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Abstract. The stable approximate solution of ill-posed linear operator equations in Hilbert
spaces requires regularization. Tight bounds for the noise-free part of the regularization error are
constitutive for bounding the overall error. Norm bounds of the noise-free part which decrease
to zero along with the regularization parameter are called profile functions and are subject of our
analysis. The interplay between properties of the regularization and certain smoothness properties of
solution sets, which we shall describe in terms of source-wise representations is crucial for the decay
of associated profile functions. On the one hand, we show that a given decay rate is possible only if
the underlying true solution has appropriate smoothness. On the other hand, if smoothness fits the
regularization, then decay rates are easily obtained. If smoothness does not fit, then we will measure
this in terms of some distance function. Tight bounds for these allow us to obtain profile functions.
Finally we study the most realistic case when smoothness is measured with respect to some operator
which is related to the one governing the original equation only through a link condition. In many
parts the analysis is done on geometric basis, extending classical concepts of linear regularization
theory in Hilbert spaces. We emphasize intrinsic features of linear ill-posed problems which are
frequently hidden in the classical analysis of such problems.
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1. Introduction. We study noisy linear operator equations

yδ = Ax† + δξ (‖ξ‖ ≤ 1) , (1.1)

where A : X → Y is some bounded linear operator mapping between infinite-
dimensional separable Hilbert spaces X and Y and δ > 0 denotes the noise level.
The spaces X and Y are equipped with norms ‖ · ‖. The same norm symbol is also
used for associated operator norms.

We assume that A is injective and that the range R(A) is not closed in Y . Then
the linear operator equation Ax = y has a unique solution x = x† ∈ X, for every
y ∈ R(A), but the equation is ill-posed since A−1 is an unbounded operator. Thus
regularization is required in order to find stable approximate solutions of the operator
equation based on noisy data yδ ∈ Y . We consider general linear regularization
schemes based on a family of piecewise continuous functions gα(t) (0 < t ≤ a :=
‖A∗A‖) for regularization parameters 0 < α ≤ α. The family gα determines the
regularization method. Once a regularization gα is chosen, the approximate solution
to (1.1) is given by

xδα = gα(A∗A)A∗yδ.

For such approximate solution xδα we obtain an obvious error bound, using the inter-
mediate quantity xα = gα(A∗A)A∗y = gα(A∗A)A∗Ax†, as

e(x†, α, δ) := ‖xδα − x†‖ ≤ ‖x† − xα‖ + δ‖gα(A∗A)A∗‖ for all 0 < α ≤ α. (1.2)
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The second summand on the right is independent of the underlying true solution. Let
us denote by rα(t) := 1− t gα(t) (0 < t ≤ a) the residual or bias functions related to
the regularization method gα, thus ‖x† − xα‖ = ‖rα(A∗A)x†‖. In these terms, tight
bounds on the norm of the residual are constitutive for the accuracy of the regularized
solution. Bounds which are increasing functions in α > 0 will give rise to what we
call profile functions.

The outline is as follows. In Section 2 we recall the basic underlying quantities,
namely general linear regularization methods for operator equations in Hilbert space
and the concept of solution smoothness in terms of general source conditions. Then,
in Section 3 we associate profile functions to any given regularization and to any set
of smooth solutions and discuss their existence. The rate at which profile functions
decay to zero turns out to be crucial and is the objective of our analysis. It will
become clear that this rate depends on the underlying regularization as well as on the
solution smoothness. In Section 4 we indicate situations when maximal rates of decay
occur, regardless of the underlying solution smoothness, namely due to the limited
qualification of the regularization method. We close this part by showing that decay
rates imply solution smoothness.

The constructive part of obtaining explicit descriptions of profile functions, as
dependent on the qualification of the regularization and smoothness properties of the
solution with respect to the operator A is carried out in Sections 5 and 6 for several
degrees of generality. We start in Section 5 with the easiest case, when solution
smoothness is measured in terms of general source conditions given through functions
of A∗A. This is then extended to the situation where a source condition is satisfied
only approximately, measured in terms of a specific concept of distance functions.
Tight upper bounds for such distance functions imply profile functions.

We close the analysis with Section 6 discussing the situation when solution smooth-
ness is measured with respect to a self-adjoint operator G : X → X with non-closed
range which is different from A∗A. In this case an assumption, linking A∗A and G,
will allow us to draw conclusions on the decay rate of the associated profile functions.

In many parts the analysis is done on geometric basis, extending classical concepts
as used in the theory of linear ill-posed equations in Hilbert space. By doing so we not
only extend previous results to a more general situation, but we aim at emphasizing
intrinsic features of the problems under consideration. Such features are often hidden
in the classical analysis of linear ill-posed problems.

2. General linear regularization methods and general smoothness. As
mentioned in the introduction, profile functions will be assigned to regularization
methods and solution sets of equation (1.1). We start with the notion of a general
linear regularization scheme. Then we turn to the description of solution smoothness
in terms of general source conditions.

The basic underlying objects are index functions, and we recall the following
definition, as known in the literature (e.g. [8, 16, 3]).

Definition 2.1. A real function ϕ(t) (0 < t ≤ t̄) is called index function if it is
continuous, strictly increasing and satisfies the limit condition limt→0+ ϕ(t) = 0.

2.1. General regularization methods. Definition 2.2. A family of func-
tions gα(t) (0 < t ≤ a), defined for parameters 0 < α ≤ α, is called regularization if
they are piece-wise continuous in α and the following three properties are satisfied:

(i) For each 0 < t ≤ a there is convergence |rα(t)| → 0 as α→ 0.
(ii) There is a constant γ1 such that |rα(t)| ≤ γ1 for all 0 < α ≤ α.
(iii) There is a constant γ∗ such that

√
t |gα(t)| ≤ γ∗/

√
α for all 0 < α ≤ α.
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Example 2.3. The most famous method of regularization is the Tikhonov method
with gα(t) = 1/ (t+ α) , which satisfies the properties of Definition (2.2) for the con-
stants γ1 = 1 and γ∗ = 1/2 and arbitrarily large α > 0.

Example 2.4. Another common regularization method is spectral cut-off, which
is given as

gα(t) =
{

0 (0 < t < α)
1/t (α ≤ t ≤ a) with respective residual rα(t) =

{
1 (0 < t < α)
0 (α ≤ t ≤ a) .

Obviously this obeys the properties from Definition 2.2 with γ1 = γ∗ = 1. Also for that
method, the upper bound α for the regularization parameter can be selected arbitrarily.

Example 2.5. Iterative regularization methods, as for instance Landweber iter-
ation, where for some 0 < µ < 1/‖A∗A‖ we let

xδn :=
n−1∑
j=0

(I − µA∗A)jA∗yδ, n = 1, 2, . . . ,

are covered by this approach when assigning n := b1/αc (0 < α < 1). Thus with this
identification we obtain gα(t) := 1/t (1− (1− µt)n) and the corresponding residual
rα(t) := (1 − µt)b1/αc (0 < α < 1), hence obviously γ1 = 1. It remains to bound γ∗.
Bernoulli’s inequality yields 1− nµt ≤ (1− µt)n, which can be used to bound

√
tgα(t) = 1/

√
t (1− (1− µt)n) ≤ (1/t (1− (1− µt)n))1/2 ≤ √

µn .

By the definition of n this yields γ∗ =
√

2µ.
The above requirements (i) – (iii) are made to ensure convergence of regularization

methods for any given element x† ∈ X. However, these are not enough to describe
rates of convergence.

As introduced in the papers [15] and [16] – [18], we measure the qualification of
any regularization method in terms of index functions ψ.

