
On the lifting of deterministic convergence rates

for inverse problems with stochastic noise

Daniel Gerth∗, Andreas Hofinger†, Ronny Ramlau‡

July 14, 2017

Abstract

Both for the theoretical and practical treatment of Inverse Problems,
the modeling of the noise is a crucial part. One either models the measure-
ment via a deterministic worst-case error assumption or assumes a certain
stochastic behavior of the noise. Although some connections between both
models are known, the communities develop rather independently. In this
paper we seek to bridge the gap and show convergence and convergence
rates for Inverse Problems with stochastic noise by lifting the theory estab-
lished in the deterministic setting into the stochastic one. This opens the
wide field of deterministic regularization methods for stochastic problems
without having to do an individual stochastic analysis for each problem.

In Inverse Problems, the model of the inevitable data noise is of utmost
importance. In most cases, an additive noise model

ynoisy = y + ε (1)

is assumed. In (1), y ∈ Y is the true data of the unknown x ∈ X under the
action of the (in general) nonlinear operator F : X → Y,

F (x) = y, (2)

and ε in (1) corresponds to the noise. The spaces X ,Y are assumed to be
Banach- or Hilbert spaces. When speaking of Inverse Problems, we assume
that (2) is ill-posed. In particular this means that solving (2) for x with noisy
data (1) is unstable in the sense that “small” errors in the data may lead to
arbitrarily large errors in the solution. Hence, (1) is not a sufficient description
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of the noise. More information is needed in order to compute solutions from the
data in a stable way. In the deterministic setting, one assumes

dY(y, yδ) ≤ δ (3)

for some δ > 0 where dY(·, ·) is an appropriate distance functional. Typically,
dY is induced by a norm such that (3) reads ||y − yδ|| ≤ δ. Here and further
on we use the superscript ·δ to indicate the deterministic setting. Solutions
of (2) under the assumption (1),(3) are often computed via a Tikhonov-type
variational approach

xδα = min
x∈D(F )

dY(F (x), yδ) + αΦ(x) (4)

where again dY is a distance function and Φ(·) is the penalty term used to
stabilize the problem and to incorporate a-priori knowledge into the solution.
The regularization parameter α is used to balance between data misfit and the
penalty and has to be chosen appropriately. The literature in the deterministic
setting is rich, at this point we only refer to the monographs [1, 2, 3] for an
overview.

The deterministic worst-case error stands in contrast to stochastic noise mod-
els where a certain distribution of the noise ε in (1) is assumed. We shall indicate
the stochastic setting by the superscript ·η. In this paper, η will be the param-
eter controlling the variance of the noise. Depending on the actual distribution
of ε, dY(y, yη) may be arbitrarily large, but with low probability. In the Inverse
Problems community, the Bayesian approach appears to be the most common
method to find a solution of (2). For more detailed information, we refer to
[4, 5, 6, 7, 8]. In the Bayesian setting, the solution of the Inverse Problem is
given as a distribution of the random variable of interest, the posterior distri-
bution πpost, determined by Bayes formula

πpost(x|yη) =
πε(y

η|x)πpr(x)

πyη (yη)
. (5)

That is, roughly spoken, all values x are assigned a probability of being a so-
lution to (2) given the noisy data yη. In (5), the likelihood function πε(y

η|x)
represents the model for the measurement noise whereas the prior distribution
πpr(x) represents a-priori information about the unknown. The data distribu-
tion πyη (yη) as well as the normalization constants are usually neglected since
they only influence the normalization of the posterior distribution. In practice
one is often more interested in finding a single representation as solution instead
of the distribution itself. Popular point estimates are the conditional expectation
(conditional mean, CM)

E(πpost(x|yη)) =

∫
xπpost(x|yη)dx (6)

and the maximum a-posteriori (MAP) solution

xMAP = argmax
x

πpost(x|yη), (7)
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i.e., the most likely value for x under the prior distribution given the data
yη. Both point estimators are widely used. The computation of the CM-
solution is often slow since it requires repeated sampling of stochastic quan-
tities and the evaluation of high-dimensional integrals. The MAP-solution,
however, essentially leads to a Tikhonov-type problem. Namely, assuming
πε(y

η|x) ∝ exp(−dY(F (x), yη)) and πpr(x) ∝ exp(−αΦ(x)), one has

xMAP = argmax
x

exp(−dY(F (x), yη)) exp(−αΦ(x))

= argmin
x

dY(F (x), yη) + αΦ(x)

analogously to (4).
Also non-Bayesian approaches for Inverse Problems often seek to minimize

a functional (4), see e.g. [9, 10] or use techniques known from deterministic
theory such as filter methods [11, 12]. Finally, Inverse Problems appear in the
context of statistics. Hence, the statistics community has developed methods
to solve (2), partly again based on the minimization of (4). We refer to [13] for
an overview.

In summary, Tikhonov-type functionals (4) and other deterministic methods
frequently appear also in the stochastic setting. From a practical point of view,
one would expect to be able to use deterministic regularization methods for (2)
even when the noise is stochastic. Indeed, the main question for the actual
computation of the solution, given a particular sample of noisy data yη, is the
choice of the regularization parameter. A second question, mostly coming from
the deterministic point of view, is the one of convergence of the solutions when
the noise approaches zero. In the stochastic setting these questions are answered
often by a full stochastic analysis of the problem. In this paper we present
a framework that allows to find appropriate regularization parameters, prove
convergence of regularization methods and find convergence rates for Inverse
Problems with a stochastic noise model by directly using existing results from
the deterministic theory.

The paper takes several ideas from the dissertation [14], which to our best
knowledge is only publicly available as book [15]. It is organized as follows. In
Section 1 we discuss an issue occurring in the transition from deterministic to
stochastic noise for infinite dimensional problems. The Ky Fan metric, which
will be the main ingredient of our analysis, and its relation to the expectation
will be introduced in Section 2. We present our framework to lift convergence
results from the deterministic setting into the stochastic setting in Section 3.
Examples for the lifting strategy are given in Section 4.

1 On the noise model

Before addressing the convergence theory, we would like to discuss stochastic
noise modeling and its intrinsic conflict with the deterministic model. Here and
throughout the rest of the paper, assume

(Ω,F ,P) (8)
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to be a complete probability space with a set Ω of outcomes of the stochas-
tic event, F the corresponding σ-algebra and P a probability measure, P :
(Ω,F)→ [0, 1]. We restrict ourselves here to probability measures for the sake
of simplicity. Extensions to more general measures are straightforward. In the
Hilbert-space setting, the noise is typically modeled as follows, see for example
[16, 1, 12, 17]. Let ξ : Ω→ Y be a stochastic process. Then for y ∈ Y

〈y, ξ〉 (9)

defines a real-valued random variable. Assuming that

E(〈ỹ, ξ〉2) <∞ (10)

for all ỹ ∈ Y and that this expectation is continuous in ỹ,

E(〈ỹ, ξ〉〈y, ξ〉)

defines a continuous, symmetric nonlinear bilinearform. In particular, there
exists the covariance operator

C : Y → Y

with
〈Cỹ, y〉 = E(〈ỹ, ξ〉〈y, ξ〉).

