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Abstract

We show that convergence rates for `1-regularization can be ob-
tained in an elementary way without requiring a classical source con-
dition and without the help of a variational inequality. For the specific
case of a diagonal operator we improve the convergence rate compared
to the literature and conduct numerical experiments which verify the
predicted rate. The idea of the proof is rather generic and might be
used in other settings as well. By construction the obtained conver-
gence rates are optimal in a certain sense.

1 Introduction and main theorem

We consider a bounded, injective, linear operator A : `1 → Y mapping
absolutely summable real sequences into some real Banach space Y . We
have to deal with the ill-posed equation

Ax = y, x ∈ `1, (1.1)

where instead of the true data y ∈ Y only perturbed data yδ satisfying
||y − yδ||Y ≤ δ, δ > 0, is available. In order to find an approximation
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to the unique exact solution x† for the exact data y ∈ Y we employ `1-
regularization to determine an approximate solution to (1.1). Hence we
solve

T δα(x) :=
1

p
‖Ax− yδ‖pY + α‖x‖`1 → min

x∈`1
(1.2)

with some 1 < p < ∞. The regularization parameter α > 0 is used to
balance between the residual of the approximate solution and its value of
the penalty term ||·||`1 . The minimizer of (1.2) is denoted by xδα. In order to
guarantee the existence of the minimizers we make the following assumption.

Assumption 1. Let the linear operator A : `1 → Y be sequentially weak∗-
to-weak continuous.

In [18] it has been shown that the weak∗-to-weak continuity of A is
equivalent to both the condition R(A∗) ⊆ c0 and the condition Aei ⇀ 0.
Here and in the remainder of the paper, A∗ : Y ∗ → (`1)∗ = `∞ denotes the
adjoint of A, R the range of an operator and ei, i ∈ N are the canonical basis
in `1, i.e., the k-th component of ei equals 1 for i = k and 0 otherwise. To the
best of the authors knowledge Assumption 1 or its equivalents correspond
to the weakest condition for the existence of minimizers of (1.2) currently
available in the literature, cf. [18, 12, 4]. Assumption 1 is for example
fulfilled if A has a bounded extension to some `q-space with q > 1. This
is often the case in practical applications, in particular the case that A is
factored through a Hilbert-space occurs frequently. As a counterexample,
the identity Id : `1 → `1 is not weak∗-to-weak continuous as it is simple to
show that R(Id∗) = `∞. Another direct consequence of Assumption 1 is the
following property as was shown in [12], where

Pn : `∞ → `∞, Pnx := (x1, . . . , xn, 0, . . .) (1.3)

denotes the cut-off after the n-th entry.

Property 2. There exist a real sequence (γn)n∈N and a constant µ ∈ [0, 1)
such that for each n ∈ N and each ξ ∈ `∞ with

ξk

{
∈ {−1, 0, 1}, if k ≤ n,
= 0, if k > n

(1.4)

there exists some η = η(n, ξ, µ) in Y ∗ such that

(i) PnA
∗η = ξ,

(ii) ||(I − Pn)A∗η||`∞ ≤ µ,
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(iii) ‖η‖Y ∗ ≤ γn for all ξ as in (1.4).

We cite [12, Proposition 12] to clarify the relation between Assumption
1 and Property 2.

Proposition 3. Let Assumption 1 hold. Then the following statements are
equivalent:

i) For every 0 < µ < 1 and every ξ as in Property 2, there is η ∈ Y ∗ such
that Property 2 holds.

ii) ei ∈ R(A∗) ∀i ∈ N where the closure is taken w.r.t. the norm in `∞

iii) R(A∗) = c0, i.e., the Banach space of sequences converging to zero

iv) A is injective

Thus letting A injective and weak∗-to-weak continuous allows to work
with Property 2. In the context of the development of regularization the-
ory for `1-regularization, item ii) is very interesting. For a survey and on
`1-regularization theory we refer to [19]. We will give a brief summary here.
The seminal paper [1] sparked the investigation of sparsity-promoting in-
version methods, with `1-regularization being one of the most prominent
examples. In the context of inverse and ill-posed problems the question of
convergence rates is of highest interest, i.e., one is interested in estimates of
the form

||x†α − x†|| ≤ Cϕ(δ) (1.5)

where C is a positive constant and ϕ an index function (a continuous, con-
cave and monotonically increasing function with ϕ(0) = 0). First results
where already given in [1]. Later the focus shifted to sparse solutions, where
x† as solution of the unperturbed equation (1.1) has only finitely many non-
zero elements. Convergence rates in this case can be found in, e.g., [20, 9, 8]
using different kinds of smoothness properties of A and x† to derive the rate.
Recently the case that x† is an infinite sequence in `1 has gathered attention,
starting with the paper [2]. There, a smoothness condition on the canonical
basis with respect to the operator is crucial. Namely, the authors assume
that for each i ∈ N there is fi ∈ Y ∗ such that A∗fi = ei, i.e.,

ei ∈ R(A∗) ∀i ∈ N. (1.6)

