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Abstract. One of the fundamental results in the theory of ill-posed
inverse problems asserts that these problems can become conditionally
well-posed when restricting the domain of the forward operator in an
appropriate manner. This leads to the study of certain moduli of con-
tinuity for the associated restricted inverse operator. The authors sys-
tematically study this modulus of continuity and highlight its intimate
connection to error bounds of various regularizing procedures. The con-
tributions of V. K. Ivanov and his concept of quasi-solutions are funda-
mental for such analysis.

1. Introduction

The study of linear ill-posed operator equations, say

(1) Ax = y,

is a fundamental issue within the theory of inverse problems, where, within
the present context the forward operator A : X → Y is assumed to be
an injective linear mapping between infinite-dimensional separable Hilbert
spaces X and Y endowed with inner products 〈 · , · 〉 and norms ‖ · ‖. Ill-
posedness means that the range R(A) of the operator A is not closed, which
is equivalent to the fact that the inverse operator A−1 : R(A) ⊂ Y → X is
unbounded (not continuous), and hence for arbitrarily small δ > 0 it holds
true that

(2) sup {‖x‖, x ∈ X : ‖Ax‖ ≤ δ} =∞.
However, when restricting the domain of the forward operator A to certain
subsets M of X and consequently the domain of A−1 to images of M this
no longer needs to be the case. Most famously, by Tikhonov’s theorem (see,
[35] and also e.g. [1, Lemma 2.2]) the operator A−1 restricted to images of
compact sets M is continuous and the corresponding function

(3) ω̄(A−1,M, δ) := sup {‖x1 − x2‖, x1, x2 ∈M, ‖Ax1 −Ax2‖ ≤ δ}
tends to zero as δ → 0. This result is fundamental as it asserts a conditional
stability, and the study of properties of the function ω̄ from (3) has attracted
attention. V. K. Ivanov was one of the first who used this for the analysis of
ill-posed problems. Most frequently this function is exploited as it is closely
related to error bounds, and we recall this connection. In particular the
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function from (3) suggests to consider instead of the original equation (1),
where we denote by x† its true solution, the nearby equation

(4) yδ = Ax+ δξ

as model with bounded ‖ξ‖ ≤ 1, where the variable δ from (3) expresses the
noise level in (4). Throughout this paper let yδ ∈ Y denote noisy data of y
corresponding to (1) with noise level δ > 0 satisfying

(5) ‖y − yδ‖ ≤ δ.

A systematic study of properties of ω̄ is lacking, and the authors try
to close this gap. We start this study with some elementary analysis in
Section 2. In particular we focus on the related to (3) function

(6) ω (M, δ) := sup {‖x‖, x ∈M, ‖Ax‖ ≤ δ} ,
which will be called modulus of continuity, throughout. Then, in Section 3
we provide the few examples of sets M where the modulus of continuity
can be computed explicitly. Again, such results are related to the work of
V. K. Ivanov, see [17]. As mentioned before, the relation of the moduli of
continuity to minimal errors of any reconstruction method based on noisy
data is essential. We recall this basic relation in Section 4 and accompany
this by showing that the bounds are sharp for ellipsoids in Hilbert space. We
use the modulus of continuity to derive error bounds for various classes of
regularizing procedures. Such procedures complement the ansatz of quasi-
solutions pioneered by V. K. Ivanov in [14, 15, 16], and try to circumvent
specific weakness in some points.

2. Elementary properties

We will restrict ourselves to centrally symmetric and convex sets M ,
which means that with x1, x2 ∈ M also the elements −x2 and (x1 − x2)/2
belong to M . Given some constant R > 0 we agree to denote the set
RM := {Rz ∈ X, z ∈M}. The following result summarizes the elementary
properties of moduli of continuity, useful in case that this is a finite function
of δ, which will be used throughout the study.

Theorem 1. For the moduli of continuity from (6) the following properties
hold:

(a) ω (M, δ) is a positive and non-decreasing function for δ > 0. If M is
bounded then it is constant for δ ≥ δ̄ := sup

x∈M

‖Ax‖.
(b) If M is relatively compact then lim

δ→0
ω (M, δ) = 0.

(c) ω (RM, δ) = Rω (M, δ/R) for R > 0.
(d) ω (M,Cδ) ≤ Cω (M, δ) for C > 1.
(e) ω (RM,Cδ) ≤ max{C,R}ω (M, δ) for C,R > 0.
(f) the decay rate of ω (M, δ)→ 0 as δ → 0 is at most linear.
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(g) The modulus of continuity ω from (6) is related to the function ω̄ from (3)
by the inequality chain

ω (M, δ) ≤ ω̄(M, δ) ≤ 2ω (M, δ/2) = ω (2M, δ) , δ > 0.

Proof. Item (a) is obvious. To prove item (b) we assume that there would
be a constant ω0 > 0 with ω (M, δ) ≥ ω0 > 0. Then we can find for each
n ∈ N some xn ∈ M with ‖Axn‖ ≤ 1/n but ‖xn‖ ≥ ω0. Thus Axn → 0 for
n→∞, but by Tikhonov’s theorem xn → 0 in contradiction to ‖xn‖ ≥ ω0.