For the stochastic analysis of infinite dimensional problems via deterministic
results, (9) is problematic. Namely, if {un}n∈N is an orthonormal basis in Y,
the set {〈un, ξ〉}n∈N consists of infinitely many identically distributed random
variables with 0 < E|〈un, ξ〉|2 = const <∞ [1]. Thus

E

( ∞∑
n=1

|〈un, ξ〉|2
)

(11)

is almost surely infinite and a realization of the noise is an element of the Hilbert
space Y with probability zero. Let us take the common example of Gaussian
white noise which can be modeled via the above construction. Namely, with

E(〈y, ξ〉) = 0 ∀y ∈ Y

and the covariance operator
C = η2I,

where I is the identity and η > 0 the variance parameter, the Gaussian white
noise is described [1, 17]. As consequence of (11) and explained for example in
[17], a realization of such a Gaussian random variable is an element of an infinite
dimensional L2-space with probability zero. It is therefore inappropriate to use
an L2-norm for the residual in case of an infinite dimensional problem. Since in
this case a realization of Gaussian white noise only lies (almost surely) in any
Sobolev space Hs with s < −d/2 where d is the dimension of the domain, one
should adjust the norm for the residual accordingly. Except for the paper [17]
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this issue seems not to have been addressed in the literature. A main reason for
this might be that for the practical solution of the Inverse Problem this is not
a severe issue since in reality the measurements are finite dimensional and, in
order to use a computer to solve the problem, a finite dimensional approximation
of the unknown has to be used. In this case the sum in (11) is finite and the
noise lies within the finite dimensional space almost surely. However, difficulties
arise whenever one seeks to investigate convergence of the discretized problem
to its underlying infinite dimensional problem. We will not address this issue
and assume throughout the whole work that E||ε|| < ∞ or use the slightly
weaker bound on the Ky-Fan metric (see Section 2). In order to handle the
Ky Fan metric we need to be able to evaluate probabilities P(||y − yη|| > ε),
0 ≤ ε ≤ 1, which is only meaningful if y − yη =: ε ∈ Y. Assuming that
Y is finite dimensional, then this is clear. For infinite dimensional problems,
however, we have to assume that the noise is smooth enough for the sum in (11)
to converge. Examples for this are Brownian noise (1/f2-noise) or pink noise
(1/f -noise), see e.g. [18, 19]. At this point we would also like to mention that
as a consequence of our rather generic noise model we might not make use of
some specific properties of the noise as would be possible when focusing on a
particular distribution of the noise. However, we are able to show convergence
for a large variety of regularization methods.

2 The Ky Fan metric

The Ky Fan metric (cf. [20]) will be the main tool for our stochastic convergence
analysis. It is defined as follows.

Definition 2.1. Let X1 and X2 be random variables in a probability space
(Ω,F ,P) with values in a metric space (χ, dχ). The distance between X1 and
X2 in the Ky Fan metric is defined as

ρK(X1, X2) := inf
ε>0
{P({ω ∈ Ω : dχ(X1(ω), X2(ω)) > ε}) < ε}. (12)

We will often drop the explicit reference to ω. This metric essentially al-
lows to lift results from a metric space to the space of random variables as the
connection to the deterministic setting is inherent via the metric dχ used in its
definition. The deterministic metric is often induced by a norm || · ||. We will
implicitly assume that equation (2) is scaled appropriately since ρK(X1, X2) ≤ 1
∀X1, X2 by definition. Note that one can use definition (12) also if dX is a more
general distance function than a metric. Then the construction (12) itself is no
longer a metric, however, the techniques used in later parts of the paper can
readily be expanded to this setting.

An immediate consequence of (12) is that ρK(X1, X2) = 0 if and only if
X1 = X2 almost surely. Convergence in the Ky Fan metric is equivalent to
convergence in probability, i.e., for a sequence {Xk}k∈N ∈ X and X ∈ X one
has

ρK(Xk, X)
k→∞−→ 0 ⇔ ∀ε > 0 : P(dX (Xk, X) > ε)

k→∞−→ 0.
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Hence convergence in the Ky Fan metric also leads to pointwise (almost sure)
convergence of certain subsequences in the metric dχ [21].

A somewhat more intuitive and more frequently used metric is the expec-
tation, or more general, a (stochastic) Lp metric. Assuming its existence, for
random variables Y1 and Y2 with values in a metric space (χ, dY),

E(dY(Y1, Y2)p) =

∫
Ω

dY(Y1, Y2)pdP(ω)

defines the p-th moment of dY(Y1, Y2) for p ≥ 1. We will use p = 1 and refer to
it as convergence in expectation. Note that since the variance is defined as

Var(dY(Y1, Y2)) = E(dY(Y1, Y2)2)− E(dY(Y1, Y2))2 ≥ 0

one always has
E(dY(Y1, Y2)) ≤

√
E(dY(Y1, Y2)2). (13)

We will show later that for parameter choice rules the expectation of the noise
has to be slightly overestimated, hence estimating E(dY(y, yη)) via the popular
and often easier to compute L2-norm E(dY(y, yη)2) with (13) is not problematic.

It is well-known that convergence in expectation implies convergence in prob-
ability, see for example [21]. Hence, convergence in the Ky Fan metric is implied
by convergence in expectation (and also by convergence of higher moments).
Namely, with Markovs inequality one has, for an arbitrary nonnegative random
variable X with E(X) <∞ and C > 0

P(X > C) ≤ E(X)

C
. (14)

Under an additional assumption, one can show conversely that convergence in
probability implies convergence in expectation. We have the following definition.

Definition 2.2 ([22], Definition A.3.1.). Let (Ω,F ,P) be a complete probability
space. A family G ⊂ L1(P) is called uniformly integrable if

lim
C→∞

sup
x∈G

∫
|x|>C

|x(t)|P(dt) = 0

Theorem 2.1 ([22], Theorem A.3.2.). Let {xk}k∈N ⊂ L1(P) be a sequence
convergent almost everywhere (or in probability) to a function x. If the sequence
{xk}k∈N is uniformly integrable, then it converges to x in the norm of L1(P).

From a practical point of view, uniform integrability of a sequence of regular-
ized solutions to an Inverse Problem is a rather natural condition. Since Inverse
Problems typically arise from some real-world application, it is to be expected
that the true solution is bounded. For example, in Computer Tomography, the
density of the tissue inside the body cannot be arbitrarily high. Although for an
Inverse Problem with a stochastic noise model, boundedness of the regularized
solutions can not be guaranteed due to the possibly huge measurement error,
one can enforce the condition from a priori knowledge of the solution.
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Assumption 2.2. Assume that the true solution x† fulfills ||x†|| ≤ % and |x†| ≤
C globally for some fixed %, C > 0.

Under this assumption, let {xη(k)
k }k∈N be a sequence of regularized solution

for noisy data with variance η(k)
k→∞→ 0. Let C1, C2 > 1 and define

x̃ηk :=

{
xηk, ||x

η
k|| ≤ C1%, |xηk| ≤ C2C

0, otherwise
. (15)

Then the sequence {x̃ηk}k∈N is uniformly integrable. In other words, by dis-
carding solutions that must be far away from the true solution in regard of
a priori knowledge, convergence in the Ky Fan metric implies convergence in
expectation.

To close this section, let us remark on the computation of the Ky Fan dis-
tance. It can be estimated via the moments of the noise.

Theorem 2.3. Let Y1, Y2 be random variables in a complete probability space
(Ω,F ,P) and E(dY(Y1, Y2)s) <∞ for some s ∈ N. Then

ρK(Y1, Y2) ≤ s+1
√

E(dY(Y1, Y2)s) (16)

Proof. One has, due to Markov’s inequality (14) and the monotonicity of the
mapping z 7→ zs for z ≥ 0,

P(dY(Y1, Y2) > C) = P(dY(Y1, Y2)s > Cs) ≤ E(dY(Y1, Y2)s)

Cs

for C ≥ 0. Solving C = E(dY(Y1,Y2)s)
Cs for C yields the claim.

Note that even if moments exist for all s ∈ N

lim
s→∞

s+1
√
E(dY(Y1, Y2)s) 6= E(dY(Y1, Y2)),

see [14, 23], due to the tail of the distributions. In the Gaussian case, a direct
estimate has been derived in [24, 25]. We present it in Proposition 3.6.