Definition 2.6. Let ψ(t) (0 < t ≤ a) be an index function. A regularization gα
for the operator equation (1.1) is said to have qualification ψ with constant γ ∈ (0,∞)
if

sup
0<t≤a

|rα(t)|ψ(t) ≤ γ ψ(α) for all 0 < α ≤ a . (2.1)

This definition generalizes the concept of qualification of a regularization method as
a finite number or infinity, as for example used in [6]. We remark that a first system-
atic discussion of the interrelations between solution smoothness and that traditional
concept of qualification was given in [28, 29].

For Tikhonov regularization (see Example 2.3) we can give sufficient conditions
for ψ being a qualification in different ways, as this is formulated in the following
proposition. For more details and proofs we refer to [17, 18] and [3].

Proposition 2.7. The index function ψ(t) (0 < t ≤ a) is a qualification of
Tikhonov regularization with constant γ = 1 if either (a) ψ(t)/t is non-increasing on
(0, a] or (b) ψ(t) is concave on (0, a].

If there exists an argument t̂ ∈ (0, a) such that (c) ψ(t)/t is non-increasing on
(0, t̂ ] or (d) ψ(t) is concave on (0, t̂ ], then ψ is a qualification with constant γ =
ψ(a)/ψ(t̂ ).
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2.2. Measuring solution smoothness. In a wide sense the smoothness of
expected solutions x† to (1.1) can be written as a property of the form x† ∈M with
M ⊆ R(G) for some ‘smoothing’ linear operator G : X → X, where G is assumed to
be positive self-adjoint with non-closed range R(G) (see also [3], [20]). Specifically,
here we shall assume that the solution x† belongs to a set

Gτ (R) := {x ∈ X : x = τ(G)w, ‖w‖ ≤ R} (2.2)

with some index function τ(t) (0 < t ≤ ‖G‖).
As the following lemma asserts such set is closed in X and even compact whenever

G is compact.
Lemma 2.8. For a positive self-adjoint bounded linear operator G : X → X

and an index function τ(t) (0 < t ≤ ‖G‖) the set Gτ (R) from (2.2) is closed in X.
Moreover, Gτ (R) is a compact subset of X whenever G is a compact operator.

Proof. First we show that Gτ (R) is a closed subset in X. We show that the image
{x ∈ X : x = Gw, w ∈ X, ‖w‖ ≤ R} of the centered ball with radius R in X with
respect to any bounded positive self-adjoint linear operator G : X → X is a closed
subset of X. Since τ(G) has the same properties as a consequence of the boundedness
of any index function τ , this shows the closedness of Gτ (R). Consider a convergent
sequence of images Gxn → y0 ∈ X with ‖xn‖ ≤ R. Since any closed ball inX is weakly
precompact and weakly closed, there is a weakly convergent subsequence xnk ⇀ x0

with ‖x0‖ ≤ R. Since every continuous operator G is also weakly continuous and
hence weakly closed, this implies the weak convergence Gxnk ⇀ Gx0 thus y0 = Gx0

which shows the required closedness. Moreover, for compact G it is evident that
τ(G) : X → X is a compact operator and then Gτ (R) is a precompact subset of X.
Since Gτ (R) is closed in X, this implies the compactness and proves the lemma.

In our analysis below for index functions τ we shall assign pairs (G, τ) Hilbert
spaces XG

τ having Gτ (1) as their unit balls. In particular, we use the shortcut H :=
A∗A and consider Hilbert spaces XH

ϕ for index functions ϕ with the set Hϕ(1) as unit
ball, where we define

Hϕ(R) := {x ∈ X : x = ϕ(A∗A)w, ‖w‖ ≤ R} . (2.3)

Corresponding norms will be denoted by ‖ · ‖XGτ and ‖ · ‖XHϕ , respectively. This
construction is basically due to [7].

3. Profile functions. In this section we shall introduce the notion of a profile
function, discuss the problem of existence and show that their decay is related to
smoothness of the underlying solution x† of equation (1.1).

3.1. Definition and existence. Having chosen a linear regularization gα, and
having fixed a set M ⊂ X of possible solutions to (1.1) we assign profile functions as
follows.

Definition 3.1. An index function f : (0, α] → (0,∞) is called profile function
for (M, gα) whenever

sup
x∈M

‖rα(A∗A)x‖ ≤ f(α) for all 0 < α ≤ α . (3.1)

In the definition we suppress the dependence of profile functions f on the operator
A, governing the equation (1.1). If M := {x} ∈ X is a singleton, then we shall write
(x, gα), instead of ({x} , gα). Note that the bound (3.1) is required only for α ≤ α,
which is useful for asymptotic considerations as δ → 0 in (1.1).
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The character of possible profile functions f for (M, gα) is closely connected with
three ingredients and their interplay. In this context, properties of the regularization
gα as first component and of the set M ⊂ X expressing the solution smoothness as
second components meet as third component the smoothing behavior of the operator
A in equation (1.1) which leads to the non-closedness of the range R(A).

Remark 3.2. Once a profile function f(α) as above is found, together with
property (iii) of Definition 2.2 this allows us to continue the estimate (1.2) to derive

e(x†, α, δ) ≤ f(α) +
γ∗ δ√
α

for all 0 < α ≤ α , (3.2)

uniformly for x† ∈M. The bound on the right in (3.2) can be balanced with respect to
the choice of α depending on δ. To this end we consider the index function

Θ(α) :=
√
α f(α) (0 < α ≤ α).

Let α∗ = α∗(δ) = Θ−1(δ) (0 < δ ≤ Θ(ᾱ)). Then we obtain uniformly for x† ∈M that

e(x†, α∗, δ) ≤ (1 + γ∗)f(α∗), (3.3)

Thus the function f(Θ−1(δ)) yields a convergence rate of the regularization gα for x†

as δ → 0. This rate is achieved by an a priori parameter choice α∗ = α∗(δ).
First we shall establish that profile functions exist for any regularization gα and

compact subsets M ⊂ X.
Proposition 3.3. Let gα be any regularization and M ⊂ X be compact. Then

there is a profile function for (M, gα).
Proof. From the properties (i) and (ii) of Definition 2.2 we deduce for α → 0

point-wise convergence rα(A∗A)x → 0 for all x ∈ X (see, e.g., [6, Theorem 4.1]).
This convergence is uniform on compact sets M ⊂ X. Hence we have

h(α) := sup
x∈M

‖rα(A∗A)x‖ → 0 as α→ 0.

Its increasing majorant h̄(α) := sup
0<s≤α

h(s), which is well-defined for sufficiently small

positive α, satisfies lim
α→0

h̄(α) = 0. If h̄(α) is continuous and non-vanishing, then it is

a profile function. Otherwise, suppose h̄(s) = 0 for some s > 0. We fix some t > 0
with h̄(t) > 0 and let

ĥ(x) :=


h̄(x), x > t,

h̄(t), s < x ≤ t,

x/s h̄(t), 0 < x ≤ s,

which, when continuous, defines an index function.
Thus if G is compact and τ is an index function, then for any regularization gα

there are profile functions for (Gτ (R), gα), where the sets Gτ (R) were defined in (2.2).
On the other hand, there cannot exist profile functions for (M, gα), where M :=

{x ∈ X : ‖x‖ ≤ 1} is the unit ball in X. Their existence would imply that ‖rα(A∗A)‖
tends to zero as α → 0 and hence that the range R(A) were closed, which would be
contrary to the ill-posedness of the problem under consideration (see, e.g., [25] and [6,
Chapter 3.1]). More generally, extending this argument, profile functions cannot exist
for (M, gα), whenever M possesses an interior point.
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However, there are profile functions for non-compact sets. In Proposition 5.1
below profile functions for (Hϕ(R), gα) will be obtained, where the operator A may
be compact (ill-posedness of type II in the sense of Nashed, [22]) or non-compact
(ill-posedness of type I). In the latter case this yields non-compact sets M = Hϕ(R).
Another specific example of profile functions for the non-compact set M = {x ∈
L∞(0, 1) : ‖x‖L∞(0,1) ≤ R} ⊂ X = L2(0, 1) for the Tikhonov regularization and
multiplication operators A mapping in L2(0, 1) can be taken from [11]. This is not by
chance and some explanation will be given in Remark 5.2, below. Roughly speaking,
if smoothness properties of M are appropriate for the underlying operator A from
equation (1.1), then profile functions exist for (M, gα), regardless of their compactness.
In this respect, compactness of M may be viewed as universal (problem independent)
smoothness.

