
IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 25 (2009) 035003 (16pp) doi:10.1088/0266-5611/25/3/035003

Approximate source conditions for nonlinear ill-posed
problems—chances and limitations

Torsten Hein and Bernd Hofmann1

Department of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany

E-mail: thein@mathematik.tu-chemnitz.de and hofmannb@mathematik.tu-chemnitz.de

Received 3 August 2008, in final form 5 December 2008
Published 13 January 2009
Online at stacks.iop.org/IP/25/035003

Abstract

In the recent past the authors, with collaborators, have published convergence
rate results for regularized solutions of linear ill-posed operator equations by
avoiding the usual assumption that the solutions satisfy prescribed source
conditions. Instead the degree of violation of such source conditions is
expressed by distance functions d(R) depending on a radius R � 0 which is an
upper bound of the norm of source elements under consideration. If d(R) tends
to zero as R → ∞ an appropriate balancing of occurring regularization error
terms yields convergence rates results. This approach was called the method of
approximate source conditions, originally developed in a Hilbert space setting.
The goal of this paper is to formulate chances and limitations of an application
of this method to nonlinear ill-posed problems in reflexive Banach spaces and
to complement the field of low order convergence rates results in nonlinear
regularization theory. In particular, we are going to establish convergence
rates for a variant of Tikhonov regularization. To keep structural nonlinearity
conditions simple, we update the concept of degree of nonlinearity in Hilbert
spaces to a Bregman distance setting in Banach spaces.

1. Introduction

Motivated by an idea of Baumeister’s monograph (see [2, theorem 6.8]), Hofmann has
developed in [12] the method of approximate source conditions for inverse problems with
a linear forward operator mapping between infinite-dimensional Hilbert spaces. This is an
approach for finding convergence rates of regularized solutions based on balancing distance
functions that measure the degree of violation of the solution with respect to a prescribed
benchmark source condition (see also [4, 6, 13, 18] for further results and [15] for an extension
to general linear regularization schemes). On the other hand, Hein has emphasized in the paper
[11] that for Banach spaces the missing tool of generalized source conditions exploiting index

1 Author to whom any correspondence should be addressed.

0266-5611/09/035003+16$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0266-5611/25/3/035003
mailto:thein@mathematik.tu-chemnitz.de
mailto:hofmannb@mathematik.tu-chemnitz.de
http://stacks.iop.org/IP/25/035003


Inverse Problems 25 (2009) 035003 T Hein and B Hofmann

functions (see [10, 24]) can also be negotiated by such distance functions. Those functions
then occur in the convergence rates instead of index functions. Based on that idea we will
expand the field of low order convergence rates results for nonlinear regularization including
logarithmic rates and Hölder rates with small exponent, which seems to be rather poor up to
now. On the one hand, in contrast to other authors (see, e.g., [20, 23, 29]) we abstain from
using Euler–Lagrange equations of the regularization functional and hence from assuming
that the solution of the nonlinear problem is an inner point of the domain of the forward
operator. On the other hand, directional derivatives of the forward operator are only required
in the solution point, and an interplay with the derivatives in some neighbourhood frequently
exploited in the literature (see, e.g., [9, 21], and the overview of structural conditions for
nonlinearities in [20]) is not required.

This paper tries to analyse the chances of an application of the method of approximate
source conditions with distance functions as an essential tool to nonlinear ill-posed operator
equations describing nonlinear inverse problems in reflexive Banach spaces. It will be shown
that structural conditions concerning the nonlinearity of the forward operator essentially
influence the success of this application (see [1, 7, 20, 21, 23] for discussions on the variety
of such nonlinearity conditions in the context of convergence rates in regularization). We are
going to emphasize chances of this method in the nonlinear case, but we will not conceal the
limitations of such an approach that occur whenever smallness conditions are required. We
remark that a first successful step for this method to nonlinear problems was already done in
[16], however under the very specific range invariance condition.

We are going to study convergence rates for stable approximate solutions of ill-posed
operator equations

F(u) = v (1.1)

with an in general nonlinear operator F : D(F ) ⊆ U → V possessing the domain D(F ) and
mapping between the normed linear spaces U and V with norms ‖ · ‖U and ‖ · ‖V , respectively.
Ill-posedness denotes here the phenomenon that solutions of (1.1) need not exist for all right-
hand sides v ∈ V , if they exist they need not be uniquely determined, and unfortunately
small perturbations on the right-hand side may cause arbitrarily large errors in the solution.
Therefore, based on noisy data vδ ∈ V of the exact right-hand side v with

‖vδ − v‖V � δ (1.2)

and noise level δ > 0 we consider the variant

Tα(u) := ‖F(u) − vδ‖p

V + α�(u) → min (1.3)

of Tikhonov regularization (see, e.g., [30] and more recently [14, 31]) using the stabilizing
functional � : U → [0, +∞] with the domain

D(�) := {u ∈ U : �(u) �= +∞} �= ∅,

regularization parameters α > 0 and minimizers uδ
α of (1.3). The minimization in (1.3) is

subject to u ∈ D with

D := D(F ) ∩ D(�).

Throughout this paper we restrict our considerations to the interval 1 < p < ∞ for the
exponent in (1.3). For the case p = 1 we refer, for example, to [5, 14] and with respect to
approximate source conditions in particular to [11].

This paper is organized as follows: in section 2 we formulate the general assumptions
concerning the operators, functionals and associated spaces of the nonlinear model in this paper.
In particular, for covering the structure of nonlinearity under consideration we introduce an
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appropriate definition of the (local) degree of nonlinearity at a solution point. Then, in
section 3, for the prescribed benchmark source condition we define distance functions
depending on the radius of source elements expressing the violation of that source condition.
We will prove a lemma with upper bounds of a relevant dual pairing which also applies to the
case that the source condition is only satisfied in an approximate manner. Based on that lemma
moreover in section 3, error estimates measured by the Bregman distance and convergence
rates results for Tikhonov regularized solutions are presented in a theorem for the case that the
benchmark source condition is satisfied. The two main theorems of this paper can be found
with proofs in section 4. They show the chances and limitations for applying the method
of approximate source conditions to nonlinear operator equations by balancing the occurring
distance functions. Then convergence rates up to the benchmark order can be derived when
the corresponding degree of nonlinearity at the solution is a proper one. The final section 5 is
devoted to some concluding remarks pointing out also two points for future work.