3 Convergence in the stochastic setting

3.1 Deterministic Inverse Problems with stochastic noise

As mentioned previously, the intention of this paper is to show convergence
for Inverse Problems under a stochastic noise model using results from the de-
terministic setting. Assume we have at hand a deterministic regularization
method of our liking for the solution of (2) under the noisy data (1) where now
dY(y, yδ) ≤ δ for some δ > 0. Under regularization method we understand a
(again possibly) nonlinear mapping

Rα : D(Rα) ⊂ Y → X , yδ 7→ xδα (17)
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where xηα = Rα(yη) is the regularized solution to the regularization parameter
α given the data yη. Often, xδα is obtained via the minimization of functionals
of the type (4). In order to deserve the name regularization we require Rα to
fulfill

lim
δ→0
||Rα(yδ)− x†|| = 0 (18)

under a certain choice of the regularization parameter α chosen either a priori
α = α(δ) or a posteriori α = α(δ, yδ). In our notation x† is the true solution,
usually the minimum norm solution with respect to the penalty Φ in (4), i.e.,

Φ(x†) ≤ Φ(x̄) for all x̄ : F (x̄) = y.

Note that, in particular for nonlinear problems, x† does not need to be unique.
In [14, 15] it was pointed out that this is problematic for the lifting arguments.
A standard argument in the deterministic theory is to prove convergence of sub-
sequences to the desired solution, and then deduces convergence of the whole
series of regularized solutions if possible. In the stochastic setting, this is not
possible in general since subsequences for different ω do not have to be related.
A constructed example for this behavior can be found in Section 4.1. of [14, 15].
In order to lift general deterministic regularization methods into the stochastic
setting we must therefore require that x† is unique. We formulate our con-
vergence results allowing the noise to be bounded in the Ky fan metric or in
expectation. As we will see, in the latter case we have to “inflate” the expecta-
tion for decreasing variance η in order to obtain convergence. For the analysis
we mainly use a lifting argument using deterministic theory. In [14, 15, Theorem
4.1], it was proved how by means of the Ky Fan metric deterministic results can
be lifted to the space of random variables for nonlinear Tikhonov regulariza-
tion. Since the theorem is based solely on the fact that there is a deterministic
regularization theory and that the probability space Ω can be decomposed into
a part where the deterministic theory holds and a small part where it does not,
it is easily generalized. Before we state the Theorem, we need the following
Lemmata.

Lemma 3.1. ([26], see also [21]) Let (Ω,F ,P) be a complete probability space.
Let xk and x be measurable functions from Ω into a metric space χ with metric

dχ. Suppose xk(ω)
dχ→ x(ω) for P-almost all ω ∈ Ω.Then for any ε > 0 there is

a set Ω̃ with P(Ω\Ω̃) < ε such that xk
dχ→ x(ω) uniformly on Ω̃, that is

lim
k→∞

sup{dχ(xk(ω), x(ω)) : ω ∈ Ω̃} = 0.

Lemma 3.2 ([14, 15], Proposition 1.10). Let {xk}k∈N be a sequence of random
variables that converges to x in the Ky Fan metric. Then for any ν > 0 and
ε > 0 there exist Ω̃ ⊂ Ω, P(Ω̃) ≥ 1− ε, and a subsequence xkj with

dX (xkj (ω), x(ω)) ≤ (1 + ν)ρK(xkj , x) ∀ω ∈ Ω̃.

Furthermore there exists a subsequence that converges to x almost surely.
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Proof. We give a sketch of the proof for the first statement taken from [14, 15].
Set σk := (1 + ν)ρK(xk, x). By definition of the Ky Fan metric (12), for given
σk, there exists a set Ωσk with P(Ωσk) ≥ 1 − σk and ω ∈ Ωσk such that
dX (x(ω), xk(ω)) ≤ σk. For arbitrary ε > 0 and σk → 0 we pick a subsequence
(σkj ) with

∑∞
j=1 σkj ≤ ε and introduce the set Ω̃ :=

⋂∞
j=1 Ωσkj . One can check

that P(Ω̃) ≥ 1− ε. Since Ω̃ is a subset of every Ωσkj we have

∀ω ∈ Ω̃ ⊆ Ωσkj : dX (x(ω), xkj (ω)) ≤ σkj ,

which proves he first statement. The second one follows since convergence in
Ky Fan metric is equivalent to convergence in probability, which itself implies
almost-sure convergence of a subsequence, cf [21].

With this, we are ready for the convergence theorem which we shall split
in two parts, one for the Ky Fan metric as error measure and one for the
expectation.

Theorem 3.3. Let Rα be a regularization method for the solution of (2) in the
deterministic setting under a suitable choice of the regularization parameter.
Let now yη = y + ε(η) where ε(η) is a stochastic error such that ρK(y, yη)→ 0
as η → 0. Then, assuming (2) has a unique solution x† and all necessary
assumptions for the deterministic theory (except the bound on the noise) hold
with probability one, the regularization method Rα fulfills

lim
η→0

ρK(x†, Rα(yη)) = 0

under the same parameter choice rule as in the deterministic setting with δ
replaced by ρK(y, yη). If the regularized solutions are defined by (15) with regard
to Assumption 2.2, then it holds that

lim
η→0

E(dX (x†, Rα(yη))) = 0.

Proof. Denote xα(η) := Rα(yη). Define θ := lim supk→∞ ρK(x†, xα(ηk)). (Note
that 0 ≤ θ ≤ 1 due to the properties of the Ky Fan metric). We show in the
following that for arbitrary ε > 0 we have θ/2 ≤ ε and hence

lim sup
k→∞

ρK(x†, xα(ηk)) = lim
k→∞

ρK(x†, xα(ηk)) = 0.

As a first step we pick a “worst case” subsequence {yηkj } of {yηk}, a subse-
quence for which the corresponding solutions satisfy ρK(x†, xα(ηkj )) ≥ θ/2. We
now show that even from this “worst case” sequence we can pick a subsequence

{y
η
k
j
l } for which we have lim sup ρK(x†, xα(η

k
j
l

)) ≤ ε for arbitrary ε > 0.

Let ε > 0. According to Lemma 3.2 we can pick a subsequence {y
η
k
j
l } and a set

Ω̃ with P(Ω̃) ≥ 1 − ε
2 as well as dY(y(ω), y

η
k
j
l (ω)) ≤ (1 + ν)ρK(y, y

η
k
j
l ), ν > 0

arbitrarily small, on Ω̃. For all ω ∈ Ω̃, the noise tends to zero. We can therefore
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use the deterministic result with δ = ρK(y(ω), y
η
k
j
l ) and deduce that xα(η

k
j
l

)(ω)

converges to the unique solution x†(ω) for ηkjl
→ 0, ω ∈ Ω̃ where in the choice

of the regularization parameter δ is substituted by ρK(y(ω), y
η
k
j
l ). The conver-

gence is not uniform in ω; nevertheless, pointwise convergence implies uniform
convergence except on sets of small measure according to Lemma 3.1. Therefore
there exist Ω̃′ ⊂ Ω̃, P(Ω̃′) < ε

2 and j0 ∈ N such that dX (xα(η
k
j
l

)(ω), x†(ω)) < ε

∀ω ∈ Ω̃\Ω̃′ and j ≥ j0. We thus have

P
({

ω ∈ Ω̃ : dX (xα(η
k
j
l

)(ω), x†(ω)) > ε

})
≤ P(Ω̃′) ≤ ε/2.