We rewrite

ω (RM,Cδ) = sup {‖x‖, x ∈ RM, ‖Ax‖ ≤ Cδ}

= R sup

{‖x‖
R
,

x

R
∈M,

‖Ax‖
R

≤ C

R
δ

}

(7)

= Rω

(

M,
C

R
δ

)

.

For C = 1 this yields (c). Clearly, the function

ω (M, δ)

δ
= sup

{

‖z‖, z ∈ 1

δ
M, ‖Az‖ ≤ 1

}

, δ > 0,

is a non-increasing function as for declining δ the set where we compute the
supremum for widens. Thus, for C > 1 we have that

(8)
ω (M,Cδ)

Cδ
≤ ω (M, δ)

δ
,

which shows (d). Furthermore, we do a distinction of cases to show (e)
from (7):

ω (RM,Cδ) ≤
{

Cω (M, δ) , C ≥ R by (d)

Rω (M, δ) , C < R by monotonicity.

Again, if we consider δ̄ as in (a), then it follows from (8) that

C̄ :=
ω
(

M, δ̄
)

δ̄
≤ ω (M, δ)

δ
, 0 ≤ δ < δ̄,

which proves (f).
The first inequality in (g) follows from 0 ∈ M for centrally symmetric

M . With arbitrary ε > 0 we choose x1, x2 ∈M with ‖Ax1 −Ax2‖ ≤ δ and
‖x1−x2‖ ≥ ω̄(M, δ)−ε. AsM is centrally symmetric x̃ := (x1−x2)/2 ∈M
and we conclude ‖Ax̃‖ ≤ δ/2. We complete the proof by estimating

ω (M, δ/2) ≥ ‖x̃‖ = ‖(x1 − x2)/2‖ ≥ 1/2 (ω̄(M, δ)− ε)
and letting ε→ 0. ¤

We close this section with the following result, which exhibits the impor-
tance of the discrepancy ‖Ax̂ − yδ‖ at any point x̂ ∈ X for bounding the
modulus of continuity.
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Lemma 1. Let M be centrally symmetric and convex, and suppose that
x ∈M. If x̂ = x̂(yδ) ⊂M is an element derived from data yδ ∈ Y satisfying

‖Ax̂− yδ‖ ≤ ε

for some ε > 0, then we have

(9) ‖x− x̂‖ ≤ 2ω (M, (δ + ε)/2) = ω (2M, δ + ε) .

Proof. By assumption both elements x and x̂ belong to the setM . Moreover,
using the triangle inequality we have that

‖Ax−Ax̂‖ ≤ ‖Ax− yδ‖+ ‖Ax̂− yδ‖ ≤ δ + ε.

Therefore we can bound

‖x− x̂‖ ≤ ω̄(M, δ + ε).

By Theorem 1(g) we can complete the proof of the lemma. ¤

3. Explicit computation of moduli of continuity

For several cases of sets M one can actually compute the corresponding
moduli ω (M, δ). This was first done for source sets with respect to the
operator H := A∗A in [17], and we will slightly extend this analysis here.

On the other hand the modulus of continuity can be evaluated in case
that M ⊂ X is some finite-dimensional subspace. This was done, in slightly
different form, in [21]. For the latter analysis it is important to assume
that the operator A is compact, i.e., there is a triple {σj ; uj ; vj}∞j=1, the
singular system of A, with positive singular values σ1 ≥ σ2 ≥ ... ≥ σj ≥
σj+1 ≥ ... tending to zero as j →∞. Moreover, {uj}∞j=1 ⊂ X is a complete

orthonormal system in X and {vj}∞j=1 ⊂ Y is an orthonormal system in Y
such that Auj = σjvj and A

∗vj = σjuj for j = 1, 2, ....
Both results below are important as they relate the modulus of continuity

to intrinsic geometric properties of the sets M .

3.1. Source sets. Source sets M ⊂ X are defined using the notion of an
index function. Complying with [9, 11] we introduce

Definition 1. A real function ϕ(t) (0 ≤ t ≤ t) with t > 0 is called an index
function, if this function is continuous and strictly increasing with ϕ(0) = 0.

At some place we shall need the following additional condition.

Definition 2. An index function ϕ(t), 0 ≤ t ≤ t, is said to obey a
∆2-condition, if there is a constant 0 < C2 <∞ such that ϕ(2t) ≤ C2 ϕ(t),
0 < t ≤ t/2.

By Theorem 1(d) a ∆2-condition automatically holds for the modulus of
continuity with C2 = 2.
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Given the operator A from (1) we assign the nonnegative self-adjoint oper-
ator H := A∗A : X → X. Sets M ⊂ X are called source sets if there is an
index function ϕ(t), 0 ≤ t ≤ ‖H‖ such that

(10) M := Hϕ = {x = ϕ(H)v, ‖v‖ ≤ 1} .

Remark 1. The above notation is frequently used in the form Hϕ(R) =
R ·Hϕ. However, given some pair ϕ and R < ∞ we can switch to the pair
Rϕ and 1 to always reduce the consideration to the standardized source sets
Hϕ := Hϕ(1).