The authors’ aim is to express the considered elements of progress in nonlinear
regularization theory in a comprehensive manner and to present all the convergence rates
results in a stringent form. This, however, demands the introduction of a wide field of
assumptions and definitions giving this paper a rather technical outfit. In particular, we are
going to extract the deficit in the occurring convergence rates when source conditions only
hold in an approximate manner. The associated rate expressions seem to be bulky at first view,
but we refer to remark 4.5 for interpretation and to examples 4.8 and 4.9 for illustration in
cases where the explicit structure of distance functions makes the formulae more transparent.

2. General assumptions and the degree of nonlinearity

In order to make the results of this paper comparable to those in [14], we pose the following
general assumptions, which are closely related to the assumptions in [14].

Assumption 2.1.

(1) U and V are reflexive Banach spaces with duals U ∗ and V ∗, respectively. In U and V

we consider in addition to the norm convergence the associated weak convergence. This
means in U

uk ⇀ u ⇐⇒ 〈f, uk〉U∗,U → 〈f, u〉U∗,U ∀ f ∈ U ∗

for the dual pairing 〈·, ·〉U∗,U with respect to U ∗ and U. The weak convergence in V is
defined in an analogue manner.

(2) F : D(F ) ⊆ U → V is weakly continuous and D(F ) is weakly sequentially closed, i.e.,

uk ⇀ u in U with uk ∈ D(F )

�⇒ u ∈ D(F ) and F(uk) ⇀ F(u) in V.

(3) The functional � is convex and weakly sequentially lower semi-continuous.
(4) The domain D is non-empty.
(5) For every α > 0, c � 0 and vδ ∈ V the sets

Mα(c) := {u ∈ D : Tα(u) � c}, (2.1)

whenever they are non-empty, are relatively weakly sequentially compact in the following
sense: every sequence {uk} in Mα(c) has a subsequence, which is weakly convergent in
U to some element from U.
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As is done in numerous recent papers concerning Banach space theory of ill-posed problems,
for error analysis we exploit for the functional � with subdifferential ∂� the Bregman distance
Dξ(·, u) of � at u ∈ D(�) ⊆ U and at ξ ∈ ∂�(u) ⊆ U ∗ defined as

Dξ(ũ, u) := �(ũ) − �(u) − 〈ξ, ũ − u〉U∗,U , ũ ∈ D(�) ⊆ U.

The set

DB(�) := {u ∈ D(�) : ∂�(u) �= ∅}
is called the Bregman domain.

Example 2.2 (norm square errors). Let U and V be Hilbert spaces. Then for the stabilizing
functional

�(u) := ‖u − u∗‖2
U with D(�) = U

we have

Dξ(ũ, u) = ‖ũ − u‖2
U

with DB(�) = U , where the subdifferential ∂�(u) is a singleton everywhere characterized
by the unique element ξ = 2(u − u∗). For that example, the �-minimizing solutions and the
classical u∗-minimum norm solutions introduced in [7, 8] coincide.

Example 2.3 (q-coercive Bregman distances). We say, for 1 < q < ∞, that the Bregman
distance Dξ(·, u) of � at u ∈ DB(�) and ξ ∈ ∂�(u) is q-coercive with constant c > 0 if we
have

Dξ(ũ, u) � c‖ũ − u‖q

U for all ũ ∈ D(�). (2.2)

For example, according to [3, lemma 2.7] this is the case if

�(u) := 1

q
‖u‖q

U (2.3)

and U is a q-convex Banach space, where the geometry of reflexive Banach spaces, in general,
leads to the interval 2 � q < ∞ for the parameter q (for details see, e.g., [32]).

An element u† ∈ D is called an �-minimizing solution to (1.1) if

�(u†) = min{�(u) : F(u) = v, u ∈ D} < ∞.

Such �-minimizing solutions exist under assumption 2.1 if (1.1) has a solution u ∈ D. For the
proof and further results on existence, stability and convergence of regularized solutions uδ

α

see [14, section 3]. The requirement of [14] that ‖ · ‖V is sequentially lower semi-continuous
in the weak topology is satisfied automatically here, because of our specification of the weak
topology.

Now given δmax > 0, we fix αmax > 0 throughout this paper and consider only a priori
parameter choices α = α(δ), with 0 < α(δ) � αmax, 0 < δ � δmax, satisfying the sufficient
convergence conditions α(δ) ↘ 0 and δp

α(δ)
→ 0 as δ → 0. Then we have by definition of uδ

α ,

∥∥F
(
uδ

α

) − vδ
∥∥

V
�

[
αmax

(
�(u†) +

δp

α

)]1/p

, uδ
α ∈ Mαmax

(
αmax

(
�(u†) +

δp

α

))
.

Due to convergence conditions assumed above we can suppose a constant C > 0 such that

C := sup
0<δ�δmax

δp

α(δ)
< ∞ and we set ρ := αmax(�(u†) + C).
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Thus, we have uδ
α, u† ∈ Mαmax(ρ). Moreover, for arbitrary u ∈ Mαmax(ρ) the inequality

‖F(u) − F(u†)‖V � ρ1/p + δ holds.
Now by assumption the set Mαmax(ρ) is relatively weakly sequentially compact in U, and

every such set in a Banach space is bounded. Hence all elements of Mαmax(ρ) belong to a ball
in U, and there exists a constant 0 < Kmax < ∞ such that

‖u − u†‖U � Kmax ∀u ∈ Mαmax(ρ). (2.4)

For our studies we need some more assumptions which are under discussion in [14]
partially as special cases.

Assumption 2.4. Let F,�,U, V and D satisfy assumption 2.1.