3.2. Decay rates yield solution smoothness. To exhibit the fact that a decay
rate of a profile function implies solution smoothness in the sense of Section 2.2 we
start with the following result, which extends analysis in [23], we also refer to the recent
monograph [1]. We recall that the operator H = A∗A admits a spectral resolution
with a family (Eλ)0<λ≤a of projections, which is assumed to be such that λ 7→ ‖Eλx†‖2
is left continuous, thus represents a (spectral) measure. We start with the following
technical result from [23, Lemma 2.1], see also [6, Proof of Proposition 4.13].

Lemma 3.4. Let gα(t) (0 < t ≤ a, 0 < α ≤ ᾱ) be a regularization with con-
stant γ∗. If 0 < t ≤ min {α, a}, then

∣∣r(4γ2
∗α)(t)

∣∣ ≥ 1/2.
The above lemma yields the following estimate.
Lemma 3.5. Let gα be a regularization with constant γ∗ as in property (iii) of

Definition 2.2. The following estimate holds true.

‖r(4γ2
∗α)x

†‖ ≥ 1
2

(∫ α

0

d‖Eλx†‖2
)1/2

for all 0 < α ≤ min
{
a, ᾱ/4γ2

∗
}
. (3.4)

Before turning to the main result of this section we state the following lemma.
Lemma 3.6. Suppose ϕ(t) (0 < t ≤ t̄) is an index function. There is a sequence

fn(t) (0 < t ≤ t̄) of step functions of the form
∑m
j=1 cjχ(0,αj)(t) converging to 1/ϕ(t)

point-wise and fn(t) ≤ 1/ϕ(t).
Proof. Given any such ϕ and n ∈ N large enough n ≥ n0, we let f(t) = 1/ϕ(t)

and truncate at tn = f−1(n) < t̄ to obtain gn(t) (0 ≤ t ≤ t), which is a non-
increasing bounded continuous function on the closed interval [0, t̄]. Thus there is
a step function fn(t) of the required form, satisfying |fn(t)− gn(t)| ≤ 1/n. The
sequence fn(t) (0 < t ≤ t̄), n = n0, n0 + 1, . . . converges point-wise to f .

Given a regularization gα with constant γ∗ and any index function h(t) (0 < t ≤
a), we can assign a non-negative measure Φh on (0, a] by letting

Φh[0, α) := h(4γ2
∗α) (0 < 4γ2

∗α ≤ a).

With this notation we can formulate the following result.
Theorem 3.7. Let gα(t) (0 < t ≤ a) for the parameters 0 < α ≤ ᾱ be a

regularization with constant γ∗. We assume that the index function f(α) (0 < α ≤ ᾱ)
is a profile function for (x†, gα) with associated measure Φ = Φf2 , restricted to the
interval J∗ := (0,min

{
a, ᾱ/4γ2

∗
}
]. Then the following assertions are true:

(a) If ψ is any index function such that 1/ψ ∈ L2(J∗, dΦ), then necessarily x† ∈
XH
ψ .
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(b) Let ψ be an index function for which t 7→ 1/(ψ2((f2)−1(t))) ∈ L1
loc(J∗, dt),

i.e., it is locally integrable. Then x† ∈ XH
ψ .

Proof. Using Lemma 3.5 and the fact that f(α) (0 < α ≤ ᾱ) is assumed to be a
profile function for (x†, gα) we conclude that the estimate

1
4

∫ α

0

d‖Eλx†‖2 ≤ ‖r(4γ∗α)x
†‖2 ≤ f2(4γ2

∗α) =
∫ α

0

dΦ(λ) (α ∈ J∗) (3.5)

is valid.
Now let ψ be any index function such that 1/ψ(t) ∈ L2(J∗, dΦ). By Lemma 3.6

we can find a sequence fn(t) of step functions on J∗, converging to 1/ψ2(t) point-wise.
Using (3.5) and the particular form of fn we deduce that

1
4

∫
J∗

fn(λ)d‖Eλx†‖2 ≤
∫
J∗

fn(λ)dΦ(λ) ≤
∫
J∗

1
ψ2(λ)

dΦ(λ).

By Fatou’s Lemma we conclude that also 1/ψ(t) ∈ L2(J∗, d‖Eλx†‖2) and

‖1/ψ‖L2(J∗,d‖Eλx†‖2) ≤ 2‖1/ψ‖L2(J∗,dΦ).

Consequently,

‖x†‖2XHψ =
∫ a

0

1
ψ2(λ)

d‖Eλx†‖2

=
∫
J∗

1
ψ2(λ)

d‖Eλx†‖2 +
∫

(0,a]\J∗

1
ψ2(λ)

d‖Eλx†‖2

≤ 4‖1/ψ‖2L2(J∗,dΦ) +
1

minλ∈(0,a]\J∗ ψ
2(λ)

‖x†‖2 <∞, (3.6)

because the second summand on the right is finite, which proves assertion (a).
We use a change of measure to establish assertion (b). The proof is complete.
Remark 3.8. If the interval J∗ coincides with (0, a], then the second summand

on the right in (3.6) does not appear and we get a bound ‖x†‖XHψ ≤ 2‖1/ψ‖L2((0,a],dΦ).
The following elementary observation is useful.

Lemma 3.9. Suppose ψ,ψ1 and f, f1 are pairs of index functions which are
related by some common strictly increasing function g as f(t) = f1(g(t)) and ψ(t) =
ψ1(g(t)) on the respective domains of definition. Then it holds true that f(ψ−1(t)) =
f1(ψ−1

1 (t)).
Theorem 3.7 also covers cases which were known before, like the ones discussed

in the following examples.
Example 3.10 ([23]). If the profile function f for (x†, gα) is a monomial f(α) =

αν for some ν > 0, then we we can draw the following conclusion. For every monomial
ψ(t) = tµ we obtain 1/ψ2((f2)−1(t)) = t−µ/ν , which is integrable on every finite
interval for µ < ν. Hence we deduce that necessarily x† ∈ XH

ψ for all 0 < µ < ν.
Example 3.11 ([14, Theorem 8]). If the profile function f for (x†, gα) is of

logarithmic type, say f(α) = log−ν(1/α) (0 < α < 1) for some ν > 0, then by
using Lemma 3.9 we also deduce that necessarily x† ∈ XH

ψ for all functions ψ(t) =
log−µ(1/t) (0 < t < 1) with µ < ν, because both are related to the respective functions
from Example 3.10 through g(t) := log−1(1/t) (0 < t < 1).
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4. Lower bounds for profile functions. In general profile functions f(α) can
decrease to zero arbitrarily fast as α tends to zero. This is for instance the case when
gα is chosen as spectral cut-off in Example 2.4 and x† is an eigenelement of A∗A, in
which case ‖rα(A∗A)x†‖ ≡ 0 for α small enough.