As mentioned above, for source sets Hϕ the modulus ω (Hϕ, δ) was com-
puted in [17], however, in a rudimentary form. Later in [8] this result was
revisited within the framework of variable Hilbert scales as the families of
Hilbert spaces generated from index functions ϕ are called since then. In its
more recent form the result was first stated in [26], and the present approach
follows that study.

To formulate the result for source sets Hϕ we assign to the function ϕ the
related function

(11) Θ(t) :=
√
tϕ(t), 0 ≤ t ≤ t̄.

Theorem 2. If the function t 7→ ϕ2((Θ2)−1(t)) is concave, then

(12) ω2(Hϕ, δ) = s(δ), 0 < δ ≤ Θ2(‖H‖),

where s is a piecewise linear spline, interpolating

(13) s(Θ(σ2j )) = ϕ2(σ2j ), j = 1, 2, . . . .

The concavity assumption of Theorem 2 is essential. It ensures that the

points
(

Θ(σ2j ), ϕ
2(σ2j )

)

, j = 1, 2, . . . are extremal in the sub-graph of the

spline s from above. This, in turn, corresponds to the convexity of the
sub-graph, a condition imposed in [17].

One could guess that the modulus of continuity ω (Hϕ, δ) is always a
concave function, but we can show this only for the auxiliary function

ω2
(

Hϕ,
√
δ
)

.

Proposition 1. For any index function ϕ the function

(14) τ(δ) := ω2
(

Hϕ,
√
δ
)

, δ > 0,

is concave.

Proof. For any source element v =
∞
∑

j=1
fjuj with ‖v‖ ≤ 1 where fj = 〈v, uj〉,

denote the Fourier coefficients, we let

βj := ϕ2(σ2j ), γj := Θ2(σ2j ), κj := f2j ≥ 0, j = 1, 2, ...,
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and rewrite

τ(δ) = sup







∞
∑

j=1

βjκj ,
∞
∑

j=1

κj ≤ 1,
∞
∑

j=1

γjκj ≤ δ







.

Consider arbitrarily chosen 0 < δ1 < δ < δ2 and δ = λδ1 + (1 − λ)δ2 for
some appropriate 0 < λ < 1. With given ε > 0 we can find convex linear
combinations {µj} and {νj} for which

∞
∑

j=1

γjµj ≤ δ1,
∞
∑

j=1

βjµj ≥ τ(δ1)− ε ,

and
∞
∑

j=1

γjνj ≤ δ2,
∞
∑

j=1

βjνj ≥ τ(δ2)− ε .

Then each κj := λµj+(1−λ)νj again constitutes a convex linear combination

and we have
∞
∑

j=1
γjκj = λ

∞
∑

j=1
γjµj + (1− λ)

∞
∑

j=1
γjνj ≤ δ, hence

τ(δ) ≥
∞
∑

j=1

βjκj

= λ
∞
∑

j=1

βjµj + (1− λ)
∞
∑

j=1

βjνj

≥ λτ(δ1) + (1− λ)τ(δ2)− ε .
Letting ε→ 0 proves the required concavity assertion. ¤

Remark 2. The function τ from Proposition 1 is the smallest concave index

function which interpolates the points
(

Θ(σ2j ), ϕ
2(σ2j )

)

, j = 1, 2, . . . .

We summarize the results for source sets as follows.

Corollary 1 (see [26, Thm. 1]). Let ϕ be an index function.

(i) If t→ ϕ2((Θ2)−1(t)) is concave, then

(15) ω (Hϕ, δ) ≤ ϕ(Θ−1(δ)), 0 < δ ≤ δ̄.

(ii) If ϕ obeys a ∆2-condition and the singular numbers obey
σj+1/σj ≥ γ > 0, then there is a constant Cγ > 0 such that

(16) ω (Hϕ, δ) ≥ C−1γ ϕ(Θ−1(δ)), 0 < δ ≤ δ̄.

Remark 3. We stress that the bound from (15) can be proved directly and
not relying on the representation from Theorem 2 by using some interpo-
lation inequality from [27] which proves useful for the analysis of variable
Hilbert scales.
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3.2. Finite dimensional subspaces. We next discuss the modulus of con-
tinuity for finite dimensional subspaces M := Xn ⊂ X with dim(Xn) = n
spanned by n linear independent elements e1, e2, ..., en of X, i.e., Xn =
span{e1, e2, ..., en}. Although the subspaces Xn ⊂ X are non-compact, the
corresponding modulus of continuity ω (Xn, δ) can be studied, and it turns
out to be related to the modulus of injectivity j(A,Xn), defined next, which
is a quantity measuring how well the operator A when restricted to Xn is
invertible. Precisely, we let

(17) j(A,Xn) := inf
06=x∈Xn

‖Ax‖
‖x‖ .

The following result relates the modulus of continuity to the modulus of
injectivity.

Proposition 2. Let Xn ⊂ X be any n-dimensional subspace. Then

(18) ω(Xn, δ) =
δ

j(A,Xn)
.