(1) There exists an �-minimizing solution u† which is an element of the Bregman domain
DB(�).

(2) D(F ) is starlike with respect to u†, that is, for every u ∈ D(F ) there exists t0 > 0 such
that

u† + t (u − u†) ∈ D(F ) for all 0 � t � t0.

(3) There is a bounded linear operator F ′(u†) : U → V such that we have for the one-sided
directional derivative at u† and for every u ∈ D the equality

lim
t→0+

1

t
(F (u† + t (u − u†)) − F(u†)) = F ′(u†)(u − u†).

With respect to assumption 2.4 we should note that because of the convexity of � the
domain D is also starlike. The operator F ′(u†) has Gâteaux derivative like properties, and
there is an adjoint operator F ′(u†)∗ : V ∗ → U ∗ defined by

〈F ′(u†)∗v∗, u〉U∗,U = 〈v∗, F ′(u†)u〉V ∗,V , u ∈ U, v∗ ∈ V ∗.

Now it seems to be useful to update the definition of the degree of nonlinearity from
[17, definition 1] to the current situation of this paper.

Definition 2.5. Let 0 � c1, c2 � 1 and 0 < c1 + c2 � 1. We define F to be nonlinear of
degree (c1, c2) for the Bregman distance Dξ(·, u†) of � at u† ∈ D(F ) ∩ DB(�) ⊆ U and at
ξ ∈ ∂�(u†) ⊆ U ∗ if there is a constant K > 0 such that

‖F(u) − F(u†) − F ′(u†)(u − u†)‖V � K‖F(u) − F(u†)‖c1

V Dξ (u, u†)c2 , (2.5)

for all u ∈ Mαmax(ρ).

Note that the degree of nonlinearity of definition 2.5 has a local character. In short we say
that F is of degree (c1, c2) at u† and ξ if the requirements of the above definition are satisfied.

Remark 2.6. Different combinations of exponents c1 and c2 in the (local) degree of
nonlinearity characterize the variety of structural conditions imposed on the nonlinear operator
F in a neighbourhood of u†. We are going to distinguish the following cases:

(A) Case c1 = 1, c2 = 0. This first extremal case expresses a very high potential of the
linear operator F ′(u†) to characterize the behaviour of the nonlinear operator F in a
neighbourhood of u† (see, e.g., the discussion in [17]). Somewhat stronger than our
condition of this case is the tangential cone condition (also called η-inequality, see
[7, chapter 11, formula (11.6)]) being an important structural condition for the convergence
rate analysis of the nonlinear Landweber method. On the other hand, by choosing �,

from example 2.2, for the Tikhonov regularization with p = 2 of ill-posed nonlinear
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equations (1.1) in Hilbert spaces U and V one can formulate results with low order
Hölder rates under low order source conditions, i.e., as δ → 0 we find for all 0 < η � 1
with the a priori parameter choice α(δ) ∼ δ2/(1+η) the rate result∥∥uδ

α − u†∥∥
U

= O(δ
η

1+η ), when u† − u∗ = [F ′(u†)∗F ′(u†)]η/2w̃, w̃ ∈ U (2.6)

as a consequence of theorem 1 in [17]. Namely, the sufficient condition of this theorem,
which can be formulated in our notation as the inequality chain

c1 � 1 + η(1 − c1 − 2c2) > 0 (2.7)

is satisfied for all 0 < η � 1 in the case (A).
With respect to the general Bregman distance setting in the Tikhonov regularization
(1.3) with p = 2 we remark that this case (A) is sufficient for satisfying the structural
assumption

〈F(u) − F(u†) − F ′(u†)(u − u†), w〉V � γ ‖w‖V ‖F(u) − F(u†)‖V

of [5] with Banach space U and Hilbert space V yielding a convergence rate Dξ

(
uδ

α, u†) =
O(δ) under the source condition

∃ w ∈ V : F ′(u†)∗w ∈ ∂�(u†).

The case (A) was also considered in the convergence rate analysis in [11] for the exponent
p = 1 in (1.3).

(B) Case 0 < c1 < 1. For this case the operator F ′(u†) has less than in case (A) but still
enough potential to characterize F in a neighbourhood of u† to a certain extent. Here, for
� from example 2.2 and for the Tikhonov regularization with p = 2 in Hilbert spaces
U and V , theorem 1 from [17] also applies, but (2.7) cannot hold whenever 0 < η < 1.
However, for η = 1 the condition (2.7) holds if and only if

c1 + c2 = 1. (2.8)

Hence under the source conditions u† − u∗ = [F ′(u†)∗F ′(u†)]1/2w̃, w̃ ∈ U, which are
equivalent to u†−u∗ = F ′(u†)∗w,w ∈ V, in Hilbert spaces, a rate

∥∥uδ
α − u†∥∥

U
= O(δ1/2)

can be found without any additional smallness condition for the combination (2.8) of
exponents in the degree of nonlinearity.

(C) Case c1 = 0, c2 = 1. The inequality

‖F(u) − F(u†) − F ′(u†)(u − u†)‖V � KDξ(u, u†), (2.9)

which is of interest in that second extremal case, characterizes the classical situation
occurring for the Bregman distance setting in Banach spaces in [27] and for � from
example 2.2 in Hilbert spaces occurring in [8] and [7, chapter 10]. To obtain the rate
Dξ

(
uδ

α, u†) = O (δ) under the source conditions ξ = F ′(u†)∗w,w ∈ V ∗, a smallness
condition K‖w‖V ∗ < 1 is required. The necessity of such an additional condition shows
the rather loose connection between the nonlinear operator F at u† and its linearization
F ′(u†).