Such a condition already appeared in [20] and can be traced back to [13].
While such a condition holds for various types of inverse problems, see [14], it
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does not hold in general. A counterexample was presented in [15]. This lead
to relaxed assumptions similar to (1.6) in [15] and [16]. The assumption
made in [16] in principle coincides with Property 2. It is an important
contribution of [12] to show such an assumption (Property 2 in this paper)
is already a consequence of Assumption 1. In this sense, (1.6) is generalized
to item ii) in Proposition 3. Please note that (1.6) implies Property 2 with
µ = 0.

All proofs for convergence rates in the literature rely on some condition
relating the smoothness of the solution and the smoothing properties of
the operator. Classically such a relation is expressed via the assumption
x† ∈ R((A∗A)ν) for some ν > 0, see for example [5, 6]. In recent years,
variational inequalities (sometimes also called variational source conditions)
have been used as linking condition. For `1-regularization it was shown in
[2] that the inequality

||x− x†||`1 ≤ ||x||`1 − ||x†||`1 + ϕ(||Ax−Ax†||Y ) (1.7)

holds for all x ∈ `1. There, ϕ is given via

ϕ(t) := 2 inf
n∈N

(
γnt+ ||(I − Pn)x†||`1

)
(1.8)

with γn =
∑n

i=1 ||fi||Y ∗ where due to assuming (1.6) the fi ∈ Y ∗ are such
that A∗fi = ei, i ∈ N. From (1.7) and (1.8), a convergence rate of the form
(1.5) with the same ϕ as in (1.8) follows by standard arguments. These can
be found, e.g., in [3].

The aim of this paper is to show that such a link condition as for example
the variational inequality (1.7) is not necessary to obtain convergence rates.
In Section 2 we provide a proof of the following Theorem 4 leading to essen-
tially the same function ϕ as in (1.8) in an elementary way. In Section 3 we
investigate a particular operator for which we can calculate a convergence
rate as in (1.8) explicitly and show that the theoretical rate is achieved in
numerical experiments.

Theorem 4. Let A : `1 → Y be a bounded and injective linear operator that
is additionally weak∗-to-weak continuous, i.e., fulfills Assumption 1. Then
there is an index function ϕ : [0,∞)→ [0,∞) of the form

ϕ(t) := inf
n∈N

(
(1 + µ)

∞∑
k=n+1

|x†k|+ γnt

)
, (1.9)

with µ and γn from Property 2 such that

||x†α − x†|| ≤ Cϕ(δ)
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holds with a constant C > 0 whenever the regularization parameter is chosen
a priori such that c1

δp

ϕ(δ) ≤ α(δ) ≤ c2
δp

ϕ(δ) for some 0 < c1 ≤ c2 < ∞ or a

posteriori via the two-sided discrepancy principle, i.e., xδα satisfies

τ1δ ≤ ||Axδα − yδ||Y ≤ τ2δ

for some 1 < τ1 ≤ τ2.

In the proof we will explicitly work out the constants C. We avoided
noting them down here due to their complicated structure. Without go-
ing into further details we would like to remark that the case of a sparse
exact solution x†, i.e. supp(x†) ⊆ {1, . . . , n0}, n0 ∈ N, is covered in our
assumptions. We then obtain

ϕ(δ) = γn0+1δ

which is the known linear rate.