The modulus of continuity is smallest if Xn := Un = {u1, . . . , un} is the
n-dimensional subspace corresponding to the n largest singular numbers of
the operator A. In this case

ω(Un, δ) =
δ

σn
.

Proof. The modulus of continuity is given as a solution of a constrained
optimization problem and we turn to unconstrained optimization using a
Lagrange multiplier, say λ. Precisely, let Pn be the orthogonal projection
onto Xn. Then

ω(Xn, δ) = ‖Pnx̄‖,
where x̄ ∈ X maximizes

F (x) := ‖Pnx‖2 − λ
(

‖APnx‖2 − δ2
)

.

This yields Pnx̄ = λAPnx̄ with ‖APnx̄‖2 = δ2, such that ‖Pnx̄‖ = |λ| δ. We
observe that the latter norm is maximized for

λmax := sup
06=x∈Xn

‖x‖
‖Ax‖ = 1/j(A,Xn),

which completes the proof of (18). The remaining assertion follows from
the well-known fact that the moduli of injectivity are maximal for the
eigenspaces as used, in which case these are equal to the n-th Bernstein
numbers, which in Hilbert space coincide with the n-th singular numbers.
We refer to [25] for more discussion. ¤

Remark 4. It is easy to see, and explains the name modulus of injectivity,
that

j(A,Xn) = sup {ρ, ρ‖x‖ ≤ ‖Ax‖ for all x ∈ Xn} .
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If we introduce for given Xn vectors λ =
n
∑

j=1
λjej in this subspace as well as

the positive definite and symmetric n × n-matrices E1 = (〈ei, ej〉)i=1,2,...n
j=1,2,...,n

and E2 = (〈Aei, Aej〉)i=1,2,...n
j=1,2,...,n, then following the paper [21] we obtain that

j(A,Xn) = inf
λ:λTE

1
λ=1

√

λTE2λ = ξmin,

where ξmin = ξn is the smallest of the n eigenvalues ξ1 ≥ ξ2 ≥ ... ≥ ξn > 0
of the generalized eigenvalue problem

E2 λ = ξ E1λ.

We notice that ξmin ≤ σn (see, e.g., [31]). Hence, the modulus of injectivity
is always equal or smaller than the n-th singular number σn of the compact
operator A. For ej = uj , j = 1, 2, ..., n, taken from the singular system of the
compact operator A we have a unity matrix E1, since the uj are orthonormal,
and a diagonal matrix E2 = diag{σ21, σ22, ...σ2n} yielding j(A,Xn) = σn.

The representation from (18) clearly exhibits the fact that such finite-
dimensional constrains make the problem well-posed with conditioning de-
pending on the quality of the chosen subspace Xn through its modulus of
injectivity. We refer to [38] (see also [10]) for the fact that the condition
numbers of occurring n × n-systems for a Galerkin discretization approach
to (1) behave equal or worse than O(1/σn) as n → ∞. If, for example,
(1) is moderately ill-posed in the sense of σn ∼ n−µ with some exponent
1 ≤ µ <∞, then the condition numbers grow with order nµ at least.

4. Impact of the modulus of continuity on error bounds

Moduli of continuity are important as these are related to minimal errors
for any methods of reconstruction x̂ = x̂(yδ) of x†, which shall be the true
solution of (1) from noisy data yδ when ‖y−yδ‖ ≤ δ. If the mapping yδ 7→ x̂
is linear, then we call this a linear reconstruction. As reconstruction error
at instance x ∈ X we let

(19) e(x̂, x, δ) := sup
{

‖x̂(yδ)− x‖, for yδ with ‖Ax− yδ‖ ≤ δ
}

.

Consequently, we introduce as

(20) e(x̂,M, δ) := sup
x∈M

e(x̂, x, δ), δ > 0,

the uniform error on the set M of the reconstruction method x̂ at noise
level δ. Thus, the minimal error for any method is given as

(21) e(M, δ) := inf
x̂:Y 7→X

e(x̂,M, δ).

Error analysis results using the modulus of continuity (6), partially in terms
of the notation introduced above, were published by several authors, e.g., in
the monographs [3, 6, 18, 22, 33, 37] and in the papers [5, 17, 21, 34].
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The basic result which relates the modulus of continuity to minimal errors
is as follows, and we refer to the monographs [18, 37] for proof and further
details.

Proposition 3. For any centrally symmetric and convex set M ⊂ X and
any δ > 0 it holds true that

(22) ω (M, δ) ≤ e(M, δ) ≤ ω (M, 2δ) .

Thus the moduli of continuity allow us to find benchmarks for errors of
reconstruction methods x̂ = x̂(yδ) based on data yδ.

The interesting result which we are going to establish next states that the
above lower bound is sharp for the collection of ellipsoids in Hilbert space.
Such sets are images of balls under linear bounded mappings. Without loss
of generality such mappings may be chosen non-negative and self-adjoint,
acting within the space X. Thus, to any injective, positive and self-adjoint
operator G : X → X we assign the ellipsoid

(23) M(G) := {x ∈ X : x = Gw, w ∈ X, ‖w‖ ≤ 1} .
Clearly, source sets Hϕ are ellipsoids, precisely it holds Hϕ = M(ϕ(A∗A)).
For its description and properties we recall the following minimax result
from [30, Thm. 2.1].