However, for many regularization methods there is a maximal speed of conver-
gence ‖rα(A∗A)x†‖ → 0 as α → 0, for any x† 6= 0, regardless of its smoothness.
This phenomenon is related to saturation, as this was studied e.g. in [23, 24], and
in more generality in [15], from which the present approach is taken. The impact of
limited qualification on profile functions can be seen under an additional convexity
assumption.

Theorem 4.1. Let gα be any regularization with residual rα. Suppose that for
all 0 < t ≤ a the functions

α 7→ |rα(t)| (0 < α ≤ α) (4.1)

are increasing, and for all 0 < α ≤ α the functions

t 7→ |rα(t)|2 (0 < t ≤ a) (4.2)

are convex. Let ψ̄ be given as

ψ̄(α) := inf
0<t≤a

|rα(t)| (0 < α ≤ α). (4.3)

Then for each 0 6= x ∈ X we have

ψ̄(α) ≤ 1
‖x‖

‖rα(A∗A)x‖ for all 0 < α ≤ α. (4.4)

Hence ψ̄ is a non-decreasing lower bound to any profile function for (x0, gα) uniformly
for all elements x0 ∈ X of the unit sphere, i.e., with ‖x0‖ = 1.

Proof. [Sketch of a proof] To prove that ψ̄ is a lower bound to any profile function
for (x0, gα) we use a Jensen-type inequality (see e.g. [15]), which yields that under (4.2)
we have

ψ̄(α) ≤
∣∣rα(‖Ax‖2/‖x‖2)

∣∣ ≤ ‖rα(A∗A)x‖
‖x‖

for all 0 < α ≤ α.

Moreover, under (4.1) the function ψ̄ is non-decreasing. This completes the proof.
Remark 4.2. In many cases, the above function ψ̄(α) turns out to be a qualifi-

cation of the regularization gα. In such a case it is maximal qualification.
We shall exhibit the above result at some examples.
Example 4.3. For Tikhonov regularization as in Example 2.3 we easily verify

that the assumptions are satisfied. We conclude that ψ̄(α) = α/(α + a) with ψ̄(α) ≥
α/(2a) (0 < α < a). In this case this corresponds to the maximal qualification which
is ψ(α) = α.

Example 4.4. The n-fold iterated Tikhonov regularization, which has rα(t) =
(α/(α+ t))n as its residual function also satisfies the assumptions from Theorem 4.1,
and ψ̄(α) = (α/(α + a))n ≥ (α/(2a))n. This method corresponds to the maximal
known qualification ψ(α) = αn.

As in [15] we close with the following example, which is interesting as it shows
that regularization, which has arbitrary classical qualification in the form ψ(t) = tq
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for any 0 < q <∞, still has a limited rate of decay for the profile functions, although
these can decay exponentially fast.

Example 4.5. Landweber iteration from Example 2.5 also satisfies all the as-
sumptions. The function ψ̄, letting 0 < b := 1/(1 − µa) < ∞, turns out to be
ψ̄(α) = (1− µa)b1/αc ≥ exp(−b/α) (0 < α < 1).

Finally we stress that spectral cut-off as in Example 2.4 does not fulfill the above
assumptions. Moreover, formally we would obtain the lower bound ψ̄(α) ≡ 0, which
is trivial.

Remark 4.6. Lower bounds for profile functions are related to the saturation
phenomenon as we shall briefly sketch. The following estimate is shown in the cause
of the proof of the theorem in [15].

sup
‖ξ‖≤1

e(x†, gα, δ) ≥ max
{
‖rα(A∗A)x†‖, δ/

√
α
}

(0 < α ≤ ᾱ). (4.5)

Thus, if ψ̄(α) is a lower bound as in (4.4), then for any x† with ‖x†‖ = 1 we derive
that

sup
‖ξ‖≤1

e(x†, gα, δ) ≥ max
{
ψ̄(α), δ/

√
α
}
≥ ψ̄(Θ−1(δ)) (0 < α ≤ ᾱ)

with Θ(t) :=
√
t ψ̄(t) (0 < t ≤ α). Hence, the function ψ̄(Θ−1(δ)) is a lower bound

for the error at x†, no matter how smooth the true solution x† ∈ X was.
The functions ψ̄ derived in the Examples 4.3 – 4.5 can be seen to be the saturation

rates caused by the limited qualifications of the underlying regularization methods.

5. Impact of solution smoothness. As stressed earlier, the behavior of profile
functions is determined by both, the chosen regularization gα and the underlying solu-
tion smoothness. As introduced in Section 2.2 we measure this in terms of smoothness
conditions of the form x† ∈ Gτ (R), see (2.2), determined by an operator G and an
index function τ . The impact of such a smoothness assumption on the decay rate of
profile functions is easiest seen if G is a function of A∗A.

5.1. G as a function of A∗A. To obtain profile functions f for the regulariza-
tion method gα the concept of general source conditions, as expressed in

x† = ψ(A∗A)w (w ∈ X, ‖w‖ ≤ R), (5.1)

for some index functions ψ(t) (0 < t ≤ a) was used recently (see, e.g., [14, 16, 17, 27]).
We note that (5.1) is a specific smoothing condition (2.2) with τ(G) = ψ(A∗A) (cf. [3]
for further discussion of such conditions).

We are going to find profile functions f uniformly for sets Hψ(R), as defined by
formula (2.3), provided the corresponding function ψ is a qualification of the chosen
regularization gα.

Proposition 5.1. Let the index function ψ be a qualification of the regularization
method gα with constant 0 < γ < ∞. Then uniformly for each x† ∈ Hψ(R) the
inequality

‖xα − x†‖ ≤ γ Rψ(α) for all 0 < α ≤ a (5.2)

is valid. Hence f(α) := γ Rψ(α) is a profile function for (Hψ(R), gα).
Proof. From spectral theory (see, e.g., [6, Formula (2.47)]) we have with (5.1)

that

‖xα − x†‖ = ‖rα(A∗A)x†‖ = ‖rα(A∗A)ψ(A∗A)w‖ ≤ R sup
0<t≤a

|rα(t)|ψ(t) .
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Taking into account inequality (2.1) this yields (5.2), and proves the proposition.
Remark 5.2. This proposition can be reformulated as follows. Suppose that we

are given a pair (M, gα) of a solution set M and a regularization gα. If we can find an
index function ψ on (0, a] that is both a qualification for gα and a smoothness for M ,
i.e., M ⊆ Hψ(R) for some R, then there is a profile function for (M, gα). In addition
the index function ψ provides a decay rate. Although this is a simple observation it
explains the existence of profile functions for non-compact sets M , as discussed at the
end of Section 3.1.

5.2. Approximate source conditions. An important extension of the above
concept is obtained by relaxing requirement (5.1). In this context, we restrict ourselves
to a fixed index function ϕ(t) (0 < t ≤ a) as benchmark function. We suppose that
the solution x† ∈ X of (1.1) is not smooth enough to satisfy a condition (5.1) with
ϕ instead of ψ even if R ≥ 0 is arbitrary large. The injectivity of A implies the
injectivity of ϕ(A∗A) for any index function ϕ. Hence the range R(ϕ(A∗A)) is dense
in X. Consequently, for all 0 ≤ R <∞ the element x† satisfies such a general source
condition in an approximate manner as x† = ϕ(A∗A)w + ξ ( ‖w‖ ≤ R, ξ ∈ X),
where the norm of the perturbation ‖ξ‖ tends to zero as R tends to infinity.