2 Proof of the main theorem

First observe that for arbitrary n ∈ N we can split

||xδα − x†||`1 = ||(I − Pn)(xδα − x†)||`1 + ||Pn(xδα − x†)||`1 (2.1)

with the projectors Pn from (1.3) and using the triangle inequality we get

||xδα − x†||`1 ≤ ||(I − Pn)xδα||`1 + ||Pn(xδα − x†)||`1 + ||(I − Pn)x†||`1 . (2.2)

We start with the term in the middle of the right-hand side. It is for some
ξ ∈ `∞ as in Property 2 and by Property 2

||Pn(xδα − x†)||`1 = 〈ξ, xδα − x†〉`∞×`1 = 〈PnA∗η, xδα − x†〉`∞×`1
= 〈PnA∗η −A∗η, xδα − x†〉`∞×`1 + 〈A∗η, xδα − x†〉`∞×`1
= −〈(I − Pn)A∗η, (I − Pn)(xδα − x†)〉`∞×`1 + 〈A∗η, xδα − x†〉`∞×`1
≤ µ||(I − Pn)(xδα − x†)||`1 + γn||Axδα −Ax†||Y .

From here we obtain

||Pn(x−x†)||`1 ≤ µ||(I−Pn)xδα||`1 +µ||(I−Pn)x†||`1 +γn||Ax−Ax†||Y (2.3)

which plugged into (2.2) yields

||xδα−x†||`1 ≤ (1+µ)||(I−Pn)xδα||`1+γn||Axδα−Ax†||Y +(1+µ)||(I−Pn)x†||`1 .
(2.4)

5



If A is factored through a Hilbert space and the basis is smooth enough such
that (1.6) holds (and consequently µ = 0), then the step from ||Pn(xδα −
x†)||`1 to γn||Axδα−Ax†||Y corresponds to the observation that the operator
is no longer ill-posed but merely ill-conditioned when operating on a finite
dimensional subspace, the condition number being based on the dimension
of the subspace.

We continue with the right-most term in (2.2) and (2.4) which describes
the smoothness of the solution as it measures the behavior of the tail of x†.
It is simply

||(I − Pn)x†||`1 =
∞∑

i=n+1

|x†i |. (2.5)

For now we neglect the term ||(I−Pn)xδα||`1 = 0 in (2.4) as obviously in the
best possible case it vanishes. In this case we have

||xδα − x†||`1 ≤ γn||Axδα −Ax†||Y + (1 + µ)
∞∑

i=n+1

|x†i |

and its lowest value is given by taking the infimum over all n. Therefore we
define

ϕ(t) := inf
n∈N

γnt+ (1 + µ)

∞∑
i=n+1

|x†i | (2.6)

which is the same rate as (1.8) but with a smaller constant. Therefore the
proof that ϕ constitutes an index function is as in [2, Theorem 5.2].

The splitting of (2.2) is based on properties of the norm we measure the
error in. The rate (2.6) depends on the properties of A and the exact solution
x†. There are only two properties that have to be shown for a concrete
regularization method. First, one has to have an estimate of ||Axδα − Ax†||
which is usually not hard to obtain. More tricky is to show that the term
||(I−Pn)xδα||`1 , which we so far neglected, is not too large. It turns out that
for `1-regularization estimates for both terms can be derived directly from
the Tikhonov-functional (1.2).

Namely, it is

1

p
||Axδα − yδ||

p
Y + α||xδα||`1 ≤

1

p
||Ax† − yδ||pY + α||x†||`1 (2.7)

as the xδα are the minimizers of the functional. Now splitting the `1-terms
||x||`1 = ||Pnx||`1 + ||(I−Pn)x||`1 with x = xδα and x = x†, using the triangle
inequality

||Pnx†||`1 ≤ ||Pn(x† − xδα)||`1 + ||Pnxδα||`1 .
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and substracting the term ||Pnxδα||`1 from both sides we obtain

1

p
||Axδα − yδ||

p
Y + α||(I − Pn)xδα||`1

≤ 1

p
||Ax† − yδ||pY + α(||(I − Pn)x†||`1 + ||Pn(x† − xδα)||`1) (2.8)

Substituting (2.3) yields after reordering

1

p
||Axδα − yδ||

p
Y + α(1− µ)||(I − Pn)xδα||`1

≤ 1

p
||Ax† − yδ||pY + α((1 + µ)||(I − Pn)x†||`1 + γn||Axδα −Ax†||)

So far the dimension n was free. Now we fix it to be nϕ, which is where the
infimum in (2.6) is attained. For n = nϕ it is

γnϕ ||Axδα−Ax†)||+(1+µ)||(I−Pnϕ)x†||`1 = ϕ(||Axδα−Ax†||) ≤ 2ϕ(||Axδα−yδ||)
(2.9)

where for the last inequality we assumed that ||Ax − yδ||Y ≥ δ as in the
opposite case we have ϕ(||Axδα−Ax†||Y ) ≤ 2ϕ(δ) trivially. Note to this end
that for a concave index function ϕ it holds ϕ(C·) ≤ Cϕ(·), C ≥ 1, see [3].
With this (2.8) reads

1

p
||Axδα−yδ||

p
Y +α(1−µ)||(I−Pnϕ)xδα||`1 ≤

1

p
||Ax†−yδ||pY +2αϕ(||Axδα−yδ||).