Since we split Ω = Ω\Ω̃∪ Ω̃\Ω′ε ∪Ω′ε with P(Ω\Ω̃) < ε
2 , P(Ω\Ω̃) + P(Ω̃′) ≤ ε we

have shown existence of a subsequence ηkjl
such that

P
({

ω ∈ Ω : dX (xα(η
k
j
l

)(ω), x†(ω)) > ε

})
≤ ε

for ηkjl
sufficiently small. This ε is by definition of the Ky Fan metric an

upper bound for the distance between xα(η
k
j
l

) and x†. Therefore we have

lim supl→∞ ρK(xα(η
k
j
l

), x
†) ≤ ε. On the other hand, the original sequence

satisfied lim infj→∞ ρK(x†, xα(ηkj )) ≥ θ/2. Since lim infj→∞ ρK(x†, xα(ηk)) ≤
lim supl→∞ ρK(xα(η

k
j
l

), x
†) it follows θ/2 ≤ ε. Because ε > 0 was arbitrary, this

implies θ = 0, which concludes the proof of convergence in the Ky Fan metric.
Convergence in expectation follows from Theorem 2.1 noting that by (15) the
sequence of regularized solutions is uniformly integrable.

Theorem 3.4. Let Rα be a regularization method for the solution of (2) in the
deterministic setting under a suitable choice of the regularization parameter. Let
now yη = y + ε(η) where ε(η) is a stochastic error such that E(dY(y, yη)) → 0
as η → 0. Then, assuming (2) has a unique solution x† and all necessary
assumptions for the deterministic theory (except the bound on the noise) hold
with probability one, the regularization method Rα fulfills

lim
η→0

ρK(x†, Rα(yη)) = 0

under the same parameter choice rule as in the deterministic setting with δ
replaced by τ(η)E(dY(y, yη)) where τ(η) fulfills

τ(η)
η→0→ ∞ and lim

η→0
τ(η)E(dY(y, yη)) = 0. (19)

If the regularized solutions are defined by (15) with regard to Assumption 2.2,
then it holds that

lim
η→0

E(dX (x†, Rα(yη))) = 0.
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Proof. As previously we pick a “worst case” subsequence {yηkj } of {yηk}, a
subsequence for which the corresponding solutions satisfy ρK(x†, xα(ηkj )) ≥ θ/2.

Let ε > 0. We can now pick a subsequence which we again denote by {y
η
k
j
l }

fulfilling 2
τ(η

k
j
l

) ≤ ε, where without loss of generality t(ηkjl
) > 1, such that

P(ω : dY(y(ω)− y
η
k
j
l (ω)) > τ(ηkjl

)E(dY(y, y
η
k
j
l ))) ≤ 1

τ(ηkjl
)
≤ ε

2
.

This again defines, via the complement in Ω, Ω̃ with P(Ω̃) ≥ 1 − ε
2 on which

dY(y(ω), y
η
k
j
l (ω)) ≤ τ(ηkjl

)E(dY(y, y
η
k
j
l )). As before, we can now apply the

deterministic theory by substituting δ with τ(ηkjl
)E(dY(y, y

η
k
j
l )). The remainder

of the proof is identical to the one of Theorem 3.4.

The theorems justify the use of deterministic algorithms under a stochastic
noise model. Since the proof is solely based on relating the stochastic noise to
a deterministic one on subsets of Ω and does not use any specific properties of
the regularization methods or the underlying spaces, it opens most of the deter-
ministic methods for the a stochastic noise model. In particular, the parameter
choice rules from the deterministic setting are easily adapted.

As usual in deterministic literature, the general convergence theorem is fol-
lowed by convergence rates which are obtained under additional assumptions.
Often these conditions ensure at least local uniqueness of the true solution. If
not, we have to require such a property for the same reason as previously.

Theorem 3.5. Let Rα be a regularization method for the solution of (2) in the
deterministic setting such that, under a set of assumptions on the operator F
and the solutions x† and a suitable choice of the regularization parameter,

dX (x†, Rα(yδ)) ≤ ϕ(dY(y, yδ))

with a monotonically increasing right-continuous function ϕ.
Let now yη = y + ε(η) where ε(η) is a stochastic error such that

a) ρK(y, yη)→ 0 or

b) E(dY(y, yη))→ 0

as η → 0. Then, assuming all necessary assumptions for the deterministic
theory (except the bound on the noise) hold with probability one and that there
is (either by the deterministic conditions or by additional assumption) a (locally)
unique solution x† to (2), the regularization method Rα fulfills

ρK(x†, Rα(yη)) = O(max{ϕ(ρK(y, yη)), ρK(y, yη)})

in case a) or, respectively, in case b),

ρK(x†, Rα(yη)) = O(max{ϕ(τ(η)E(dY(y, yη))),P(dY(y, yη) ≥ τ(η)E(dY(y, yη)))})

11



under the same parameter choice rule as in the deterministic setting with δ
replaced by ρK(y, yη) (case a)) or τ(η)E(dY(y, yη)) where τ(η) fulfills (19) (case
b)).

Proof. We start again with the Ky Fan distance as noise measure. Since we
have the deterministic theory at hand, we know that dX (x†, Rα(yη)) ≤ Cϕ(δ)
whenever dY(y, yη) ≤ δ. With δ = ρK(y, yη) we have, since ϕ is monotonically
increasing and right continuous,

P(dX (x†, Rα(yη)) > ϕ(ρK(y, yη))) ≤ P(dY(y, yη) ≥ ρK(y, yη))

≤ 1− P(dY(y, yη) ≤ ρK(y, yη))

≤ 1− (1− ρK(y, yη)) = ρK(y, yη)

and hence by definition ρK(x†, Rα(yη)) = O(max{ϕ(ρK(y, yη)), ρK(y, yη)}).
If the expectation is used as measure for the data error, we have

P(dY(y, yη) ≥ τ(η)E(dY(y, yη))) ≤ 1

τ(η)

by Markovs inequality. Hence, with probability 1− 1
τ(η) we are in the determin-

istic setting with δ = τ(η)E(dY(y, yη)) and

P(dX (x†, Rα(yδ)) > ϕ(τ(η)E(dY(y, yη))))

≤ P(dY(y, yη) > τ(η)E(dY(y, yη))) ≤ 1

τ(η)
.

The convergence rate follows by the definition of the Ky Fan metric.

For Inverse Problems, the convergence rates are most often given by func-
tions which decay at most linearly fast, i.e.,

max{ϕ(ρK(y, yη)), ρK(y, yη)} = ϕ(ρK(y, yη)).

Hence in this case the convergence rates are preserved in the Ky Fan metric. For
the expectation this is not the case. We have to gradually inflate the expectation
by the parameter τ in order to obtain convergence (and rates). Let us discuss
the simple example of Gaussian noise in the finite dimensional setting, i.e. ε
from (1) consists of m ∈ N i.i.d. random variables εi ∼ N (0, η2Im) with zero
mean and variance η2. Then it has been shown in [23] that for any τ > 1

P(‖ε‖2 ≥ τE(‖ε‖2)) =
Γ(m2 , (τΓ(m+1

2 )/Γ(m2 ))2)

Γ(m2 )
(20)

with the gamma functions Γ(·) and Γ(·, ·) defined as

Γ(a) =

∫ ∞
0

ta−1e−tdt, Γ(a, z) =

∫ ∞
z

ta−1e−tdt.

In particular, (20) is independent of the variance η2. In order to to decrease the
probability to zero, we therefore have to link τ with the variance. For Gaussian
noise of the above kind the following estimate for the Ky Fan distance between
true and noisy data has been given in [24].

12



Proposition 3.6. Let ξ be a random variable with values in Rm. Assume that
the distribution of ε is N (0, η2Im) with σ > 0. Then it holds in (Rm, || · ||2) that

ρK(ε, 0) ≤ min

{
1,
√

2η

√
m−min

{
ln
(
η22πm2

(e
2

)m)
, 0
}}

. (21)

Recall that

E(||ε||2) = ηΓ

(
1 +m

2

)
/
(√

2Γ
(m

2

))
≤ η
√
m, (22)

see e.g. [23]. Comparing (21) and (22), one sees that E(||ε||2) < ρK(ε, 0) and in
particular the decay of ρK(ε, 0) slows down with decreasing η. In other words,
the artificial inflation we had to impose on the expectation is automatically
included in the Ky Fan distance which we suppose is the reason why the con-
vergence theory carries over in such a direct fashion for the Ky Fan metric.