In the following we shall confine to this situation, when

x† 6∈ R(ϕ(A∗A)). (5.3)

The quality of the approximation of x† by elements from Hϕ(1) can be be ex-
pressed by favor of the distance function

ρx†(t) = ρ
(H,ϕ)

x†
:= dist(tx†,Hϕ(1)) = inf

{
‖tx† − ϕ(H)v‖ : v ∈ X, ‖v‖ ≤ 1

}
(t > 0).

(5.4)
If the reference to the benchmark (H,ϕ) is clear, as in the following lemma, then we
shall omit the super-script.

Lemma 5.3. Under the assumption (5.3) the functions ρx†(t) and ρx†(t)/t (t >
0) are both index functions. Moreover, we have we have lim

t→∞
ρx†(t) = ∞.

Proof. The idea of the proof is standard in regularization theory. For each t > 0
the value ρx†(t)/t = dist(x†,Hϕ(1/t)) is obtained from constrained minimization, and
Lagrange multipliers can be used to determine this value. Hence, given x† ∈ X let

Fx†(λ) := ‖x† − ϕ(A∗A)v‖2 + λ‖v‖2.

At given λ its minimizer with respect to v ∈ X is

vλ :=
[
ϕ2(A∗A) + λI

]−1
ϕ(A∗A)x†,

which has to obey the side constraint χ(λ) = 1/t, where setting

χ(λ) := ‖
[
ϕ2(A∗A) + λI

]−1
ϕ(A∗A)x†‖. (5.5)

Based on the injectivity of ϕ(A∗A) spectral calculus yields that the function χ(λ) (λ >
0) is positive, continuous and strictly decreasing to zero as λ → ∞. Moreover, un-
der (5.3) we have lim

λ→0+
χ(λ) = ∞. Therefore for all t > 0 the function λ(t) := χ−1(1/t)

exists and is an index function. Hence we obtain

ρx†(t)/t = ‖x† − ϕ(A∗A)vλ(t)‖ = λ(t) ‖
[
ϕ2(A∗A) + λ(t)I

]−1
x†‖ (t > 0), (5.6)
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which is the composition of two index functions in t. As a consequence, both functions
ρx†(t)/t and ρx†(t) have that property. On the other hand, we have

lim
t→∞

ρx†(t) = lim
t→∞

t

(
ρx†(t)
t

)
= ∞ ,

since ρx†(t)/t as an index function cannot tend to zero as t→∞. This completes the
proof.

Remark 5.4. By using distance functions of the form

d(R) := dist(x†,Hϕ(R)) = Rρx†(1/R) (0 < R <∞) (5.7)

error estimates for the Tikhonov regularization were already studied in [10] and [5],
see also [2, 9] and [13] for variants thereof. The fundamental estimate for profile
functions under approximate source conditions is as follows:

Theorem 5.5. Let gα be a regularization method with qualification ϕ and con-
stant γ. If the solution x† to equation (1.1) obeys (5.3), then

‖xα− x†‖ ≤ max {γ, γ1}
1
t

(ρx†(t) + ϕ(α)) for all t > 0 and 0 < α ≤ a. (5.8)

Thus the function

f(α) := 2 max {γ, γ1}
ϕ(α)

ρ−1
x†

(ϕ(α))
(0 < α ≤ a) (5.9)

is a profile function for (x†, gα).
Proof. First we establish (5.8). For any v ∈ X with ‖v‖ ≤ 1 we can estimate

‖xα − x†‖ =
1
t
‖rα(A∗A)tx†‖

=
1
t
‖rα(A∗A) tx† − rα(A∗A)ϕ(A∗A)v + rα(A∗A)ϕ(A∗A)v‖

≤ 1
t

(
‖rα(A∗A)(tx† − ϕ(A∗A)v)‖ + ‖rα(A∗A)ϕ(A∗A)v‖

)
≤ 1
t

(
γ1‖tx† − ϕ(A∗A)v‖ + ‖rα(A∗A)ϕ(A∗A)‖

)
≤ 1
t

(
γ1 ‖tx† − ϕ(A∗A)v‖+ γ ϕ(α)

)
.

Since this estimate remains true if we substitute ‖tx†−ϕ(A∗A)v‖ by its infimum over
all v from the unit ball of X and since ϕ is a qualification of the used regularization
method, we obtain

‖x† − xα‖ ≤ max {γ, γ1}
1
t

(ρx†(t) + ϕ(α)) for all t > 0 and 0 < α ≤ a,

which proves estimate (5.8). Since this estimate is valid for all t > 0 and we have
by Lemma 5.3 for the index function ρx† the limit condition lim

t→∞
ρx†(t) = ∞, we can

equate the two terms in brackets of the right-hand side of (5.8). Taking into account
the strict monotonicity of function ρx†(t) (t > 0) this yields (5.9).

Remark 5.6. We notice that the upper bound in (5.8) cannot be improved by
other values of t, because it is the balance of a strictly increasing function ρx†(t)/t,
and for any α under consideration, a decreasing function ϕ(α)/t with respect to t.
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We also mention that the same arguments yield a slightly different bound

‖x† − xα‖ ≤
(γ + γ1)

t
max {ρx†(t), ϕ(α)} for all t > 0 and 0 < α ≤ a,

which is better if the constants γ and γ1 differ. This implies that in all estimates
below the expression 2 max {γ, γ1} can be replaced by (γ + γ1).

Remark 5.7. Since the denominator ρ−1
x†

(ϕ(α)) in (5.9) expresses an index
function tending to zero as α tends to zero, the decay rate of f(α) → 0 as α → 0 is
always lower than the corresponding rate of the benchmark function ϕ, i.e., ϕ(α) =
o(f(α)) as α → 0. In particular, one has to choose a sufficiently good benchmark
function and a regularization with high enough qualification to achieve by that way
the best possible rate for given x†.

5.3. Approximate source conditions for solutions in source-wise rep-
resentation. It is worthwhile to discuss the situation when x† has a source-wise
representation (5.1) but the benchmark function ϕ is chosen in such a way that
x† 6∈ R(ϕ(A∗A)). This can happen in the following case only.

Lemma 5.8. Suppose x† obeys (5.1). If x† 6∈ R(ϕ(A∗A)) then necessarily
(ϕ/ψ) (t) → 0 as t→ 0.

Proof. Suppose ϕ(t) 6= o(ψ(t)). Then there is C <∞ such that ψ(t) ≤ Cϕ(t) for
small 0 < t ≤ t̄. Given 0 < ε ≤ t̄ we can bound∫ a

ε

1
ϕ2(λ)

d‖Eλx†‖2 =
∫ t̄

ε

1
ϕ2(λ)

d‖Eλx†‖2 +
∫ a

t̄

1
ϕ2(λ)

d‖Eλx†‖2

≤ C2

∫ t̄

ε

1
ψ2(λ)

d‖Eλx†‖2 + sup
λ≥t̄

ψ2(λ)
ϕ2(λ)

∫ a

t̄

1
ψ2(λ)

d‖Eλx†‖2

≤ max

{
C2, sup

λ≥t̄

ψ2(λ)
ϕ2(λ)

}∫ a

ε

1
ψ2(λ)

d‖Eλx†‖2

≤ max

{
C2, sup

λ≥t̄

ψ2(λ)
ϕ2(λ)

}
‖x†‖2XHψ .

Letting ε → 0 we obtain ‖x†‖XHϕ < ∞, thus x† ∈ R(ϕ(A∗A)), which completes the
proof.

