V + 〈ξ − F ′(u†)∗ηr, u− u†〉U∗,U

∣

∣

≤ ‖ηr‖V ∗‖F ′(u†)(u− u†)‖V + ‖ξ − F ′(u†)∗ηr‖U∗‖u− u†‖U

≤ r‖F (u) − F (u†) − F ′(u†)(u− u†) + F (u†) − F (u)‖V +Kᾱd̃(r)

≤ Kr‖F (u) − F (u†)‖c1
V Bξ(u, u

†)c2 + r‖F (u) − F (u†)‖V +Kᾱd̃(r).

Now we have to distinguish between two cases:

• Case c2 = 0. We get

−〈ξ, u− u†〉U∗,U

≤ Kr‖F (u) − F (u†)‖c1
V + r‖F (u) − F (u†)‖V +Kᾱd̃(r)

=
(

Kr + r‖F (u) − F (u†)‖1−c1
V

)

‖F (u) − F (u†)‖c1
V +Kᾱd̃(r)

≤
(

K + (̺ᾱ)
1−c1

p
)

r‖F (u) − F (u†)‖c1
V +Kᾱd̃(r).

• Case c2 ∈ (0, 1). We apply the inequality

ab ≤
ap1

p1
+
bp2

p2
for a, b ≥ 0,

1

p1
+

1

p2
= 1, p1, p2 > 1

with

a := Bξ(u, u
†)c2 , b := Kr‖F (u) − F (u†)‖c1

V , p1 :=
1

c2
, p2 :=

1

1 − c2

and get

−〈ξ, u− u†〉U∗,U

≤ Kr‖F (u) − F (u†)‖c1
V Bξ(u, u

†)c2 + r‖F (u) − F (u†)‖V +Kᾱd̃(r)

≤ c2Bξ(u, u
†) + (1 − c2)K

1
1−c2 r

1
1−c2 ‖F (u) − F (u†)‖

c1
1−c2
V

+ r‖F (u) − F (u†)‖V +Kᾱd̃(r)

= c2Bξ(u, u
†) +Kᾱd̃(r)

+
(

(1 − c2)K
1

1−c2 r
1

1−c2 + r‖F (u) − F (u†)‖
1−c1−c2

1−c2
V

)

‖F (u) − F (u†)‖
c1

1−c2
V

≤ c2Bξ(u, u
†) +Kᾱd̃(r)

+
(

(1 − c2)K
1

1−c2 + (̺ᾱ)
1−c1−c2
p(1−c2) r

−c2
1−c2
0

)

r
1

1−c2 ‖F (u) − F (u†)‖
c1

1−c2
V

for r ≥ r0.

Proof of Theorem 5.5. For f(r) := βr
1

1−c2 by Lemma 5.4 we have

df (r) := d(f(r)) = max
u∈Mᾱ(̺ᾱ)

(

−〈ξ, u− u†〉U∗,U − c2Bξ(u, u
†) − f(r)‖F (u) − F (u†)‖

c1
1−c2
V

)

≤ Kᾱd̃(r)
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for all r ≥ r0, i.e. df (r) → 0 as r → ∞ and therefore an approximate variational inequality
is satisfied (cf. Remark 4.12). For the remaining part of the proof we assume d(r) > 0 and
d̃(r) > 0 for all r ≥ 0. Setting

Ψ̃(r) := d̃(r)
p−κ

κ r
− p

c1 and Φ̃(r) := d̃(r)
1
κ r

− 1
c1

as in [13], and setting Ψf and Φf as in Remark 4.12, the same remark in connection with Theo-
rem 4.6 provides the convergence rate O

(

df (Φ−1
f (δ))

)

if δp = α(δ)df

(

Ψ−1
f (α(δ))

)

, and [13, The-

orem 4.3] gives the rate O
(

d̃(Φ̃−1(δ))
)

if δp = α(δ)d̃
(

Ψ̃−1(α(δ))
)

. Again by Remark 4.12,
df (Ψ−1

f (δ)) = d(Ψ−1(δ)) and df (Φ−1
f (δ)) = d(Φ−1(δ)), where Ψ and Φ are defined as in Theo-

rem 4.6.
Thus, it remains to show df (Φ−1

f (δ)) = O
(

d̃(Φ̃−1(δ))
)

as δ → 0. First we note

Φf (r) ≤ β−
1
κK

1
κ
ᾱ Φ̃(r) for r ≥ r0

and therefore, by calculating the inverse function of each side,

Φ−1
f (δ) ≤ Φ̃−1

(

( β
Kᾱ

)
1
κ δ
)

for δ ≤ Φf (r0). (A.10)

Setting r = Φ−1
f (δ) we get

df (Φ−1
f (δ)) = δκ

df (Φ−1
f (δ))

δκ
= Φf (r)κ

df (r)

df (r)f(r)−1
= Φf (r)κf(r) = δκf(Φ−1

f (δ)),

and setting r = Φ̃−1(δ) we get

βd̃(Φ̃−1(δ)) = βδκ d̃(Φ̃
−1(δ))

δκ
= βΦ̃(r)κ

d̃(r)

d̃(r)
(

1
β f(r)

)−1 = Φ̃(r)κf(r) = δκf(Φ̃−1(δ)).

Without loss of generality we may assume Kᾱ ≥ β. Thus, with the help of inequality (A.10) we
arrive at

df (Φ−1
f (δ)) = δκf(Φ−1

f (δ)) ≤ δκf
(

Φ̃−1
(

( β
Kᾱ

)
1
κ δ
))

= βd̃
(

Φ̃−1
(

( β
Kᾱ

)
1
κ δ
))

≤ βd̃(Φ̃−1(δ))

for all δ ≤ Φf (r0).
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