Lemma 2. If M(G) is as in (23) then

(24) ω (M(G), δ) = min
0≤λ≤1

sup

{

‖Gv‖, λ‖v‖2 + 1− λ
δ2

‖AGv‖2 ≤ 1

}

.

Remark 5. Notice that the right hand side need not be finite unless some
restriction on the operator G is imposed. So far we have seen that finite-
ness can be ensured for source sets with G := A∗A, finite-dimensional sub-
spaces Xn with G := Pn the orthogonal projection onto this and compact
sets, i.e., when G is any compact operator.

The following fundamental theorem was inspired by Theorem 3.1 of the
seminal contribution [30]. Given the mapping G it will use the specific form

(25) Jα(v) := ‖AGv − yδ‖2 + α‖v‖2, v ∈ X
of Tikhonov functional with regularization parameter α > 0. Since

(26) Sα := (AG)∗ (AG) + α I : X → X.

is a boundedly invertible positive self-adjoint operator for all α > 0, by dif-
ferentiation we see that a minimizer vδα of (25) obeying Sα v

δ
α = G∗A∗yδ is

uniquely determined. Therefore we let xδα = Gvδα, hence the linear recon-
struction yδ 7→ x̂ := xδα is given as

(27) xδα := G ((AG)∗ (AG) + α I)
−1
G∗A∗yδ,

which is well defined for all α > 0.
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Theorem 3. Suppose that M(G) is as in (23) and that x† ∈ M(G). Then
for each δ > 0 there is a linear reconstruction x̂0 = x̂0(y

δ) with

(28) e(x̂0,M(G), δ) = ω (M(G), δ) .

Proof. If ω (M(G), δ) = ∞ there is nothing to prove. Otherwise, let λ0 =
λ0(δ) be the parameter for which the minimum in (24) is attained. We assign
α0 := δ2λ0/(1− λ0) and the specification of the convex functional (25) as

(29) J0(v) := Jα0
(v), v ∈ X.

Let for the true solution hold x† = Gv† with v† ∈ X and ‖v†‖ ≤ 1. Then
we have

(30) J0(v
†) = ‖AGv† − yδ‖2 + α0‖v†‖2 ≤ δ2 + α0 =

δ2

1− λ0
.

With the operator Sα0
from (26) we observe by straightforward calculations

that

J0(v
†)−J0(vδα0

) = 〈Sα0
(v†−vδα0

), (v†−vδα0
)〉−2〈(v†−vδα0

), Sα0
vδα0
−G∗A∗yδ〉.

Since by construction Sα0
vδα0

= G∗A∗yδ we arrive at

J0(v
†)− J0(vδα0

) = 〈Sα0
(v† − vδα0

), (v† − vδα0
)〉.

Therefore, and since J0(v
δ
α0
) ≥ 0 we conclude, by specifying x̂0 := xδα0

in (27), and using (30) that

e(x̂0,M, δ) = sup
{

‖x† −Gvδα0
‖, x† = Gv†, ‖v†‖ ≤ 1, ‖AGv† − yδ‖ ≤ δ

}

≤ sup

{

‖G(v† − vδα0
)‖, J0(v

†) ≤ δ2

1− λ0

}

= sup

{

‖G(v† − vδα0
)‖, 〈Sα0

(v† − vδα0
), (v† − vδα0

)〉 ≤ δ2

1− λ0
− J0(vδα0

)

}

= sup

{

‖G(v† − vδα0
)‖, 〈Sα0

(v† − vδα0
), (v† − vδα0

)〉 ≤ δ2

1− λ0

}

.

Now we rename h := v† − vδα0
and use that

〈Sα0
h, h〉 = ‖AGh‖2 + α0‖h‖2, h ∈ X.

This leads to

e(x̂0,M, δ) ≤ sup

{

‖Gh‖, 〈Sα0
h, h〉 ≤ δ2

1− λ0

}

= sup

{

‖Gh‖, 1− λ0
δ2

‖AGh‖2 + λ0‖h‖2 ≤ 1

}

.

By the choice of λ0 as minimizer in (24) we obtain from Lemma 2 that
e(x̂0,M(G), δ) ≤ ω (M(G), δ), and together with Proposition 3 this com-
pletes the proof of the theorem. ¤
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The proof of Theorem 3 reveals the following interesting corollary which
was first presented in [3, Thm. 3.4], we also refer to the more recent [5,
Thm. 2.1].

Corollary 2. Let for the true solution hold x† ∈M(G) and let 0 < c < c <
∞ be positive constants. If we consider as reconstruction elements x̂(yδ) the
regularized solutions xδ

α(δ) = Gvδ
α(δ) according to (27) by using an a priori

choice of the regularization parameter α = α(δ) such that cδ2 ≤ α(δ) ≤ cδ2,
then we have the error estimate

(31) ‖x† − xδα(δ)‖ ≤ max
{

2
√

1 + 1/c, 1 +
√
1 + c

}

ω (M(G), δ) .