If, slightly stronger but geometrically intuitive, we assume that the quotient
(ϕ/ψ) (t) is strictly increasing, then we can give a clear picture for the resulting
function ρx†(t) for t > 0 sufficiently small.

Theorem 5.9. We suppose that x† obeys (5.1) and that the quotient (ϕ/ψ) (t) is
an index functions for 0 < t ≤ a. Then we can estimate the distance function as

ρx†(t) ≤ ϕ

((
ϕ

ψ

)−1

(Rt)

)
for all 0 < t ≤ 1

R

ϕ(a)
ψ(a)

. (5.10)

Proof. The proof is carried out using the analysis from the proof of Lemma 5.3 and
we shall make use of the notation introduced there. As there let λ(t) := χ−1(1/t) (t >
0) with function χ from (5.5). Then for x† = ψ(A∗A)v with ‖v‖ ≤ R representa-
tion (5.6) allows for the following bound

ρx†(t) = tλ(t)‖
[
ϕ2(A∗A) + λ(t)I

]−1
x†‖ ≤ (Rt)λ(t)‖

[
ϕ2(A∗A) + λ(t)I

]−1
ψ(A∗A)‖
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= (Rt) sup
0<s≤a

λ(t)ψ(s)
ϕ2(s) + λ(t)

= (Rt) sup
0<u≤ϕ2(a)

λ(t)
u+ λ(t)

ψ((ϕ2)−1(u)) ,

where we make the crucial observation that u 7→ λ(t)/(u + λ(t)) is the residual of
Tikhonov regularization. To continue we introduce the auxiliary function

κ(s) :=
ψ((ϕ2)−1(s))√

s
=
(
ψ

ϕ

)(
(ϕ2)−1(s)

)
(0 < s ≤ ϕ2(a)). (5.11)

It is clear that 1/κ(s) is an index function, hence lim
s→0+

κ(s) = ∞. Also, the function

κ(u)/
√
u is decreasing whenever κ is. Hence Proposition 2.7 (a) applies and allows us

to conclude the estimate

ρx†(t) ≤ (Rt)ψ((ϕ2)−1(λ(t))) (t > 0) , (5.12)

noting that ψ((ϕ2)−1(s)) for sufficiently small s > 0 is an index function.
Next we shall establish for sufficiently small t > 0 an upper bound λ̃(t) for λ(t)

which then will yield estimate (5.10). Indeed, let λ̃(t) be obtained as inverse

λ̃(t) = κ−1(1/(Rt)). (5.13)

It is enough to show that λ(t) ≤ λ̃(t). To this end notice that κ was decreasing, hence
u 7→ (ψ((ϕ2)−1(u))

√
u)/u is so, and we derive, again using arguments as above that

for 0 < t ≤ 1
R
ϕ(a)
ψ(a) the estimate

κ(λ̃(t)) ≤ 1
Rt

=
χ(λ(t))
R

≤ ‖
[
ϕ2(A∗A) + λ(t)I

]−1
ϕ(A∗A)ψ(A∗A)‖

≤ 1
λ(t)

sup
0<u≤ϕ2(a)

λ(t)
u+ λ(t)

ψ((ϕ2)−1(u))
√
u ≤ 1

λ(t)
ψ((ϕ2)−1(λ(t)))

√
λ(t)

= κ(λ(t)) .

Consequently, λ(t) ≤ λ̃(t), and we arrive at

ρx†(t) ≤ (Rt)ψ((ϕ2)−1(λ(t))) ≤ (Rt)ψ((ϕ2)−1(λ̃(t))) =

√
κ−1

(
1
Rt

)
. (5.14)

It is a routine matter to check that both versions in the right hand side of (5.14)
are equal. Indeed, starting from the identity ψ(u)/ϕ(u) = ψ(u)/ϕ(u), a variable
substitution u := (ϕ/ψ)−1 (Rt) yields

1
Rt

=
ψ
(
(ϕ/ψ)−1 (Rt)

)
ϕ
(
(ϕ/ψ)−1 (Rt)

) = κ

(
ϕ2

((
ϕ

ψ

)−1

(Rt)

))
,

completing the proof.
Corollary 5.10. Suppose that ϕ is a qualification for gα with constant γ. Under

the assumptions of Theorem 5.9 there is some α > 0 such that

f(α) := 2 max{γ, γ1}Rψ(α) (0 < α ≤ α) (5.15)

is a profile function for (Hψ(R), gα).
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Proof. For proving that (5.15) is a profile function for (Hψ(R), gα) we use the
estimate (5.8) of Theorem 5.5 and the bound (5.10) which together yield for some
sufficiently small t > 0 the error bound

‖xα − x†‖ ≤ max {γ, γ1}
1
t

(
ϕ

((
ϕ

ψ

)−1

(Rt)

)
+ ϕ(α)

)
(0 < t ≤ t, 0 < α ≤ a).

Then for sufficiently small α > 0 there is some t∗ = t∗(α) ∈ (0, t ] satisfying the equa-
tion

ϕ

((
ϕ
ψ

)−1

(Rt∗)
)

= ϕ(α), namely t∗ = ϕ(α)/(Rψ(α)) implying

‖xα − x†‖ ≤ 2 max {γ, γ1}
ϕ(α)
t∗

= 2 max {γ, γ1} Rψ(α).

This, however, completes the proof.
Example 5.11. For monomials ϕ(t) = tν and ψ(t) = tη with ν, η > 0, everything

can be made explicit. Lemma 5.8 states that (5.3) is valid if and only if 0 < η < ν,
which in the case of monomials is equivalent to saying that (ϕ/ψ)(t) is an index
function. We obtain the bound ρx†(t) ≤ (Rt)ν/(ν−η) .

The global properties required for the quotient function ϕ/ψ on (0, a] are rather
strong assumptions in Theorem 5.9 used for obtaining the estimate (5.15) in Corol-
lary 5.10. On the other hand, in [13] and [5] by a completely different technique there
have been developed error estimates of type (5.15) with some other constant which
only need local properties of ϕ/ψ on an arbitrarily small interval (0, ε]. In order to
show that our approach is powerful enough to work with such weaker assumptions,
we conclude this section with a local variant of Theorem 5.9 yielding the results of
Corollary 5.10 with different constant under the local assumption on the quotient
function.

Theorem 5.12. We suppose that x† obeys (5.1) and that ϕ, ψ are index func-
tions on (0, a]. Moreover, it is assumed that there exists some 0 < ε ≤ a such that the
quotient function ϕ/ψ is an index function on the interval (0, ε]. Then with the con-
stants Cε = ψ(a)

ψ(ε) ≥ 1 and Kε = ψ(a)
ψ(ε)

ϕ(a)
ϕ(ε) ≥ 1 we can estimate the distance function

as

ρx†(t) ≤
Cε
Kε

ϕ

((
ϕ

ψ

)−1

(RKε t)

)
for all 0 < t ≤ t (5.16)

and sufficiently small t > 0. If, moreover, ϕ is a qualification for gα with constant γ,
then there is ᾱ > 0 such that the function

f(α) := 2 max{γ, γ1}KεRψ(α) (0 < α ≤ ᾱ) (5.17)

is a profile function for (Hψ(R), gα).
Proof. [Sketch of a proof] We follow the proof of Theorem 5.9, but the local

version of the estimate (5.12) is obtained using Proposition 2.7 (c) with t̂ = ϕ2(ε) as

ρx†(t) ≤ (Rt)Cε ψ((ϕ2)−1(λ(t)))

for sufficiently small t > 0. Moreover, instead of (5.13) in the local variant we have
to set

λ̃(t) : = κ−1(1/(RKε t)) ,
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which is well-defined for t ∈ (0, t ] with t > 0 sufficiently small. Then as in the original
proof it can be shown that λ(t) ≤ λ̃(t) for 0 < t ≤ t again based on Proposition 2.7
(c). Precisely, we have the estimate

κ(λ̃(t)) =
1

RKεt
=
χ(λ(t))
RKε

≤ 1
Kε

‖
[
ϕ2(A∗A) + λ(t)I

]−1
ϕ(A∗A)ψ(A∗A)‖

=
1

Kελ(t)
sup

0<u≤ϕ2(a)

λ(t)
u+ λ(t)

ψ((ϕ2)−1(u))
√
u ≤ 1

λ(t)
ψ((ϕ2)−1(λ(t)))

√
λ(t)

= κ(λ(t)) .