For many nonlinear Inverse Problems the requirement of a unique solution
is too strong. Often one has several solutions of the same quality, in particular
there exists more than one minimum norm solution. In this case, Theorem
3.3 is not applicable. In the example [14, 15, Example 4.3 and 4.5] with two
minimum norm solutions the noise was constructed such that, while the error in
the data converges to zero, for each fixed ω ∈ Ω the regularized solutions jump
between both solutions such that no converging subsequence can be found. The
main problem there is that the Ky Fan distance cannot incorporate the concept
that all minimum norm solutions are equally acceptable. We will now define a
pseudo metric that resolves this issue.

Definition 3.1. Let (X , dX ) be a metric space. Denote with L the set of
minimum-norm solutions to (2). Then

ρLK(x) := inf
ε>0

{
P
(

inf
x†∈L

dX (x, x†) > ε

)
≤ ε
}

(23)

measures the distance between an element x ∈ X and the set L, in particular it
is

ρLK(x) = 0 ⇔ x ∈ L almost surely.

With this, one can define a pseudometric on (Ω,F ,P) via

ρLK(x1, x2) =: max{ρLK(x1), ρLK(x2)}. (24)

Obviously (24) is positive, symmetric and fulfills the triangle inequality. How-
ever, ρLK(x1, x2) = 0 does not imply x1 = x2 a.e. but instead x1 ∧ x2 ∈ L which
fixes the aforementioned issue of the Ky Fan metric and allows the following
theorems.

Theorem 3.7. Let Rα be a regularization method for the solution of (2) in the
deterministic setting under a suitable choice of the regularization parameter. Let
now yη = y + ε(η) where ε(η) is a stochastic error such that

13



a) ρK(y, yη)→ 0 or

b) E(dY(y, yη)) = f(η)→ 0

as η → 0. Then, assuming all necessary assumptions for the deterministic theory
(except the bound on the noise) hold with probability one, the regularization
method Rα fulfills

lim
η→0

ρLK(Rα(yη)) = 0

under the same parameter choice rule as in the deterministic setting with δ
replaced by ρK(y, yη) (case a)) or τ(η)E(dY(y, yη)) where τ(η) fulfills (19) (case
b)). In particular, the series of regularized solutions fulfills

lim
η1,η2→0

ρLK(Rα(yη1), Rα(yη2)) = 0

Proof. The proof follows the lines of the one of Theorem 3.3 with ρK(·, x†)
replaced by ρLK(·). Also Lemma 3.1 is easily adjusted to incorporate multiple
solutions.

So far we assumed that only the noise is stochastic whereas the operator
F and the unknown x were assumed to be deterministic. In [14, 15] general
stochastic Inverse Problems

F (x(ω), ω) = y(ω)

were considered. It was shown how deterministic conditions such as source con-
ditions can be incorporated into the stochastic setting by assuming that the
deterministic conditions hold with a certain probability. However, additional
conditions may occur when lifting these in order to ensure the deterministic
requirements up to a certain probability. Since this is easier seen given an ex-
ample, we move the discussion of the complete stochastic formulation in the next
section. Although we will address only one particular example, the technique
can be applied to general approaches.

3.2 Fully stochastic Inverse Problems

Due to the possible multiplicity of stochastic conditions which might appear in
this context it seems not possible to develop a lifting strategy in such a general
fashion as in the previous section. We will therefore consider two classical
examples, namely nonlinear Tikhonov regularization and Landweber’s method
for nonlinear Inverse Problems. The theory is taken completely from [14, 15].

3.2.1 Nonlinear Tikhonov Regularization

We seek the solution of a nonlinear ill-posed problem (2) via the variational
problem

xδα = argmin||F (x)− yδ||2 + α||x− x∗||2

14



with a reference point x∗ ∈ X and given noisy data yη according to (1) where
the stochastic distribution of the noise is assumed to be known. We shall skip
the general convergence theorem (which follows as in the previous section) and
move to convergence rates directly. In the deterministic theory, i.e. when yδ is
the noisy data with ||y − yδ|| ≤ δ, we have the following theorem from [2].

Theorem 3.8. Let D(F) be convex, yδ ∈ Y such that ||y − yδ|| ≤ δ and x†

denote the x∗-minimum norm solution of (2). Furthermore let the following
conditions hold.

a) F is Fréchet-differentiable

b) There exists γ ≥ 0 such that ||F ′(x†)−F ′(x)|| ≤ γ||x†−x|| in a sufficiently
large ball Bθ(x†) ∩ D(F )

c) x† − x∗ satisfies the source condition x† − x∗ = F ′(x†)∗v for some v ∈ Y.

d) The source element satisfies γ||v|| < 1.

Then for the choice α = cδ with some fixed c > 0 we obtain

||x† − xδα|| ≤
δ + α||v||

√
α
√

1− γ||v||
= O(

√
δ) and ||F (xδα)− yδ)|| = O(δ). (25)

As given in Theorem 4.6 of [14], the following stochastic formulation of
Theorem 3.8 holds.

Theorem 3.9. Let D(F) be convex, let yη be such that 0 ≤ ρK(y, yη) <∞ and
x† denote the x∗-minimum norm solution of (2) for almost all ω. Furthermore
let the following conditions hold.

a) F (., ω) is Frechet-differentiable for almost all ω

b) F ′(·, ω) satisfies

||F ′(x†(ω), ω)− F ′(x, ω)|| ≤ γ(ω)||x†(ω)− x||

in a sufficiently large ball Bθ(x†(ω)) ∩ D(F )

c) (smoothness) P(Ωsc) = 1 where

Ωsc := {ω : ∃v(ω), x†(ω)− x∗(ω) = F ′(x†(ω), ω)∗v(ω)}.

d) (closedness) P(ω ∈ Ωsc : γ(ω)||v(ω)|| > ξ) < φcl(ξ), limξ→1− φcl(ξ) = 0

e) (decay) P(ω ∈ Ωsc : ||v(ω)|| > τ) < ϕde(τ), limτ→∞ ϕde(τ) = 0.

Then for the choice α ∼ ρK(y, yη) we obtain

ρK(x†, xηα) ≤ inf
τ<∞
ξ∈(0,1)

max

{
ρK(y, yη) + ϕcl(ξ) + ϕde(τ),

√
ρK(y, yη)

O(1 + τ)√
1− ξ

}
.

(26)
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Proof. We have ||y − yη|| ≤ ρK(y, yη) with probability 1 − ρk(y, yη). Now fix
ξ < 1 and 0 < τ < ∞. Then with probability 1 − (ϕcl(ξ) + ϕde(τ)) conditions
d) and e) are fulfilled. Thus for the corresponding values of ω we can apply
Theorem 3.8 and obtain

||x†(ω)− xηα(ω)|| ≤ ρK(y, yη) + ατ√
α
√

1− ξ

or, fixing the parameter α ∼ ρK(y, yη),

||x†(ω)− xηα(ω)|| ≤
√
ρK(y, yη)

O(1 + τ)√
1− ξ

.

This estimate holds on a set with probability greater or equal 1− (ρK(y, yη) +
ϕcl(ξ) + ϕde(τ)). The Ky Fan distance can therefore be bounded as

ρK(x†, xηα) ≤ max

{
ρK(y, yη) + ϕcl(ξ) + ϕde(τ),

√
ρK(y, yη)

O(1 + τ)√
1− ξ

}
.

This estimate is valid for arbitrary choices of ξ and τ above, therefore we may
bound the Ky fan distance of x† and xηα by taking the infimum with respect to
ξ and τ .