Proof. A look into the proof of Theorem 3, and using the fact that vδ
α(δ)

minimizes the functional (25) for α = α(δ) reveals that

Jα(δ)(v
δ
α(δ)) ≤ Jα(δ)(v

†) ≤ δ2 + α(δ).

This implies that

‖AGvδα(δ) − yδ‖ ≤
√

δ2 + α(δ) ≤ δ
√
1 + c,(32)

and

‖vδα(δ)‖ ≤
1

√

α(δ)

√

δ2 + α(δ) ≤
√

1 + 1/c.(33)

By Lemma 1 this allows to bound

‖x† − xδα(δ)‖ ≤ 2ω

(

(

√

1 + 1/c
)

M,

(

1 +
√
1 + c

2

)

δ

)

,

from which the proof can be completed, using Theorem 1(e). ¤

5. Stability of regularization schemes

5.1. Quasi-solutions. A very traditional approach for exploiting the effect
of conditional stability is the method of quasi-solutions, as first suggested by
V. K. Ivanov (see the monograph [18] for more details and the survey pa-
per [19] for the history of definitions and approaches by Russian scientists).

For compact sets M the approximate solutions x̂qu = x̂qu(y
δ) are selected

by solving the discrepancy minimization problem

(34) ‖Ax− yδ‖ → min, subject to x ∈M.

Since M is a compactum, the solution set of (34) is non-empty, but not
necessarily a singleton. Measured by appropriate set-distances the solutions
of (34) stably depend on the data yδ. The power of this ansatz is as follows.

Proposition 4. Suppose that x† ∈ M and let x̂qu be any solution to (34).
Then we have the error estimate

(35) ‖x† − x̂qu‖ ≤ 2ω (M, δ) .
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Proof. By construction of x̂qu it holds ‖Ax̂qu−yδ‖ ≤ ‖Ax†−yδ‖ ≤ δ. Thus,
Lemma 1 applies with ε = δ and yields the conclusion. ¤

Unfortunately, the explicit prescription of the set M is necessary in order
to use this method of quasi-solutions. This makes it difficult to find quasi-
solutions of practical relevance for M from (23) or (10). Even if an a priori
smoothness x† ∈ R(G) with given G is available, i.e., the smoothness of the
true solution is expressed by the fact that x† belongs to the range of G, the
occurring scaling factor R from x† ∈ R ·M(G) can hardly be estimated in
practice. Since quasi-solutions in general lie on the boundary of a set M :=
R ·M(G), the subjective choice of the radius R > 0 essentially influences
the properties of corresponding quasi-solutions.

5.2. Linear regularization schemes. Regularization methods (see [36]
and e.g. [2, 3, 7, 32]) have a long history in stabilizing the solution process
of ill-posed equations (1). We will shortly present the ideas of a general
linear regularization scheme unifying a multitude of ansatzes (see, e.g., [1,
p. 74ff.]). We start with a family of piecewise continuous functions

gα(t), 0 < t ≤ a := ‖A∗A‖,
depending on a regularization parameter α with 0 < α < αsup, where αsup
may be a finite real number or ∞. This parameter compromises between
stabilization and approximation of the original problem. Each function gα
describes a regularization method if the following properties hold:

sup
0<t≤a

| t gα(t) | ≤ γ0,(36)

lim
α→0

gα(t) =
1

t
, 0 < t ≤ a,(37)

sup
0<t≤a

√
t |gα(t)| ≤ γ∗√

α
,(38)

with constants γ0, γ∗ > 0.
Two approximate solutions gained by the regularization methods need to

be distinguished, namely

x̂α := gα(A
∗A)A∗y = gα(A

∗A)A∗Ax†,(39)

in the noise-free case while in the case of noisy data we let

x̂δα := gα(A
∗A)A∗yδ.(40)

Note that the intrinsic application of the function gα is with respect to the
self-adjoint operator A∗A, see [20, Remark 2.3].

By (36), (39) and (40) we derive

(41) ‖x̂δα − x̂α‖ ≤
γ∗δ√
α
.
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As in [23, 26, 27] we measure the qualification of a regularization method
by index functions ψ.

Definition 3. An index function ψ(t), 0 ≤ t ≤ a, is said to be a qualification
with constant 1 ≤ γ < ∞ of the regularization method gα applied to the
operator equation (1) if for some α̃ ∈ (0, a]

(42) sup
0<t≤a

|1− tgα(t)|ψ(t) ≤ γψ(α), 0 < α ≤ α̃ .

One finds examples for concrete methods described by gα, their qualifica-
tions and the corresponding constants in the formulae (36), (38) and (42),
e.g., in [11, chapter 2.1] and [20, Remark 2.8].