We have excluded the situation 0 < c2 < 1 and c1 = 0, because used techniques fail for that
situation and moreover results on that case seem to be missing up to now in the literature.
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3. Assertions for the benchmark source condition and error estimates for approximate

source conditions

Only in very specific situations can it be expected that for given ξ ∈ ∂�(u†) ⊆ U ∗ and the
�-minimizing solution u† ∈ DB(�) a source condition

ξ = F ′(u†)∗w, w ∈ V ∗ (3.1)

is satisfied. In this context, (3.1) is considered in a classical way as the benchmark source
condition of nonlinear regularization theory. However, such a source condition is always
fulfilled in an approximate manner as

ξ = F ′(u†)∗w + r, w ∈ V ∗, r ∈ U ∗, (3.2)

where the elements w and r are not determined uniquely. If we restrict the source elements to
closed balls in V ∗ with radius R � 0 by ‖w‖V ∗ � R, then we can define the distance function
d(R) = dξ,u†(R), R � 0 as

d(R) := min
w∈V ∗:‖w‖V ∗ �R

‖ξ − F ′(u†)∗w‖U∗ . (3.3)

The distance function is well defined. In particular due to the reflexivity of V implying the
reflexivity of V ∗, we have for all non-negative R an element wR ∈ V ∗ with ‖wR‖V ∗ � R such
that, for rR = ξ − F ′(u†)∗wR , the equality ‖rR‖U∗ = d(R) gets valid ([33, section 38.3]).
Obviously d(R) is non-increasing. Moreover, the decay properties of the distance function
measure the degree of violation of ξ with respect to the benchmark source condition (3.1).
If the source condition (3.1) is satisfied for some w ∈ V ∗ with ‖w‖V ∗ = R, then we have
d(R) = 0 for R � R < ∞. Otherwise d(R) is strictly positive for all 0 � R < ∞.

For an additive decomposition (3.2) of ξ the following lemma can be stated:

Lemma 3.1. Let 0 � c1, c2 � 1 such that 0 < c1 + c2 � 1 and c2 = 1 if c1 = 0. Moreover, let
F be of degree (c1, c2) at u† and ξ , and let the approximate source condition (3.2) hold. Then
the estimate

|〈ξ, u − u†〉U∗,U | � β1Dξ(u, u†) + β2‖F(u) − F(u†)‖κ

V + ‖r‖U∗‖u − u†‖U (3.4)

is valid for all u ∈ Mαmax(ρ) with exponent 0 < κ � 1 of the form

κ =
⎧⎨
⎩

c1

1 − c2
for 0 � c2 < 1

1 for c2 = 1

and values β1, β2 � 0 which may depend on ‖w‖V ∗ . In the case c1 > 0 implying 0 � c2 < 1
the value β1 is independent of ‖w‖V ∗ and we have β1 = c2 < 1.

Proof. We can estimate for u ∈ Mαmax(ρ)

|〈ξ, u − u†〉U∗,U | = |〈F ′(u†)∗w + r, u − u†〉U∗,U |
= |〈w,F ′(u†)(u − u†)〉V ∗,V + 〈r, u − u†〉U∗,U |
� ‖w‖V ∗‖F ′(u†)(u − u†)‖V + ‖r‖U∗‖u − u†‖U

� ‖w‖V ∗‖F(u) − F(u†) − F ′(u†)(u − u†)‖V

+ ‖w‖V ∗‖F(u) − F(u†)‖V + ‖r‖U∗‖u − u†‖U

� K‖w‖V ∗‖F(u) − F(u†)‖c1

V Dξ (u, u†)c2

+ ‖w‖V ∗‖F(u) − F(u†)‖V + ‖r‖U∗‖u − u†‖U .

We recall that ‖F(u) − F(u†)‖V � ρ1/p + δ for u ∈ Mαmax(ρ). Then in the cases c2 = 1
and c1 = 0 we have (3.4) with constants β1 = K‖w‖V ∗ , β2 = ‖w‖V ∗ and κ = 1. In the case
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c2 = 0 and 0 < c1 � 1 we have (3.4) with β1 = 0, β2 = ‖w‖V ∗(K + (ρ1/p + δ)1−c1) and
κ = c1. On the other hand, for 0 < c2 < 1 we have c1 > 0 and can exploit a variant of Young’s
inequality

ab � εap1 +
bp2

(εp1)p2/p1p2
, a, b � 0, ε > 0, (3.5)

with conjugate exponents p1, p2 > 1 that fulfil the equality 1
p1

+ 1
p2

= 1. Precisely, let

p1 := 1
c2

, p2 := 1
1−c2

, ε := 1
p1

, a := Dξ(u, u†)c2 and b := K‖w‖V ∗‖F(u) − F(u†)‖c1

V . Then
we obtain

K‖w‖V ∗‖F(u) − F(u†)‖c1

V Dξ (u, u†)c2 � c2Dξ(u, u†)

+ (1 − c2)(K‖w‖V ∗)
1

1−c2 ‖F(u) − F(u†)‖
c1

1−c2
V .

Thus, in general, for c1 > 0 (3.4) holds with

0 � β1 = c2 < 1, β2 = (ρ1/p + δ)
1−c1−c2

1−c2 ‖w‖V ∗ + (1 − c2)K
1

1−c2 ‖w‖
1

1−c2
V ∗ ,

κ = c1

1 − c2
.

(3.6)

�

Remark 3.2. We emphasize that the inequality (3.4) with r = 0, 0 � β1 < 1, β2 � 0 and
κ = 1 occurs as an assumption in [14], for which in [14, remark 4.2] sufficient conditions
along the lines of assumption 2.4 were formulated.

As a first step we formulate the consequences of lemma 3.1 in the following theorem for
the case r = 0 of fulfilled exact benchmark source condition. This theorem extends some
assertions of the recent literature, in particular, from κ = 1 to the case 0 < κ < 1. Its proof is
formulated in analogy with the proof of theorem 4.4 in [14].

Theorem 3.3. Assume that F,�,D, U and V satisfy assumptions 2.1 and 2.4. With some
0 � c1, c2 � 1 such that 0 < c1 + c2 � 1 and c2 = 1 if c1 = 0 let F be of degree (c1, c2)

for the Bregman distance Dξ(·, u†) of � at the �-minimizing solution u† ∈ DB(�) ⊆ U of
(1.1) and at ξ ∈ ∂�(u†) ⊆ U ∗. Furthermore, let the source condition (3.1) hold and let κ be
defined as in lemma 3.1. In the case c1 > 0, we then have the convergence rate

Dξ

(
uδ

α, u†) = O(δκ) as δ → 0 (3.7)

for an a priori parameter choice α � δp−κ . This result is also true in the alternative case
c1 = 0, c2 = 1 when the additional smallness condition K‖w‖V ∗ < 1 holds.