The core principle of the lifting strategy is to ensure that there exists a
subset Ω̃ ⊂ (Ω) such that all deterministic assumptions hold with probability
one on Ω̃. This may lead to the introduction of new conditions such as the decay
condition in Theorem 3.9. Namely, since γ(ω) and ||v(ω)|| may vary with ω,
it may be possible that for a sequence {ωk}k∈N γ(ωk) → 0 and ||v(ωk)|| → ∞
such that still for all k ∈ N γ(ω(k))||v(ωk)|| < 1. In this case the parameter τ
cannot be treated as a constant in the convergence rate, but it influences it to
a significant degree. The decay condition had to be imposed in order to control
the growth of τ . It is, however, possible to avoid condition e) by imposing other
conditions. For example, one could require that γ(ω) is bounded below by some
0 < c < 1. In this case condition d) implies e). A more detailed discussion is
given in [14].

Accordingly, in order to lift other deterministic convergence rate results into
the fully stochastic setting, a careful examination of the conditions necessary for
convergence in the stochastic setting, understanding their cross-connections and
dependencies is important. However, once the conditions have been translated
to the stochastic setting, convergence rates follow immediately using the Ky
Fan metric. We will close this example by showing how particular choices of the
stochastic parameters in Theorem 3.9 influence the convergence rate. To this
end, we cite Remark 4.8 of [14].

Let in the first examples the operator be deterministic, i.e., F (·, ω) = F (·)
where γ(ω) = γ = 1.

First consider the case that ||v|| ∈ U [0, 1], i.e., it is uniformly distributed on
the interval [0, 1]. We therefore have ϕcl(ξ) = 1−ξ, as well as ϕde = 0 for τ > 1.
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Thus Theorem 3.9 implies

ρK(x†, xηα) ≤ inf
0<α<∞

inf
ξ∈(0,1)

max

{
ρK(y, yη) + 1− ξ,

√
ρK(y, yη)

ρK(y, yη) + α

α
√

1− ξ

}
which gives for α ∼ ρK(y, yη) the optimal rate

ρK(x†, xηα) = O(ρK(y, yη)1/3).

For the second case suppose that ϕde(τ) = cτ−e for some exponent e > 0. Since
now we do not have ϕcl(ξ)→ 0, but ϕcl ≥ c > 0 we obtain

ρK(x†, xηα) ≤ inf
0<α<∞

inf
t<∞
ξ∈(0,1)

max

{
c+ cτ−e,

√
ρK(y, yη)

ρK(y, yη) + α

α
√

1− ξ

}
.

Since the right hand side does not converge to zero we do not obtain a con-
vergence rate anymore. However, convergence itself still follows from Theorem
3.3.

Finally, consider the case when both d) and e) from Theorem 3.9 influ-
ence the convergence behavior, because F is stochastic with varying γ(ω).
For instance in the case the for some ω ∈ U [0, 1] we have x†(ω) = ωx† and
γ(ω) = 1−ω, we find that ϕcl(ξ) = 1− ξ and ϕde(τ) = c/(1 + τ) are compatible
realizations of ϕcl(·) and ϕde(·). With this one can show

ρK(x†, xηα) = O(ρK(y, yη)1/4)

under the parameter choice α ∼ ρK(y, yη)5/4. From the given examples it is
evident that the convergence speed is heavily influenced by the conditions d) and
e) in Theorem 3.9. Therefore, although the general formula for the convergence
rate (26) may suggest that the convergence rate is close to the deterministic
one, it may be significantly slower due to the additional stochastic properties.

3.2.2 Nonlinear Landweber iteration

As before we seek the solution of a nonlinear ill-posed problem (2) given noisy
data yη according to (1) where the stochastic distribution of the noise is assumed
to be known. Landweber’s method can be seen as a descent algorithm for
||F (x)− yδ||2 and is defined via the iteration

xδk+1 = xδk − γF ′(xδk)(F (xδk)− yδ), k = 1, 2, . . . , (27)

where γ > 0 is an appropriately chosen stepsize and xδ0 an initial guess. Landwe-
ber’s method constitutes a regularization method if it is stopped early enough
[2]. In the deterministic theory, i.e. when yδ is the noisy data with ||y−yδ|| ≤ δ,
we have the following theorem from [2] for convergence rates of the Landweber
method.

Theorem 3.10. Let D(F) be convex, yδ ∈ Y such that ||y − yδ|| ≤ δ and x†

denote the x∗-minimum norm solution of (2). Assume (2) has a solution in
Bϑ(x∗). Furthermore let the following conditions hold on B2ϑ(x∗).
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a) F is Frechet-differentiable with ||F ′(x)|| ≤ 1 and

||F (x)− F (x†)− F ′(x†)(x− x†)|| ≤ ζ||F (x)− F (x†)||, 0 < ζ <
1

2

b) F ′(x) = RxF
′(x†) where the bounded linear operators R satisfy ||Rx−I|| ≤

C||x− x†||

c) x†−x∗ satisfies the source condition x†−x∗ = (F ′(x†)∗F ′(x†))νv for some
v ∈ Y and 0 < ν ≤ 1

2 .

Let ||v|| be sufficiently small. Then, if the regularization parameter is stopped
according to the discrepancy principle, i.e., at the unique index k∗ for which for
the first time

||F (xk)− yδ|| ≤ τ̂ δ
with τ̂ > 2 1+ζ

1−2ζ > 2, we obtain

||x† − xδk∗ || ≤ c||v||
1/(2ν+1)δ2ν/(2ν+1). (28)

We can obtain a stochastic version of Theorem 3.10 with the same arguments
as Theorem 3.9 followed from Theorem 3.9.

Theorem 3.11. Let D(F) be convex, yδ ∈ Y with known value that ρK(y, yη)
and x†(ω) denote the x∗-minimum norm solution of (2). Assume (2) has a
solution in Bϑ(x∗(ω)) for almost all ω. Furthermore let the following conditions
hold on B2ϑ(x∗).

a) F ′(x, ω) = Rx,ωF
′(x†(ω), ω) where for almost all ω the set {Rx,ω : x ∈

Bϑ(x∗)} describes a family of bounded linear operators with

||Rx,ω − I|| ≤ C(ω)||x− x†(ω)||

b) x† − x∗ satisfies the source condition

x†(ω)− x∗(ω) = (F ′(x†(ω), ω) ∗ F ′(x†(ω), ω))νv(ω)

for some v(ω) ∈ Y and 0 < ν ≤ 1
2 .

c) P(ω ∈ Ω : C(ω)||v(ω)|| > c} < ϕcl(c)

d) P(ω ∈ Ω : ||v(ω)|| > τ) < ϕ(τ)

Then, if the regularization parameter is stopped according to the discrepancy
principle, i.e., at the unique index k∗ for which for the first time

||F (xk)− yη|| ≤ τ̂ ρK(y, yη)

with τ̂ > 2, we obtain for c0 > 0 sufficiently small the rate

ρK(x† − xηk∗) ≤

inf
0<τ≤∞

max
{
ρK(y, yη) + ϕcl(c0) + ϕde(τ), c̃τ1/(2ν+1)ρK(y, yη)2ν/(2ν+1)

}
where the constant c̃ depends on ν only.
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In the fully stochastic setting, the source condition b) from Theorem 3.11
need not hold with constant exponent ν for all ω ∈ Ω. There are at least two
situations which lead to the power ν being a stochastic quantity as well, i.e., it
holds

x†(ω) = (F ′(x†(ω), ω)∗F ′(x†(ω), ω))ν(ω)v(ω) (29)

with 0 < ν(ω) ≤ 1
2 .

In the first case all solutions x†(ω) come from some initial element v(ω) =
v ∈ Y, with small Y-norm. Some randomly smoothing operator is acting on
this element and generates x†(ω). (One could for instance think of some kind of
evolution process, e.g., a diffusion process that is applied to some initial value
v). The smoothness of x†(ω) is therefore random.