In order to obtain convergence rates concerning the total error for general
regularization methods we use the obvious error decomposition

(43) ‖x̂δα − x†‖ ≤ ‖x̂α − x†‖+ ‖x̂δα − x̂α‖,
and we shall bound the noiseless term ‖x̂α − x†‖ using the modulus of con-
tinuity. Therefore, we assume that x†, x̂α ∈ M for sufficiently small α > 0.
Then the definition of the function ω̄ from (3) yields that

(44) ‖x̂α − x†‖ ≤ ω̄(M, ‖Ax̂α −Ax†‖),
hence we need to bound the discrepancy in order to apply Theorem 1(g).
We obtain

(45) ‖Ax̂α −Ax†‖ = ‖A[I − gα(A∗A)A∗A]x†‖.
Now we can continue in two ways. First, we shall not use any source con-
dition on the exact solution x†. Let us assign to the modulus of continu-
ity ω

(

M,
√
t
)

the function

(46) Ψ(t) :=
√
t ω
(

M,
√
t
)

, 0 < t ≤ t̄.

Theorem 4. Let M ⊂ X be centrally symmetric and convex. Suppose that
the regularization method with generator function gα has the qualification

√
t,

and that both x† and xα from (39) for sufficiently small α > 0 belong to M .
If α(δ) = Ψ−1(δ) with Ψ from (46) then

(47) ‖x̂δα − x†‖ = O
(

ω
(

M,
√

Ψ−1(δ)
))

as δ → 0 .

Proof. If the regularization method gα has a qualification
√
t with constant

1 ≤ γ <∞ then, as outlined in [20], it holds

‖Ax̂α −Ax†‖ ≤ γ‖x†‖
√
α.

For centrally symmetric and convex sets M this leads with Theorem 1(g) to

(48) ‖x̂α − x†‖ ≤ ω̄
(

M,γ‖x†‖
√
α
)

≤ 2ω

(

M,
γ‖x†‖

2

√
α

)

.
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Thus, the total error of regularization is bounded using the decomposi-
tion (43) and (41) as

‖x̂δα − x†‖ ≤
γ∗δ√
α
+max

{

2, γ‖x†‖
}

ω
(

M,
√
α
)

.

with the help of Theorem 1(e). Under the a priori parameter choice be
α(δ) ∼ Ψ−1(δ) we obtain (47), which completes the proof of the theorem. ¤

More comprehensive and satisfactory results can be found ifM := R ·Hϕ,

i.e., if we can assume that x† satisfies a source condition x† = ϕ(H)v with
an index function ϕ and ‖v‖ ≤ R, and if the regularization gα has higher
qualification.

Remark 6. It was shown in [24] that for compact operators H = A∗A each
element x† ∈ X belongs to some source set R ·Hϕ for a certain pair (ϕ,R).

Theorem 5. Suppose that x† ∈ Hϕ for some index function ϕ, and suppose
that the regularization method with generator function gα has the qualifica-
tion Θ(t) for the function Θ from (11). If for sufficiently small α > 0 it
holds true that xα from (39) belongs to Hϕ, and if α(δ) = Θ−1(δ) then

(49) ‖x̂δα(δ) − x†‖ = O
(

ϕ
(

Θ−1(δ)
))

as δ → 0,

provided that the function t 7→ ϕ2(
(

Θ2
)−1

(t)) is concave.

Proof. Since the regularization method gα has qualification Θ(t), one may
estimate from (45) that

‖Ax̂α −Ax†‖ ≤ ‖A[I − gα(A∗A)A∗A]ϕ(A∗A)‖ ≤ γΘ(α).

Using (44) in conjunction with Theorem 1(g) and for α > 0 small enough
we conclude that

(50) ‖x̂α − x†‖ ≤ ω̄(Hϕ, γΘ(α)) ≤ max{2, γ}ω (Hϕ,Θ(α)) .

Now, using the concavity assumption we infer from Corollary 1(i) that

ω(Hϕ,Θ(α)) ≤ ϕ(Θ−1(Θ(α))) = ϕ(α),

thus

‖x̂δα − x†‖ ≤
γ∗δ√
α
+max{2, γ}ϕ (α) .

Choosing, in this case, the parameter α from α(δ) ∼ Θ−1(δ) we obtain (49),
which completes the proof. ¤

Remark 7. The condition xα ∈M for sufficiently small α > 0 in Theorem 5
is not hard to fulfill (see [20, Remark 3.3]). Due to [4, Proposition 2.1] such
a condition also holds for ellipsoids M := M(G) from (23) in Theorem 4
provided that the operators G and H = A∗A are linked by a range inclusion
R(G) ⊂ R(ϕ(A∗A)) or equvialent conditions (see [4, 13, 29].
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Remark 8. Similar bounds as in (49) can be obtained differently, if the
regularization gα has qualification ϕ, only, and we refer to [11] for this.
However, here we aim at deriving error bounds by using the modulus of
continuity, and thus we are to bound the discrepancy. If we do this under
smoothness assumptions given by source sets then higher qualification is
required, as this is well-known for the discrepancy principle.

Remark 9. One may wonder whether the rate from (49), which takes into
account solution smoothness, is always better than that from (47). This is
not always the case, since for logarithmic smoothness of the form ϕ(t) =
log−p(1/t) both formulae from (47) and (49) yield the same rate, as δ → 0,
‖xδ

α(δ) − x†‖ = O(log−p(1/δ)).