Proof. To prove the assertion of the theorem we apply lemma 3.1 with r = 0 yielding for
some 0 � β1 < 1 and β2 � 0 the inequality

|〈ξ, u − u†〉U∗,U | � β1Dξ(u, u†) + β2‖F(u) − F(u†)‖κ

V , (3.8)

for all u ∈ Mαmax(ρ). From the definition of uδ
α and (1.2) it follows that∥∥F

(
uδ

α

) − vδ
∥∥p

V
+ αDξ

(
uδ

α, u†) � δp + α
(
�(u†) − �

(
uδ

α

)
+ Dξ

(
uδ

α, u†)) . (3.9)

Moreover, by the definition of the Bregman distance and by the inequality (a + b)κ � aκ + bκ

for a, b > 0 and 0 < κ � 1 we obtain that

�(u†) − �
(
uδ

α

)
+ Dξ

(
uδ

α, u†) = −〈ξ, uδ
α − u†〉U∗,U �

∣∣〈ξ, uδ
α − u†〉

U∗,U

∣∣
� β1Dξ

(
uδ

α, u†) + β2

∥∥F
(
uδ

α

) − F(u†)
∥∥κ

V

� β1Dξ

(
uδ

α, u†) + β2
(∥∥F

(
uδ

α

) − vδ
∥∥κ

V
+ δκ

)
.
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Therefore, from (3.9) it follows that∥∥F
(
uδ

α

) − vδ
∥∥p

V
+ αDξ

(
uδ

α, u†) � δp + α
(
β1Dξ

(
uδ

α, u†) + β2
(∥∥F

(
uδ

α

) − vδ
∥∥κ

V
+ δκ

))
.

(3.10)

Using (3.5) twice with p1 := p/κ, p2 := p/(p − κ), ε = 1, b := αβ2, on the one hand with
a := ∥∥F

(
uδ

α

) − u†∥∥κ

V
and on the other hand with a := δκ, the inequalities

αDξ

(
uδ

α, u†) � 2δp + αβ1Dξ

(
uδ

α, u†) +
2(p − κ)

(p/κ)κ/(p−κ)p
(αβ2)

p/(p−κ)

and

Dξ

(
uδ

α, u†) �
2δp + 2(p−κ)

(p/κ)κ/(p−κ)p
(αβ2)

p/(p−κ)

α (1 − β1)
(3.11)

hold. This yields (3.7) for the a priori parameter choice α � δp−κ and proves the theorem.
�

4. Convergence rates for approximate source conditions

In the second step we formulate as the main theorem the consequences of lemma 3.1 for the
case that ξ belongs to the closure of the range R(F ′(u†)∗) of the bounded linear operator
F ′(u†)∗ : V ∗ → U ∗ with respect to the strong norm in U ∗ provided that ξ does not
fulfil the benchmark source condition (3.1) for any w ∈ V ∗. This theorem complements the
corresponding assertions made in [11] for κ = 1 and p = 1 in (1.3) to the cases 1 < p < ∞
and 0 < κ < 1.

Therefore, our focus will be now on elements ξ ∈ U ∗ satisfying the condition

ξ ∈ R(F ′(u†)∗)
‖·‖U∗ \ R(F ′(u†)∗). (4.1)

Then immediately from the definition of the distance function (3.3) we obtain the next lemma.

Lemma 4.1. Let ξ satisfy the requirement (4.1). Then the non-increasing distance function
d(R) is strictly positive for all 0 � R < ∞, and it tends to zero as R → ∞.

Remark 4.2. We shortly discuss the strength of the assumption (4.1) in lemma 4.1.

(a) If U is a Hilbert space, then with U = N (F ′(u†)) ⊕ R(F ′(u†)∗) the assumption (4.1)
requires that ξ be orthogonal to the null-space of F ′(u†), which is always satisfied for an
injective operator F ′(u†).

(b) More general an assumption ξ ∈ R(F ′(u†)∗)
‖·‖U∗

is even always fulfilled for an arbitrary
reflexive Banach space if F ′(u†) : U → V is injective. Namely, we then have by the

separation theorem R(F ′(u†)∗)
‖·‖U∗ = U ∗.

(c) If U is a q-convex Banach space with 2 � q < ∞ and if the stabilizing functional (2.3)
from example 2.3 is chosen, then we learned by [28, lemma 2.10] that at least for equations
(1.1) with bounded linear operators F : U → V the subdifferential ξ at any �-minimum

norm solution u† satisfies the condition ξ ∈ R(F ∗)
‖·‖U∗

.

Now we recall the specific variant

ξ = F ′(u†)∗wR + rR, wR ∈ V ∗, ‖wR‖V ∗ � R, ‖rR‖U∗ = d(R), (4.2)

9
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of the additive decomposition (3.2) of ξ for arbitrary radii R > 0. We assume c1 > 0. This
implies 0 � c2 < 1 and hence 1

1−c2
� 1. Then taking into account (3.4) for arbitrarily fixed

R0 > 0 we obtain from (3.6)

β2 � (ρ1/p + δ)
1−c1−c2

1−c2 R + (1 − c2)K
1

1−c2 R
1

1−c2

�
(
(ρ1/p + δ)

1−c1−c2
1−c2 R

− c2
1−c2

0 + (1 − c2)K
1

1−c2
)
R

1
1−c2 ,

for all R � R0 > 0. Thus we can find a constant 0 < K̃ < ∞ independent of R such that

|〈ξ, u − u†〉U∗,U | � c2Dξ(u, u†) + K̃R
1

1−c2 ‖F(u) − F(u†)‖
c1

1−c2
V + d(R)‖u − u†‖U (4.3)

holds for all u ∈ Mαmax(ρ) and all R � R0 > 0. If d(R) → 0 as R → ∞ this estimate allows
us to balance R and α in an appropriate manner such that the additional term d(R)‖u − u†‖U

can be handled in order to obtain error estimates of regularized solutions.
Now we are ready to formulate our first main theorem.