Secondly, x† may be a deterministic element satisfying a certain smoothness
condition. The data y(ω) is generated by applying a forward operator F (·, ω)
with random smoothness properties. If the realization of F (·, ω) is smoothing
strongly, this corresponds to a source condition with small ν(ω), if F (·, ω) is
smoothing weakly we have the source condition with larger ν(ω).

The following proposition shows the convergence rate that results from the
source condition (29) for the case that ν(ω) is uniformly distributed on the
interval [0, 1

2 ].

Theorem 3.12. Let all conditions of Theorem 3.11 hold except for b) and d).
Let x†(ω) satisfy (29) where ||v(ω)|| is uniformly bounded and sufficiently small.
Let

P
(
ω ∈ Ω : 0 ≤ ν(ω) < ν ≤ 1

2

)
= 2ν.

Then the approximations xηk∗ obtained by Landweber’s method satisfy the con-
vergence rate

ρK(x†, xηk∗) = O
(
W (− log(ρK(y, yδ))

− log(ρK(y, yδ)

)
(30)

where W denotes the Lambert W-function, defined by W (z)eW (z) = z, see [27].

Proof. As can be seen from the proof of Theorem 3.1 in [28], the requirement
“||v|| sufficiently small”, becomes stronger, the larger ν is. Supposing that ||v||
in (29) is sufficiently small for the case ν = 1

2 , implies therefore that also the
convergence conditions for ν ≤ 1

2 are satisfied.
Secondly we observe that the convergence rate in Theorem 3.11 contains

a constant c̃ that depends on ν. Although it is difficult to state an explicit
formula for c̃, investigation of [28] shows, that c̃(ν) attains its maximum value
when ν = 1

2 .
After these observations we start with the actual derivation of the conver-

gence rate. For the sake of simplicity we assume that all appearing constants
are just equal to 1. Furthermore we may assume that ϕcl(·) and ϕde(·) both
vanish. Asymptotically, for given ω we therefore have the estimate

||x†(ω)− xηk∗(ω)|| ≤ ρK(y, yη).
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Measuring the distance in the Ky Fan metric we must, since we assumed that
ν(ω) is as in (29), solve the equation

ρK(y, yδ)
2ν

2ν+1 = 2ν (31)

for ν. We first consider the simplified equation

ρK(y, yδ)2ν̃ = 2ν̃

which is solved by

ν̃(ρK(y, yδ)) =
W (− log ρK(y, yδ))

−2 log ρK(y, yδ)
.

In the following we show that the above approximate solution is sufficiently
accurate. Therefore we construct a better estimate via the ansatz ν(ρK(y, yδ)) =
ν̃(ρK(y, yδ))(1 + ε(ν̃(ρK(y, yδ))). The original equation then contains the term
2ν̃ + 3ν̃ε + 1. Neglecting the quadratic part, we can replace this term with
2ν̃ + 1, and obtain an equation that MATHEMATICA can solve for ε(ν̃). The
solution for the correction term is given as

ε(ν̃) =
log(ν̃) + (2ν̃ + 1)W

(
− log(ν̃)

2ν̃2+ν̃

)
− log(ν̃)

and tends to zero approximately linearly in ν̃. Thus this correction becomes
small rather quickly, and we can consider the asymptotic bound in (30) as
sufficiently accurate due to the asymptotics of the Lambert W-function.

4 Examples

4.1 Filter-based regularization methods

Let A be a linear compact operator between Hilbert spaces X and Y with sin-
gular system {σn, un, vn}n∈N, see e.g. [2]. Then, for y ∈ D(A), the generalized
inverse A† to A is given by

A†y =
∑
σn>0

σ−1
n 〈y, un〉vn. (32)

Since for compact operators the singular values approach zero, their inverse
blows up and the generalized inverse yields a meaningless solution to (2) for
noisy data. A popular class of regularization methods is based on the filtering
of the generalized inverse. Introducing an appropriate filter function Fα(σ)
depending on the regularization parameter α that controls the growth of σ−1,
the regularized solutions are defined by

Rα(y) =
∑
σn>0

Fα(σ)σ−1
n 〈y, un〉vn. (33)
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Examples for filter based methods are for example the classical Tikhonov regu-
larization, truncated singular value decomposition or Landwebers method [1, 2].
The regularization properties are fully determined by the filter functions. In the
deterministic setting, the conditions can be found in, e.g.,[1, Theorem 3.3.3.].
Convergence rates can be obtained for a priori and a posteriori parameter choice
rules under stricter conditions on the filter functions. We will only comment
on an a priori choice here in order to keep it short. An example of the discrep-
ancy principle as a posteriori parameter choice is given in the next section in a
different context. Using the smoothness condition

x† ∈ R((A∗A)ν/2) with ‖x†‖ν := {||z||X : x† = (A∗A)ν/2z, z ∈ N (A)⊥} ≤ %
(34)

the following theorem can be obtained.

Theorem 4.1. [1, Theorem 3.4.3] Let y ∈ R(A) and
∥∥y − yδ∥∥Y ≤ δ. Assume

that it holds ||x†||ν ≤ % and for 0 ≤ ν ≤ ν∗,

sup
0<σ≤σ1

σ−1|Fα(σ)| ≤ cα−β (35)

sup
0<σ≤σ1

|1− Fα(σ)|σν
∗
≤ cν∗αβν

∗
, (36)

where β > 0 and c, cν∗ are constants independent of δ. Then with the a priori
parameter choice

α = C

(
δ

%

)1/β(ν+1)

, C > 0 fixed, (37)

the method induced by the filter Fα is order optimal for all 0 ≤ ν ≤ ν∗, i.e.,

||x† −Rαyδ|| ≤ cδ
ν
ν+1 %

1
ν+1

for some constant c independent of δ and %.

Now we use Theorem 3.5 and obtain convergence rates in the Ky Fan metric.

Theorem 4.2. Let y ∈ R(A) and ρK(y, yη) be known. Assume that it holds
||x†||ν ≤ % and for 0 ≤ ν ≤ ν∗, (35) and (36) hold. Then with the a priori
parameter choice

α = C

(
ρK(y, yη)

%

)1/β(ν+1)

, C > 0 fixed, (38)

the method induced by the filter Fα fulfills

||x† −Rαyη|| ≤ cρK(y, yη)
ν
ν+1 %

1
ν+1

for some constant c independent of δ and %.

More about filter methods in the stochastic setting including numerical ex-
amples can be found in [23].
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4.2 Sparsity-regularization for an autoconvolution prob-
lem

We consider an autoconvolution equation

[F (x)](s) =

∫ s

0

x(s− t)x(t) dt, 0 ≤ s ≤ 1 (39)

between Hilbert spaces X = L2[0, 1] and Y = L2[0, 1] where x ∈ D(F ). Such
an equation is of great interest in, for example, stochastics or spectroscopy and
has been analyzed in detail in [29]. Recently, a more complicated autoconvolu-
tion problem has emerged from a novel method to characterize ultra-short laser
pulses [30, 31]. Here, we want to show the transition from the deterministic
setting to the stochastic setting in a numerical example. We base our results on
the deterministic paper [32].