Finally, we arrive at

ρx†(t) ≤ (Rt)Cε ψ((ϕ2)−1(λ(t))) ≤ (Rt)Cε ψ((ϕ2)−1(λ̃(t))) =
Cε
Kε

√
κ−1

(
1

RKεt

)
which proves (5.16). For proving (5.17) we use the estimate (5.8) of Theorem 5.5
yielding here for sufficiently small t > 0 and α > 0, and since Cε

Kε
≤ 1,

‖xα − x†‖ ≤ max {γ, γ1}
1
t

(
ϕ

((
ϕ

ψ

)−1

(RKε t)

)
+ ϕ(α)

)
.

Now we choose t∗ = t∗(α) such that the equation

ϕ

((
ϕ

ψ

)−1

(RKε t∗)

)
= ϕ(α)

holds. This is possible for sufficiently small α > 0 and yields t∗ = ϕ(α)
ψ(α)

1
RKε

. Hence
we obtain the profile function (5.17) as required.

6. Linking scales by range inclusions. Since the initial study of linear inverse
problems in Hilbert scales (see [21]) it is well known that the operator G measuring
smoothness of the solution x† must be linked to the operator A governing equa-
tion (1.1) in order to obtain error bounds. There are various ways to establish such a
link and we will investigate its impact on profile functions, next.

Again we start with the benchmark function ϕ and assume in addition that

x† ∈ Gτ (R) (6.1)

with Gτ (R) defined by (2.2). Moreover, we impose the following link condition, pre-
cisely that there are an index function σ(t) (0 < t ≤ ‖G‖) and a constant C < ∞
such that

‖σ(G)v‖ ≤ C‖ϕ(A∗A)v‖ for all v ∈ X. (6.2)

Remark 6.1. There is an extensive analysis in [3] of linking conditions in var-
ious ways. In particular it is shown as Proposition 2.1 in [3] that the validity of
condition (6.2) with some positive C is equivalent to the range inclusion

R(σ(G)) ⊆ R(ϕ(A∗A)) . (6.3)
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We mention the following consequence of (6.2) (see e.g. [19]). Given Hilbert spaces
X and Z with Z ⊂ X let J : Z → X be the canonical embedding, leaving elements
from Z invariant.

Lemma 6.2. Under (6.2) the canonical embedding JH,ϕG,σ : XG
σ → XH

ϕ is norm
bounded by C and we have

Gσ(R) ⊆ Hϕ(C R). (6.4)

Proof. It is well known that for any pair S, T of operators a relation ‖Sv‖ ≤ ‖Tv‖
implies ‖T−1v‖ ≤ ‖S−1v‖, whenever the right hand sides are finite. Thus (6.2)
implies for any x ∈ XG

σ with ‖x‖XGσ ≤ 1 that ‖x‖XHϕ ≤ C and hence (6.4).
We will distinguish two scenarios and we start with the easier one and state
Proposition 6.3. Let gα be a regularization which has qualification ϕ with

constant γ and assume that x† obeys (6.1). If condition (6.2) is valid for an index
function σ, and if there is K < ∞ such that τ(t)/σ(t) ≤ K (0 < t ≤ ‖G‖), then the
function

f(α) := γ C K Rϕ(α) (0 < α ≤ a) (6.5)

is a profile function for (Gτ (R), gα).
Proof. From τ(t)/σ(t) ≤ K (0 < t ≤ a) we deduce from Lemma 6.2 that Gτ (R) ⊆

Gσ(KR), which is equivalent to ‖τ(G)x‖ ≤ K ‖σ(G)x‖ for all x ∈ X. Furthermore,
in the light of Lemma 6.2, the link condition (6.2) implies Gσ(KR) ⊆ Hϕ(CKR), and
any profile function for Hϕ(CKR) provides us with a profile function for Gτ (R), such
that the proof can be completed using Proposition 5.1.

Thus we are left with the case when

(σ/τ)(t) → 0 as t→ 0. (6.6)

Then we have XG
σ ⊂ XG

τ and the canonical embedding JG,τG,σ : XG
σ → XG

τ is norm
bounded. The question is whether one can use condition (6.2) to draw conclusions
for the behavior of profile functions in this case.

Suppose we assume a linking condition (6.3), but smoothness is measured as
x† ∈ Gτ (R) with respect to a different index function τ . Can we establish an index
function ψ, assigned to a triplet (σ, τ, ϕ), such that the following range implication
holds true:

R(σ(G)) ⊆ R(ϕ(H)) =⇒ R(τ(G)) ⊆ R(ψ(H))? (6.7)

In specific situations this problem was already posed (cf. [13, Formula (5.10) on
p. 815]) and partially answered previously (cf. [3, Corollary 2.3]). Most prominently,
the Heinz-Kato inequality (see [6, Proposition 8.21]) yields

R(G) ⊆ R(H) =⇒ R(Gµ) ⊆ R(Hµ)

for 0 < µ ≤ 1, as a consequence of operator monotonicity. In fact this can be
extended to more general situations in which operator monotone functions occur. It
is convenient to draw the following diagram.

G:XG
σ

JG,τG,σ−−−−→ XG
τ

JIG,τ−−−−→ XyJH,ϕG,σ

yJH,ψG,τ

yI
H:XH

ϕ

JH,ψH,ϕ−−−−→ XH
ψ?

JIH,ψ−−−−→ X

(6.8)
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Under (6.6) the upper row shows embeddings which are bounded. Using Lemma 6.2
the embedding JH,ϕG,σ is norm bounded by C, provided the link condition (6.2) holds
true. Plainly the identity I : X → X has norm equal to one. The question ad-
dressed in this diagram is whether we can describe an index function ψ such that
the corresponding embedding JH,ψG,τ is norm bounded, say by some constant L < ∞.
Diagram (6.8) also suggests that the resulting function ψ will describe smoothness,
not covered by ϕ, and approximate source conditions must be used to obtain results.

Remark 6.4. If the embedding JH,ψG,τ were norm bounded, say by some constant
L < ∞, then Gτ (R) ⊆ Hψ(LR), and any profile function for (Hψ(LR), gα) would
also be a profile function for (Gτ (R), gα).

As the diagram (6.8) clearly indicates, interpolation properties may help to find
suitable index function ψ. The implication (6.7) of range inclusions is indeed true if
operator monotonicity occurs and we shall mention the following result from [19].

Theorem 6.5. Let x† obey (6.1). We assume that G and A∗A are linked by (6.2),
where we suppose that σ is such that there is an extension σ(t) (0 < t ≤ b) with σ(b) ≥
ϕ(a) and this extension is an index function. Moreover, given an index function
τ(t) (0 < t ≤ ‖G‖) we assign the index function

ψ(t) := τ(σ−1(ϕ(t))) (0 < t ≤ a). (6.9)

Then the implication (6.7) is satisfied whenever the function τ2((σ2)−1(t)) (0 < t ≤
ϕ2(a)) is operator monotone and (σ/τ)(t) (0 < t ≤ ‖G‖) is an index function.