Theorem 4.3. Assume that F,�,D, U and V satisfy assumptions 2.1 and 2.4. For some
0 < c1 � 1, 0 � c2 < 1 such that c1 + c2 � 1 let F be of degree (c1, c2) for the Bregman
distance Dξ(·, u†) of � at the �-minimizing solution u† ∈ DB(�) ⊆ U of (1.1) and at
ξ ∈ ∂�(u†) ⊆ U ∗ satisfying the condition (4.1). Moreover, we set

κ := c1

1 − c2
(4.4)

and introduce for R > 0 the functions �(R) := d(R)
p−κ

κ

R
p
c1

,�(R) := d(R)
1
κ

R
1
c1

. Then we have the

convergence rate

Dξ

(
uδ

α, u†) = O(d(�−1(δ))) as δ → 0 (4.5)

when α = α(δ) satisfies the equation δ = (αd(�−1(α)))
1
p for sufficiently small δ > 0.

To prove this theorem we use the following lemma:

Lemma 4.4. Under the assumptions of theorem 4.3 there exist constants K1,K2,K3 > 0, for
arbitrary R > 0, such that the estimate

Dξ

(
uδ

α, u†) � K1
δp

α
+ K2α

κ
p−κ R

p

(p−κ)(1−c2) + K3d(R) (4.6)

holds for all R � R0 > 0 and all sufficiently small α > 0. If, additionally, the Bregman
distance is q-coercive in u†, i.e. (2.2)) holds for u = u† with constant c > 0 and for some
1 < q < ∞, then we can further estimate as

Dξ

(
uδ

α, u†) � q

q − 1
K1

δp

α
+

q

q − 1
K2α

κ
p−κ R

p

(p−κ)(1−c2) +

(
c
− 1

q

1 − c2

) q

q−1

d(R)
q

q−1 . (4.7)

Proof. By definition we have 0 � β1 = c2 < 1. Following the lines of the proof of theorem 3.3
by using inequality (4.3) instead of (3.8) we arrive at

Dξ

(
uδ

α, u†) � 2

1 − c2

δp

α
+

2(p − κ)

(p/κ)κ/(p−κ)p(1 − c2)
α

κ
p−κ β

p

p−κ

2 +
Kmax

1 − c2
d(R).

Here, we additionally used
∥∥uδ

α − u†∥∥
U

� Kmax. Moreover, from the considerations

above we have β
p

p−κ

2 � K̃
p

p−κ R
p

p−κ . Thus, estimate (4.6) holds with K1 := 2
1−c2

,K2 :=
2(p−κ)

(p/κ)κ/(p−κ)p(1−c2)
K̃

p

p−κ and K3 := Kmax
1−c2

.

10
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Under the additional q-coercivity condition (2.2) we can further conclude

Dξ

(
uδ

α, u†) � K1
δp

α
+ K2α

κ
p−κ R

p

(p−κ)(1−c2) +

∥∥uδ
α − u†∥∥

U

1 − c2
d(R)

� K1
δp

α
+ K2α

κ
p−κ R

p

(p−κ)(1−c2) +
c
− 1

q

1 − c2
Dξ

(
uδ

α, u†) 1
q d(R).

Now we apply once more the inequality (3.5) with p1 := q, p2 := q/(q−1), a := Dξ

(
uδ

α, u†) 1
q

and b := c
− 1

q

1−c2
d(R). This yields

c
− 1

q

1 − c2
Dξ

(
uδ

α, u†) 1
q d(R) � 1

q
Dξ

(
uδ

α, u†) +

(
q − 1

q

) (
c
− 1

q

1 − c2

) q

q−1

d(R)
q

q−1 ,

and hence(
1 − 1

q

)
Dξ

(
uδ

α, u†) � K1
δp

α
+ K2α

κ
(p−κ)(1−c2) R

p

p−κ +

(
q − 1

q

) (
c
− 1

q

1 − c2

) q

q−1

d(R)
q

q−1

completing the proof of the lemma. �

Proof of theorem 4.3. Now we complete the proof of the theorem based on the result of
lemma 4.4. First we note that all exponents occurring in the functions � and � are strictly
positive. Since d(R) is non-increasing and tends to zero as R → ∞ because of lemma 4.1, it
is an immediate consequence that both functions �(R) and �(R) are strictly decreasing for all
R > 0 and tend to zero as R → ∞. Furthermore, the inverse functions �−1 and �−1 are well
defined and strictly decreasing for sufficiently small positive arguments. We can balance now

in (4.6) the last two terms as d(R) = α
κ

p−κ R
p

(p−κ)(1−c2) or equivalently �(R) = d(R)
p−κ

κ

R
p
c1

= α.

Evidently, we find for sufficiently small α > 0 a uniquely determined R = R(α) > 0 satisfying
the equation �(R) = α, where R(α) tends to infinity as α → 0. Thus we can estimate further
with some more constant K0 > 0 and for sufficiently small α > 0 as

Dξ

(
uδ

α, u†) � K1
δp

α
+ K0d(�−1(α)).

The function d(�−1(α)) in the last term of that estimate defined for sufficiently small α > 0
is strictly increasing and tends to zero as α → 0.

In the last step we have to balance α and δ in the sense of an a priori parameter choice
α = α(δ). For δ > 0 sufficiently small, this can be done by choosing α > 0 such that

δ = (αd(�−1(α)))
1
p =

(
d(R)

p

κ

R
p

c1

) 1
p

= �(R).