Using the Haar-wavelet basis, the authors of [32] reformulate (39) as an
equation from `2 to `2 by switching to the space of coefficients in the Haar
basis. In order to stabilize the inversion, an `1 penalty term is used such that
the task is to minimize the functional

Jα(x) = ||F (x)− yδ||22 + α||x||1. (40)

The regularization parameter α in (40) is chosen according to the discrepancy
principle. In [32], the following formulation is used: For 1 < τ1 ≤ τ2 choose
α = α(δ, yδ) such that

τ1δ ≤ ||F (xδα)− yδ||2 ≤ τ2δ (41)

holds. The authors show that this leads to a convergence of the regularized
solutions against a solution of (39) with minimal `1-norm of its coefficients. It
was also shown that the regularization parameter fulfills

α(δ, yδ)→ 0,
δ2

α(δ, yδ)
→ 0 as δ → 0. (42)

By courtesy of Stephan Anzengruber we were allowed to use the original
code for the numerical simulation in [32]. We only changed the parts directly
connected to the data noise. Namely, we replaced the deterministic error ||y −
yδ||2 ≤ δ with i.i.d Gaussian noise,

yη = y + ε,

ε ∼ N (0, η2I). The discretization is due to the truncation of the expansion of
the functions in the Haar-basis after m elements. The parameter choice (41) was
realized with δ replaced by τ(η)E(||ε||2) in accord with Theorem 3.3. Instead of
the correct expectation

E(||ε||2) =
η√
2

Γ(m+1
2 )

Γ(m2 )
,
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see [23], we used the upper bound

E(||ε||2) ≤ η
√
m

since, as shown in this chapter, the expectation has to be “blown up” anyway. In
a first experiment we let τ(ε) = 1.3 = const. In this case, the numerical results

suggest that the regularization parameter decreases too fast, i.e., (τ(η)E(||ε||2))2

α
does not converge to zero as in (42), see Figure 1. For comparison, in a second
run we chose τ(η) =

√
1− log(η22πm2( e2 )m) where m is the amount of data

points. This way, τ(η)E(||ε||2) ∝ ρK(y, yη). Now (τ(η)E(||ε||2))2

α converges to zero
as it should be the case from 42, see Figure 1.

At this point we would like to mention that the discrepancy principle in
the stochastic and deterministic setting are not completely equivalent since a
different way of measuring the noise is used. Typically the stochastic noise level
will be smaller (it need to bound 100% of the possible realizations) and the
iteration will be stopped later than in the deterministic setup.

4.3 Linear Inverse Problems with Besov-space prior

In [33] the lifting strategy was used in a slightly different way. In particular, the
Ky Fan metric was used to obtain a novel parameter choice rule. The conver-
gence rates obtained there, however, can also be viewed in the framework of this
work. The scope of that paper was to transfer the deterministic convergence
results from [34] into the stochastic setting. The seminal paper [34] initiated the
investigation of sparsity-promoting regularization for Inverse Problems. Look-
ing for the solution of the linear ill-posed problem

Ax = y (43)

between Hilbert spaces X and Y with given noisy data yδ = y + ε, the regular-
ization strategy was to obtain an approximation xδα to x† via

xδα = min
x
||Ax− yδ||22 +

∑
λ∈Λ

wλ|〈x, ψλ〉|pψλ, (44)

where Λ is an appropriate index set, wλ > 0 ∀λ ∈ Λ, {ψλ}λ∈Λ a dictionary
(typically an orthonormal basis or frame) in X and 1 ≤ p ≤ 2. Choosing
a sufficiently smooth wavelet basis for {ψλ}λ∈Λ and setting wλ = 2ζ|λ|p with
ζ = s − d( 1

2 −
1
p ) > 0, the penalty term in (44) corresponds to a norm in the

Besov space Bsp,p(Rd). Formulating the problem of determining x from noisy
data yη = y + ε, ε ∼ N (0, η2Im), in the Bayesian setting with the distributions
πε(y

δ|x) ∝ exp(− 1
2η2 ||Ax − y

δ||22) and πpr(x) ∝ exp(− α̃2 ||x||
p
Bsp,p(Rd)

) and using

the maximum a-posteriori solution lead to the formulation

xMAP = min
x
||Ax− yδ||22 + α̃η2||x||p

Bsp,p(Rd)
(45)
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Figure 1: Top: constant τ in the discrepancy principle with the expectation
of the noise leads to the regularization parameter decreasing too fast. Bottom:
increasing τ with decreasing variance appropriately resolves this issue.

24



where η is the variance of the noise and α̃ can roughly be described as the inverse
variance of the prior. The product α := α̃η2 gives the actual regularization
parameter. In direct application of Theorem 3.3, the deterministic condition

α→ 0,
δ2

α
→ 0 as δ → 0,

with δ replaced by ρK(y, yη) from (21) translates to the conditions

α̃η2 → 0,
log(η)

α̃
→ 0 as η → 0,

leading to convergence of xMAP to the unique (in case p = 1 the operator is
assumed to be injective) solution x† of minimal norm || · ||Bsp,p(Rd) in the Ky Fan
metric. The proof of convergence rates is based on two assumption:

Cl
∑
λ∈Λ

2−2|λ|β |〈x, ψλ〉|p ≤ ||Ax|| ≤ Cu
∑
λ∈Λ

2−2|λ|β |〈x, ψλ〉|p

where β,Cl, Cu > 0 and
||x†||Bsp,p(Rd) ≤ ρ

for some ρ > 0. Combining Proposition 4.5, Proposition 4.6, Proposition 4.7
from [34] it is

||xδα − x†|| ≤ C
(
δ +

√
δ2 + αρp

) ζ
ζ+β

(
ρ+

(
ρp +

δ2

α

)1/p
) β
ζ+β

. (46)

Translated into the stochastic setting, the right hand side of (46) reads

CE(η,m, α̃)
ζ

ζ+β ρ̃
β
ζ+β (47)

where with Lm(η) = min{0, η22πm2( e2 )m},

E(η,m, α̃) := η

(√
m− Lm(η) +

√
m− Lm(η) +

α̃ρp

2

)

and

ρ̃ = ρ+

(
ρp +

2m− Lm(η)

α̃

)1/p

.

We know that the deterministic rate is an upper bound to the reconstruction
error whenever ||y − yη|| = ||ε|| ≤ ρK(y, yη) and ||x†||Bsp,p(Rd) ≤ ρ. Hence, it is

P
(
||xMAP − x†|| ≥ CE(η,m, α̃)

ζ
ζ+β ρ̃

β
ζ+β

)
≤

Γ(m2 ,m− Lm(η))

Γ(m2 )
+

Γ(np ,
α̃%p

2 )

Γ(np )

(48)
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where

P(||y − yη|| > ρK(y, yη)) =
Γ(m2 ,m− Lm(η))

Γ(m2 )
.

and

P(||x†||Bsp,p(Rd) ≥ ρ) =
Γ(np ,

α̃%p

2 )

Γ(np )

where the Besov-space functions were truncated after the first n basis functions.
By Definition of the Ky Fan metric, it follows immediately from (48) that

ρK(xMAP) = max

{
CE(η,m, α̃)

ζ
ζ+β ρ̃

β
ζ+β ,

Γ(m2 ,m− Lm(η))

Γ(m2 )
+

Γ(np ,
α̃%p

2 )

Γ(np )

}
.

(49)
Since α̃ is a free parameter, we can balance the terms in (49), i.e. solve the
nonlinear equation

CE(η,m, α̃)
ζ

ζ+β ρ̃
β
ζ+β =

Γ(m2 ,m− Lm(η))

Γ(m2 )
+

Γ(np ,
α̃%p

2 )

Γ(np )

for α̃. With this parameter choice rule one obtains by construction

ρK(xMAP) = O(E(η,m, α̃)
ζ

ζ+β ρ̃
β
ζ+β ). (50)

In the deterministic setting [34] it was proposed to chose the regularization
parameter α = δ2/%p. Combining [34, Proposition 4.5] and [34, Proposition 4.7]
then yields the rate

||xδα − x†|| ≤ C
(
δ

Cl

) ς
ς+β

%
β
ς+β

with Cl from (47) and some C > 0. Theorem 3.5 then yields in the stochastic
setting the parameter choice α = ρK(yη, y)2/%p and

ρK(xηα, x
†) = O

((
ρK(yη, y)

Cl

) ς
ς+β

%
β
ς+β

)
.
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