5.3. Discretization. As is well-known (see Section 3.2) ill-posed equations
(1) become well-posed after discretization, i.e., if the solutions are searched
in a finite-dimensional subspace Xn ⊂ X, say with dim(Xn) = n. In this
case quasi-solutions xδn ∈ Xn are the uniquely determined minimizers of

(51) ‖Ax− yδ‖ → min, subject to x ∈ Xn.

This procedure is called one-sided discretization, and the resulting solu-
tions xδn are obtained as

(52) xδn := Pn (PnA
∗APn)

−1 PnA
∗yδ

by using the orthogonal projection Pn onto Xn. This results in the following
error bound for the one-sided projection method from (51). We recall the
definition of the modulus of injectivity j(A,Xn) from (17).

Lemma 3. Let x† be the solution to (1) and xδn be the minimizer of (51),
i.e., it is given by (52). Then

(53) ‖x† − xδn‖ ≤ dist(x†, Xn) +
δ + ‖A(I − Pn)x†‖

j(A,Xn)
.

Proof. We first bound

‖x† − xδn‖ ≤ ‖x† − Pnx†‖+ ‖Pnx† − xδn‖ = dist(x†, Xn) + ‖Pnx† − xδn‖.
The second summand on the right can be bounded using the modulus of
continuity, since both Pnx

†, xδn ∈ Xn. To this end, we need to bound
‖APnx† − Axδn‖. Let us temporarily abbreviate Bn := APn. Then we
bound

‖APnx† −Axδn‖ = ‖Bnx
† −Bn (B

∗
nBn)

−1B∗n

(

Ax† + δξ
)

‖

≤ ‖Bnx
† −Bn (B

∗
nBn)

−1B∗nAx
†‖+ δ‖Bn (B

∗
nBn)

−1B∗nξ‖
≤ ‖A(I − Pn)x†‖+ δ.

Thus we can use Lemma 1 to obtain that

‖Pnx† − xδn‖ ≤ ω
(

Xn, δ + ‖A(I − Pn)x†‖
)

.
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The proof can be completed by using the representation from Proposition 2.
¤

This lemma can be used in several ways to establish error bounds from
one-sided discretization uniformly for setsM of a priori information. Notice
that

‖A(I − Pn)x†‖ ≤ ‖A(I − Pn)‖‖(I − Pn)x†‖,
since I − Pn is an orthogonal projection. Let us denote

(54) ηn := ‖A(I − Pn)‖,
which is known to be larger or equal to σn+1. First, similar to one of the
approaches in Section 5.2 implying Theorem 4 we can ignore the smoothness
of x† which yields the following

Corollary 3. Let x† be the solution to (1), ηn as in (54), and x
δ
n as in (52).

Moreover suppose that there is a constant 0 < C <∞ such that

(55) ηn ≤ C j(A,Xn), n ∈ N.

If lim
n→∞

dist(x†, Xn) = 0 and the discretization level n∗ = n∗(δ) is chosen

such that

(56) n∗ →∞ and δ/σn∗+1 → 0, as δ → 0,

then ‖x† − xn∗(δ)‖ → 0.

Proof. The proof is based on (53). If n∗ → ∞, then the first summand
converges to zero. Next, since j(A,Xn) ≥ ηn/C ≥ σn+1/C the quotient
δ/j(A,Xn∗) tends to zero, if this was true for δ/σn∗+1. Finally, under (55)
we can deduce convergence

‖A(I − Pn∗)x†‖
j(A,Xn∗)

≤ ηn∗
j(A,Xn∗)

‖(I − Pn∗)x†‖ → 0 as n∗ →∞,

which completes the proof. ¤

Remark 10. The validity of bounds as required in (55) is beyond the scope
of this study. It is closely related with inequalities of Bernstein and Jackson
type. Such requirements have to be made when studying projection methods
for solving ill-posed problems, and we refer to the recent [12, 28, 25]. We
just mention that the inequality (55) is fulfilled whenever the spaces Xn are
the singular spaces Un as discussed in Proposition 2.

On the other hand, if the set M is a source set Hϕ as in (10), then one
can take this into account to obtain an improved error bound.

Corollary 4. Let x† ∈ Hϕ be the solution to (1) and x
δ
n be given by (52).

Suppose that there are constants 0 < c ≤ 1 ≤ C <∞ such that

‖A(I − Pn)ϕ(A∗A)‖ ≤ CΘ(σ2n+1), n ∈ N,(57)
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and

j(A,Xn) ≥ cσn, n ∈ N.(58)

If the discretization level n∗ = n∗(δ) is chosen such that

(59) Θ(σ2n∗) = δ,

and if the function t 7→ ϕ2(
(

Θ2
)−1

(t)) is concave then there is a constant C̃
for which

‖x† − xδn∗‖ ≤ C̃ϕ(Θ−1(δ)), δ → 0.

Remark 11. Again, the requirements from (57) and (58) are not by chance,
and these are fulfilled for the singular systems Un from Proposition 2.
The concavity assumption is used to conclude that (57) also implies that
‖(I − Pn)ϕ(A∗A)‖ ≤ Cϕ(σ2n+1), by interpolation.
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