Hence we obtain the rate (4.5). �

Remark 4.5. In order to interpret the convergence rate (4.5) and to compare it with the rate
(3.7) occurring in the case that the benchmark source condition (3.1) is satisfied, we introduce
the quotient function

ζ(δ) := δκ

d(�−1(δ))
(4.8)

11
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defined for sufficiently small δ > 0. Following the steps of the proof of theorem 4.3 presented
above we find with δ = �(R) the equations

ζ(δ) = �(R)κ

d(R)
=

(
d(R)

1
κ

R
1
c1

)κ
1

d(R)
= R

− κ
c1 = (

�−1(δ)
)− κ

c1 → 0 as δ → 0.

Hence there is a deficit in the convergence rate expressed by the function ζ coming from the
violation of the benchmark source condition. The slower the distance function d(R) declines
to zero as R → ∞ the greater is the deficit. For illustration we refer to example 4.9.

If the Bregman distance is q-coercive we are able to present another result with improved
convergence rates. This is done in the second main theorem.

Theorem 4.6. Let the assumptions of theorem 4.3 hold including the setting (4.4) of κ and
let the Bregman distance be q-coercive in u† with constant c > 0 and for some 1 < q < ∞.

Moreover, we introduce for R > 0 the functions �q(R) := d(R)
q(p−κ)
(q−1)κ

R
p
c1

and �q(R) := d(R)
q

(q−1)κ

R
1
c1

.

Then we have the convergence rate

Dξ

(
uδ

α, u†) = O
(
d
(
�−1

q (δ)
) q

q−1
)

as δ → 0 (4.9)

when α = α(δ) satisfies the equation δ = α
1
p d

(
�−1

q (α)
) q

p(q−1) for sufficiently small δ > 0.

Proof. We consider the estimate (4.7) and balance the last two terms on the right-hand side as
an appropriate one-to-one correspondence between sufficiently large R and sufficiently small
α > 0,

α
κ

p−κ R
p

(p−κ)(1−c2) = d(R)
q

q−1 , or equivalently �q(R) = d(R)
q(p−κ)

(q−1)κ

R
p

c1

= α.

In the second step we equilibrate the remaining terms in δ and α as

d(R)
q

q−1 = δp

α
= δp

d(R)
q(p−κ)

(q−1)κ

R
p

c1 ,

which gives

δpR
p

c1 = d(R)
q

q−1 (1+ p−κ

κ
) = d(R)

qp

(q−1)κ

and yields with �q(R) = d(R)q/((q−1)κ)R(−1/c1) = δ and

δ = α
1
p d

(
�−1

q (α)
) q

(q−1)p = α
1
p d(R)

q

(q−1)p

the estimate (4.9) when the corresponding a priori parameter choice is taken. This proves the
theorem. �

The q-coercivity of the Bregman distance also allows us to derive convergence rates with
respect to the norm ‖ · ‖U instead of Dξ

(
uδ

α, u†). This is an immediate consequence of the
formulae (4.9) and (2.2).

Corollary 4.7. Under the conditions and notations of theorem 4.6 we have the convergence
rate ∥∥uδ

α − u†∥∥
U

= O
(
d
(
�−1

q (δ)
) 1

q−1
)

as δ → 0. (4.10)

There are different ways to obtain distance functions d(R) or at least appropriate majorants
based on link conditions, for example range inclusions, between the linearization operator

12
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F ′(u†) and the self-adjoint positive operators G : U → U that express well known or
assumed smoothness properties of the solution in the form ξ ∈ R(G) (see [4, 15, 18]).

In [12, p 358–9] both situations of slow logarithmic decay rates and of faster power decay
rates of d(R) were discussed in a more simpler setting. Below we outline the consequences
of these situations in two examples.

Example 4.8 (logarithmic convergence rates). First we consider a slow decay rate

d(R) � C

(log R)μ

of logarithmic type for the distance function considered for sufficiently large R > 0 and some
exponent μ > 0. This expresses the fact that ξ violates the benchmark source condition (3.1)
in a strong manner. If U was a Hilbert space, then one should expect that ξ would satisfy only
a logarithmic source condition (cf [19])

ξ = ϕ(F ′(u†)∗F ′(u†))w, w ∈ U, with ϕ(t) = 1/(log(1/t))μ.

Now in our Banach spaceworld we apply the estimate (4.6) from lemma 4.4. We set R := α−ν

with 0 < ν < κ(1−c2)

p
to obtain an estimate

Dξ

(
uδ

α, u†) � K1
δp

α
+

K4

(log(1/α))μ

for sufficiently small α > 0. Here we used that for small α the logarithmic rate is slower than
any power rate with positive exponent. Now for any a priori parameter choice α � δγ with
exponent 0 < γ < p in the sense of theorem 4.3 we arrive at the convergence rate

Dξ

(
uδ

α, u†) = O
(

1

(log(1/δ))μ

)
as δ → 0. (4.11)

If the additional condition (2.2) is valid and we estimate in the sense of theorem 4.6 starting
with the estimate (4.7), then we arrive at the logarithmic rate

Dξ

(
uδ

α, u†) = O
(

1

(log(1/δ))
μq

q−1

)
as δ → 0. (4.12)

For all 2 � q < ∞, the convergence rate (4.12) is better than the rate (4.11).

Example 4.9 (Hölder convergence rates). As a second situation we consider a power-type
decay rate

d(R) � C

R
μ

1−μ

, 0 < μ < 1, (4.13)

for the distance function considered for sufficiently large R > 0. This expresses the fact that
ξ violates the benchmark source condition (3.1) in a medium manner. If the parameter μ

varies through the range 0 < μ < 1, then all possible powers Rθ, 0 < θ < ∞, occur in the
denominator of the right-hand side of (4.13).

If U,V were Hilbert spaces, then under the situation of example 2.2 by the converse result
of corollary 3.3 in [6] the decay rate (4.13) of the distance function would imply the range
condition u† − u∗ ∈ R((F ′(u†)∗F ′(u†))ν/2) for all 0 < ν < μ. Then with c1 = 1, c2 = 0
we would also find low order convergence rates

∥∥uδ
α − u†∥∥

U
= O(δ

ν
1+ν ), for all 0 < ν < μ.