(2.10)
Ignoring the second term on the left hand side and inserting the estimate
for the data error we have that

||Axδα − yδ||
p
Y ≤ δ

p + 2pαϕ(||Axδα − yδ||). (2.11)

From here we follow the lines of the proof of [3], Corollary 1, to deduce that
with the parameter choice

c1
δp

ϕ(δ)
≤ α ≤ c2

δp

ϕ(δ)
, 0 < c1 ≤ c2 <∞ (2.12)

it holds
||Axδα − yδ||Y ≤ c̃pδ. (2.13)

with
c̃p = (1 + 2pc2)

1/(p−1). (2.14)

7



We now move to the term ||(I − Pn)xδα||`1 by going back to (2.10) and
this time ignoring the first term on the left hand side. This yields, recalling
0 ≤ µ < 1,

α(1− µ)||(I − Pn)xδα||`1 ≤ ||Ax† − yδ||
p
Y + 2pαϕ(||Axδα − yδ||). (2.15)

Inserting the parameter choice (2.12) gives

||(I − Pnϕ)xδα||`1 ≤
δ2ϕ(δ)

2c1(1− µ)δ2
+

2p

1− µ
ϕ(||Axδα − yδ||) (2.16)

so that using (2.13)
||(I − Pnϕ)xδα||`1 ≤ c̄pϕ(δ) (2.17)

holds with

c̄p =
1

1− µ

(
1

2c1
+ 2pc̃p

)
.

Going back to (2.4) we have

||xδα − x†||`1 ≤ (1 + µ)c̄pϕ(δ) + ϕ(2c̃pδ) ≤ cpϕ(δ) (2.18)

with the constant

cp =
1

1− µ

(
1 + µ

2c1
+ 4(1 + 2pc2)

1/(p−1)
)
.

In practice, an explicit expression for ϕ(δ) is only available in special cases,
rendering the a-priori choice (2.12) useless otherwise. One way out of this
dilemma is to use a discrepancy principle for the choice of the parameter.
We shall employ here the strong discrepancy principle, i.e., given 1 < τ1 ≤ τ2
we select α such that

τ1δ ≤ ||Axδα − yδ|| ≤ τ2δ. (2.19)

At first let us show that under the assumption ||Axδα − yδ|| > τ1δ for τ1 > 1
the regularization parameter can not become too small. We have from (2.10)

0 ≤ δp − ||Axδα − yδ||
p
Y + 2pαϕ(||Axδα −Ax†||) (2.20)

(Note that we changed the argument of ϕ(·) back to the basic estimate which
is a tighter upper bound, see (2.11)). It follows with the same argumentation
as in [3] that

α ≥ 21−p
τp1 − 1

τp1 + 1
Φ((τ1 − 1)δ). (2.21)
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with Φ(t) := t2

ϕ(t) . This also explains why we need to require τ1 > 1 in

(2.19).
In order to show that the discrepancy principle (2.19) yields the same

convergence rate as the a-priori choice, we need to show again that ||Axδα −
yδ|| ≤ Cδ and ||(I − Pnϕ)xδα||`1 ≤ Cϕ(δ) hold with appropriate constants.
The first property follows trivially from (2.19) with C = τ2. The second one
follows since (2.15) yields, together with (2.19),

||(I − Pn)xδα||`1 ≤
1

2(1− µ)

δ2

α
+ 2ϕ(τ2δ). (2.22)

Namely, inserting (2.21) with τ = τ1 results in the inequality

||(I − Pn)xδα||`1 ≤ c̃ϕ(δ)

where the constant c̃ is given by the expression

c̃ =
1

2p(1− µ)

(τ1 − 1)(1−p)(τp1 + 1)

τp1 − 1
+ 2τ2

This proves
||xδα − x†||`1 ≤ cϕ(δ).

with c = c̃+ 2τ2. This completes the proof.