Precisely, the norm bound

‖JH,ψG,τ : XG
τ → XH

ψ ‖ ≤ max {1, C} (6.10)

with C from (6.2) is valid.

Now we return to the analysis of profile functions. To establish these the full
strength of the implication (6.7) is not necessary. But we shall also indicate its
strength in Corollary 6.11, below. However, the function ψ from (6.9) will occur,
nonetheless.

There are in principle two ways to use the link conditions (6.2) or (6.3), respec-
tively, to obtain profile functions. One can either transfer all information to the scale
generated by the operator G or to the scale generated by H := A∗A. Both ways finally
provide the same asymptotic results but under assumptions of different strength. We
start with the first approach which requires weaker assumptions.

Lemma 6.6. The link condition (6.2) implies

ρ
(H,ϕ)

x†
(t) ≤ 1

C
ρ
(G,σ)

x†
(Ct) for all 0 < t <∞. (6.11)

Proof. Plainly, condition (6.2) yields Gσ(1/C) ⊆ Hϕ(1) and we obtain

ρ
(H,ϕ)

x†
(t) = dist(tx†,Hϕ(1)) ≤ dist(tx†, Gσ(1/C))

=
1
C

dist(Ctx†, Gσ(1)) =
1
C
ρ
(G,σ)

x†
(Ct).

With this preparation we can state the main result of this section.
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Theorem 6.7. Let gα be a regularization method with qualification ϕ and con-
stant γ for the operator equation (1.1) with solution x† the smoothness of which is
characterized by the conditions (5.3) and (6.1) with some index functions ϕ and τ .
We suppose the link condition (6.2) with some index function σ for connecting A∗A
and G. If the function

(σ/τ)(t) (0 < t ≤ ‖G‖) is an index function , (6.12)

then there is some ᾱ > 0 for which the function ψ(t) (0 < t ≤ ᾱ) from (6.9) is an
index function, and

f(α) := 2 max{γ, γ1} max{1, C}R ψ(α) (0 < α ≤ ᾱ) (6.13)

is a profile function for (Gτ (R), gα).
Remark 6.8. Assume (6.3) instead of (6.2). Let C := ‖(ϕ(A∗A))−1τ(G)‖ <∞.

Then the function f from (6.13) is a profile function with the constant C.
Proof. [Proof of Theorem 6.7] For an arbitrary x† ∈ Gτ (R) using the bound (5.8)

and Lemma 6.6 we obtain for all 0 < α ≤ a

‖xα−x†‖ ≤
max{γ, γ1}

t

(
ρ
(H,ϕ)

x†
(t) + ϕ(α)

)
≤ max{γ, γ1}

1
t

(
1
C
ρ
(G,σ)

x†
(Ct) + ϕ(α)

)
.

By exploiting Theorem 5.9 in the scale generated by G we can continue and bound

‖xα − x†‖ ≤ max{γ, γ1}
t

(
1
C
σ

((σ
τ

)−1

(RCt)
)

+ ϕ(α)
)

(6.14)

for 0 < α ≤ 1
RC

(
σ
τ

)
(‖G‖). There is some 0 < ᾱ ≤ ‖G‖/C for which we can equate

both summands on the right of formula (6.14) whenever 0 < α ≤ ᾱ. This leads to

t∗ = t∗(α) :=
1
R

ϕ(α)
τ(σ−1(Cϕ(α)))

(0 < α ≤ ᾱ).

Moreover by (6.12) we have that τ(σ−1(Ct)) ≤ max{1, C} τ(σ−1(t)) for 0 < t ≤ α.
Thus we can estimate for 0 < α ≤ ᾱ

‖xα − x†‖ ≤ 2 max{γ, γ1}
ϕ(α)
t∗

≤ 2 max{γ, γ1}Rτ(σ−1(Cϕ(α))) .

Consequently we obtain

‖xα − x†‖ ≤ 2 max{γ, γ1} max {1, C} Rψ(α) (0 < α ≤ ᾱ),

completing the proof.
Remark 6.9. The results of Theorem 6.7 with an appropriately modified constant

in (6.13) can also be obtained under the weaker assumption that

(σ/τ)(t) (0 < t ≤ ε) is an index function ,

for arbitrarily small ε > 0 instead of the global assumption (6.12). This is an im-
mediate result of the opportunity of localization as outlined in Theorem 5.12 and its
proof.

As mentioned above, we can also try to transfer the information from the link
conditions (6.2) and (6.3) to the scale generated by H = A∗A.
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We recall the definition of the function ψ in formula (6.9) in the context of The-
orem 6.5. The following observation is useful.

Lemma 6.10. Let the functions τ, σ and ϕ,ψ be as in Theorem 6.5. If the quotient
σ/τ is an index function on (0, ‖G‖] then ϕ/ψ is an index function on (0, a].

Proof. We assign s = s(t) := σ−1(ϕ(t)) (0 < t ≤ a), thus s ∈ (0, b]. With this
identification we obtain

ϕ(t)
ψ(t)

=
σ(s)

ψ(ϕ−1(σ(s)))
=

σ(s)
τ(σ−1(σ(s)))

=
σ(s)
τ(s)

.

Keeping this lemma in mind we can prove the following counterpart of Theo-
rem 6.7.

Theorem 6.11. Assume that the regularization gα has qualification ϕ with con-
stant γ and that σ/τ is an index function on (0, ‖G‖]. Under the assumptions of The-
orem 6.5, in particular the operator monotonicity of the function τ2((σ2)−1(t)) (0 <
t ≤ ϕ2(a)), the function

f(α) = 2 max {γ, γ1} max {1, C} Rψ(α) (0 < α ≤ a) (6.15)

is a profile function for (Gτ (R), gα).
Proof. Let L := max {1, C}. The estimate (6.10) of Theorem 6.5 yields the

inclusion Gτ (R) ⊂ Hψ(LR). Thus profile functions for (Hψ(LR), gα) are also profile
functions for (Gτ (R), gα). By Lemma 6.10 the function ϕ(t)/ψ(t) (0 < t ≤ a) is an
index function and we can apply Theorem 5.9 to bound the distance function ρ

(H,ψ)

x†

as

ρ
(H,ψ)

x†
(t) ≤ ϕ

((
ϕ

ψ

)−1

(LRt)

)
(0 < t ≤ ϕ(a)

LRψ(a)
).

Corollary 5.10 provides us with the profile function as given in (6.15).
Example 6.12. Again, let us discuss the situation when the index functions are

in the form of monomials; more precisely, we assume that σ(t) = tµ, τ(t) = t. Then
the operator monotonicity as required in Corollary 6.11 is fulfilled whenever µ ≥ 1,
which can be deduced from the Heinz-Kato inequality. If the link condition (6.2) is
assumed to hold for ϕ(t) = tν , and if the regularization has qualification ϕ, then
we arrive at a profile function f(α) = Cαν/µ, uniformly for x† satisfying (5.3) and
(6.1).
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[7] Hegland, M. (1992): An optimal order regularization method which does not use additional
smoothness assumptions. SIAM J. Numer. Anal. 29, 1446–1461.

[8] Hegland, M. (1995): Variable Hilbert scales and their interpolation inequalities with applica-
tions to Tikhonov regularization. Appl. Anal. 59, 207–223.

[9] Hofmann, B. (2006): Approximate source conditions in Tikhonov-Phillips regularization and
consequences for inverse problems with multiplication operators. Mathematical Methods
in the Applied Sciences 29, 351–371.
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