However, for 0 < c1 < 1, no such results would come from [17, theorem 1]. Noting that by
[6, theorem 3.1] on the other hand a low order source condition u† − u∗ ∈
R((F ′(u†)∗F ′(u†))μ/2) would imply a decay rate of type (4.13) for the distance function,

13
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we can compare now the Hilbert space results with the convergence rates obtained by
theorems 4.3 and 4.6.

For the Bregman distance and Banach space setting we find with (4.13) from theorem 4.3

a function �(R) = CR
1−μc2

(μ−1)c1 in the case 0 < c1 � 1 with 0 < c1 + c2 � 1, which yields with
κ = c1

1−c2
the convergence rate

Dξ

(
uδ

α, u†) = O
(
δ

μc1
1−μc2

) = O
(
δ

κ(
μ−μc2
1−μc2

)) as δ → 0. (4.14)

Even if κ = c1
1−c2

= 1, i.e. c1 + c2 = 1, the corresponding Hölder rate exponent
0 <

μc1

μc1+(1−μ)
< 1 tends to zero as c1 → 0, whereas the rate δκ of theorem 3.3 remains

valid for arbitrarily small c1 > 0.

The behaviour of the function (4.8) introduced in remark 4.5 can be illustrated in this
example by the explicit order expression

ζ(δ) = (�−1(δ))
κ
c1 ∼ δ

κ(
1−μ

1−μc2
)
.

This function characterizes the rate deficit caused by violating the benchmark source condition,
where the deficit grows with growing exponents of δ and ζ(δ) ∼ δκ would express the limiting
worst case. Now the exponent grows with the amplification factor 1−μ

1−μc2
which increases for

fixed c2 when μ decreases. The slower the distance function d(R) declines to zero as R → ∞
the greater is the deficit.

On the other hand, under the additional q-coercivity condition (2.2) for the Bregman
distance theorem 4.6 yields the rate

Dξ

(
uδ

α, u†) = O
(
δ

μc1q

(1−μc2)q+μ−1
)

as δ → 0, (4.15)

which is better than (4.14). Provided that the situation of example 2.2 arises we have q = 2,
and (4.15) gives here the rate∥∥uδ

α − u†∥∥
U

= O
(
δ

μc1
1+μ(1−2c2)

) = O
(
δ

μc1
(1−μc2)+μ(1−c2)

)
as δ → 0.

Evidently, the low order rate results of theorems 4.3 and 4.6 are more general than the older
ones in Hilbert space, because they include the variation of all three parameters c1, c2 and μ.
In particular, theorem 4.6 even leads to optimal convergence rate

∥∥uδ
α − u†∥∥

U
= O

(
δ

μ

1+μ

)
for

c1 = 1, c2 = 0 in the case of example 2.2.

Remark 4.10. In the process of balancing the distance functions d(R) the proofs of theorems
4.3 and 4.6 both exploited the estimate (4.3) with the last term d(R)‖u − u†‖U on the right-
hand side. The proof of the latter theorem used the fact that ‖u − u†‖U tends to zero for
u := uδ

α and α(δ) → 0, whereas the proof of the former only used the boundedness (2.4). So
it is not amazing that the rate (4.9) tends to be better than the rate (4.5) as the examples 4.8
and 4.9 show. However, one should note that the q-coercivity (2.2) in theorem 4.6 may be a
strong additional requirement.

5. Conclusions

As the proofs of lemma 4.4 and of theorem 4.3 show, for the applicability of the method
of approximate source conditions based on balancing large R and small α as developed for
linear ill-posed problems in [12, 13, 15] to nonlinear ill-posed problems the exponent c1 in
definition 2.5 has to be strictly positive. Only for such cases we have automatically β1 < 1
in the estimate (3.4) which allows us to use arbitrarily large values R. In the alternative case
c1 = 0 and c2 = 1 as in the classical theory of [8] an additional smallness condition

K‖w‖V ∗ = KR < 1

14



Inverse Problems 25 (2009) 035003 T Hein and B Hofmann

is required that restricts the radii R by R � Rmax < ∞ for ensuring β1 < 1. This restriction
destroys the success of the balancing approach, and hence convergence rates cannot be derived
in such a way. It is a simple consequence of our ideas using (3.1) as the benchmark source
condition that we can present here only results with low order convergence rates, i.e., the rate
is not better than Dξ

(
uδ

α, u†) = O(δ). However, we cannot answer the question of whether for
nonlinear ill-posed equations the method of approximate source conditions may yield higher
convergence rates when benchmark source conditions with more smoothness are exploited.
For linear ill-posed equations an extension of the method to general index functions as a
benchmark was successful (see [6, 15]). On the other hand, as a rule faster convergence rates
for nonlinear ill-posed equations require additional conditions associated with smallness (see
for details [25] and [22, 26, 29]).

Finally let us mention two points for future work. First, in any case the abstract theory
presented here has to be complemented by illustrative examples with concrete nonlinear
forward operators and concrete Banach spaces. In particular, examples with fractional
exponents 0 < c1 < 1 would be of interest. Second, we assumed c1 + c2 � 1 throughout this
paper. It is open whether the case c1 = 1, c2 > 0 can lead to further convergence rates results.
At least, for example 2.2, in Hilbert spaces U and V inequalities of the form

‖F(u) − F(u†) − F ′(u†)(u − u†)‖V � K‖F(u) − F(u†)‖V ‖u − u†‖U

have numerous applications which correspond to c1 = 1, c2 = 1/2 in our notation.
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discussions and hints concerning the functional analytic background of this paper. Moreover,
the second author acknowledges support by Deutsche Forschungsgemeinschaft (DFG) under
Grant HO 1454/7-2.

References

[1] Bakushinsky A B and Kokurin M Yu 2004 Iterative Methods for Approximate Solutions of Inverse Problems
(Dordrecht: Springer)

[2] Baumeister J 1987 Stable Solution of Inverse Problems (Braunschweig: Vieweg)
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