Remark 5. By construction, the rate ϕ in (2.6) is not only the optimal
convergence rate for `1-regularization but for any regularization method
that measures the regularization error in the `1-norm. We speak of optimal
here in the sense that the rate depends on the parameters γn which are
usually difficult to obtain, even more so with a sharp estimate. As seen
above, however, in particular the discrepancy principle does not need any
information on the γn. We assume that the optimal combination of the
parameters µ and γn in Property 2 is selected automatically but further
investigation is necessary in this direction.

3 Case study: a diagonal operator

Examples of convergence rates of type (1.8),(2.6) can be found in [2, 14, 16,
15]. We will not recall them but focus on a particular problem for which we
improve the known convergence rate and show that numerically our rate is
achieved.
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We consider the case of a compact operator between Hilbert spaces.
This allows us to use its singular system for the calculus. Assume Ã : X̃ →
Y to be a compact linear operator between infinite dimensional separable
Hilbert spaces X̃ and Y . Hence Ã has the singular system {σi, ui, vi}i∈N
with decreasingly ordered singular values σi tending to zero and {ui}, {vi}
are complete orthonormal systems in X̃ and R(A), respectively. We have
Ãui = σivi and Ã∗vi = σiui. Since we consider Hilbert-spaces, we may
identify the dual spaces with the original ones. Hence Ã∗ : Y → X̃.

Using the {ui} as Schauder basis in X̃ we write any x̃ ∈ X̃ via x̃ =∑
i∈N xiui where xi = 〈x̃, ui〉 with the scalar product in X̃. The synthesis

operator L : `2 → X̃ maps the variables x = {xi}i∈N ∈ `2(N) to an element
x̃ as above. Using the embedding E : `1 → `2 we finally obtain our linear
bounded operator A : `1 → Y via the composition A = Ã ◦ L ◦ E . This is a
diagonal operator since Aei = Ãui = σivi for all i ∈ N. It fulfills (1.6) since
A∗ viσi = ei. In particular we may choose µ = 0 in the following. In general
it will still be difficult to calculate the convergence rate in (2.6). In order to
keep the computations simple and to be able to track the constants, we will
therefore assume that σi = i−β and xi = 〈x, ui〉 = i−η for positive values β
and η > 1 (such that x† ∈ `1). We then have

∞∑
i=n+1

|x†i | =
∞∑

i=n+1

i−η ≤ 1

η − 1
n1−η.

In order to estimate γn in (2.6) we follow [17, Example 3.8] where it was
shown that

γn ≤ sup
ai∈{−1,0,1}
i=1,...,n

||
n∑
i=1

aifi||Y =

√√√√ n∑
i=1

1

σ2i
.

Instead of proceeding by estimating
√∑n

i=1
1
σ2
i
≤
∑n

i=1
1
σi

, however, we

evaluate the sum directly and take the square root afterwards. This leads
to

γn ≤

√√√√ n∑
i=1

1

σ2i
=

√√√√ n∑
i=1

i2β ≤
√

1

2β + 1
nβ+

1
2

in comparison to the original γn ≤ Cnβ+1, C > 0.
It is now simple calculus to find the convergence rate from (2.6). We

obtain

ϕ(δ) = cβδ
η−1

η+β− 1
2 (3.1)
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with the constant

cβ =

(
1

2

√
2β + 1

)− 1

η+β− 1
2 .

In comparison to the rates presented in [2, 17] this improves the exponent
from η−1

η+β to η−1
η+β− 1

2

and gives an explicit constant.

Finally we want to verify these rates numerically. In order to arrive at
the same setting as above we start with the Voltera operator

[Ãx](s) =

∫ s

0
x(t) dt. (3.2)

We then discretize Ã with the rectangular rule at N = 400 points. In order
to ensure our desired properties, we compute the SVD of the resulting matrix
and manually set its singular values σi to σi = i−β. This means that the
actual operator A in (1.1) is an operator possessing the same singular vectors
{ui} and {vi} as Ã, but different singular values {σi}. Using the SVD, we
construct our solution such that 〈x†, vi〉 = i−η holds for various values of
η > 0. We add random noise to the data y = Ax† such that ||y − yδ|| = δ.
The range of δ is such that the relative error is between 25% and 0.2%. The
solutions are computed via

xδα = argmin
1

2
||Ax− yδ||2 + α||x||`1 ,

where the `1-norm was taken of the coefficients with respect to the basis
originating from the SVD. The minimizer was obtained via iterative soft
shrinking [1]. The regularization parameter was chosen a priori according
to (2.12) with c1 = c2 = 1. The constant cp in (2.18) takes in our case
p = 2 the value cp = 20.5. We computed the reconstruction error in the `1
norm as well as the residuals. For larger values of η we could observe the
convergence rate directly. For smaller values of η, we had to compensate
for the error introduced by the discretization level. Namely, since we used
a discretization level N = 400, numerically we actually measured

||P400(x
δ
α − x†)||`1

with the projectors P as before being the cut-off after N = 400 elements.
In the plots of the convergence rates we show

||P400(x
δ
α − x†)||`1 + ||(I − P400)x

†||`1 . (3.3)

11



η α, a measured rate, e predicted rate, e residual, d

1.01 1.99 0.0065 0.0066 1.01
1.05 1.97 0.0332 0.0322 1.008
1.1 1.94 0.0625 0.0625 1.009
1.3 1.83 0.1691 0.1667 1.006
1.5 1.75 0.2588 0.25 1.005
2 1.6 0.3961 0.4 1.003

2.5 1.5 0.498 0.5 0.996

Table 1: Convergence rates for β = 1 and various values η. α in the form
α = δa. Measured and predicted regularization error in the form ||xδα −
x†||`1 = cδe, cf. (3.1). Residual in the form ||Axδα − yδ|| = cδd.

The second term can be calculated analytically and is supposed to correct
for the fact that we cannot measure the regularization error for larger coeffi-
cients, i.e., we add the tail of x† that can not be observed. For each fixed η, β
we calculated the regression for the conjecture ||xδα − x†|| = cδe. From the
theoretical part the constant c is given by c = cpcβ with cp from (2.18) and cβ
from (3.1). In the following tables we present observed convergence rates for
β = 1 and β = 2, respectively, and various values of η > 1. We provide the
exponent e of the rate according to the regression and compare it with the
theoretical exponent. In all tests we observed a nice fit. We also monitored
the constants. The theoretical upper bounds c ≈ 22.5.6 and c ≈ 19.6 for
β = 1 and β = 2, respectively, have not been exceeded, the highest observed
constant being c = 15.66. However as η increases the measured constant
decreases. For example for η = 2.5 and β = 1 we obtained c = 0.74. It is
an open topic to understand this behavior and tighten the constants in the
convergence rate. In the tables we additionally give the residual obtained
from another regression for the conjecture ||Axδα−yδ||2 = Cδd with d given.
This hovers nicely around the theoretical value d = 1. We observed hat
the theoretical constant C = cp = 5 from (2.14) is not hit as the observed
constant C obtained values between 1.1 and 1.4.

We only give examples for the a-priori parameter choice here. In our
experiments the discrepancy principle (2.19) yields essentially identical re-
sults.
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η α = δa, a measured rate, e predicted rate, e residual, d

1.01 1.996 0.0039 0.0038 0.999
1.05 1.97 0.02 0.0196 1.001
1.1 1.96 0.0388 0.0385 0.998
1.3 1.89 0.1063 0.1071 1.002
1.5 1.83 0.1681 0.1667 0.999
2 1.71 0.2864 0.2857 1.000

2.5 1.625 0.3617 0.375 1.002

Table 2: Convergence rates for β = 2 and various values η. α in the form
α = δa. Measured and predicted regularization error in the form ||xδα −
x†||`1 = cδe, cf. (3.1). Residual in the form ||Axδα − yδ|| = cδd.
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Figure 1: Exemplary observed convergence rate for η = 1.1, β = 2 and α =
1.96 according to (2.12). The regression for the conjecture ||xδα − x†|| = cδe

is given dashed.
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4 Conclusion

We have shown that convergence rates for `1-regularization can be derived
based on the tail of the true solution x† in `1 and the smoothness of the
operator expressed by Property 2. These define the rate. The strategy
of the proof is based on a splitting of the regularization error in a finite
dimensional part and two infinite dimensional tail terms. Using this, for
any regularization method one only has to show two properties. First it is
required that ||Axδα − yδ||Y ∼ δ and second one needs to control the tail of
the regularized solution in the `1-norm. For `1-regularization both estimates
can be derived directly from the Tikhonov-functional. For a specific problem
involving a diagonal operator we could verify that the predicted convergence
rates are achieved numerically.
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