
Parameter choice in Banach space regularization
under variational inequalities

Bernd Hofmann
Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz,
Germany

E-mail: hofmannb@mathematik.tu-chemnitz.de

Peter Mathé
Weierstraß Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117
Berlin, Germany

E-mail: peter.mathe@wias-berlin.de

Abstract. The authors study parameter choice strategies for Tikhonov regulariza-
tion of nonlinear ill-posed problems in Banach spaces. The effectiveness of any param-
eter choice for obtaining convergence rates depends on the interplay of the solution
smoothness and the nonlinearity structure, and it can be expressed concisely in terms
of variational inequalities. Such inequalities are link conditions between the penalty
term, the norm misfit and the corresponding error measure. The parameter choices
under consideration include an a priori choice, the discrepancy principle as well as the
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1. Introduction

In the past years there was a significant progress with respect to the error analysis
including convergence rates results for regularized solutions to inverse problems in
Banach spaces. Such problems can be formulated as ill-posed operator equations

F (x) = y (1.1)

with an (in general nonlinear) forward operator F : D(F ) ⊆ X → Y , with domain D(F ),
and mapping between the Banach spaces X and Y with norms ‖ · ‖X and ‖ · ‖Y ,
respectively. Equations of this type frequently occur in natural sciences, engineering,
imaging, and finance (see e.g. [28] and [29, Chapter 1]). We denote by X∗ and Y ∗ the
corresponding dual spaces and by 〈·, ·〉X∗×X the dual pairing between X and X∗. In
this paper, for constructing stable approximate solutions to (1.1) our focus is on the
Tikhonov type regularization based on noisy data yδ ∈ Y of the exact right-hand side
y ∈ F (D(F )) under the deterministic noise model

‖yδ − y‖Y ≤ δ . (1.2)

Precisely, we use for regularization parameters α > 0 regularized solutions xδα ∈ D(F ),
which are minimizers of

T δα (x) :=
1

p
‖F (x)− yδ‖pY + αR(x), subject to x ∈ D(F ) ⊆ X , (1.3)

with a convex penalty functional R : X → [0,∞] and some positive exponent
1 < p < ∞. We suppose in the sequel that the standard assumptions on F,D(F ),
and R, made for the Tikhonov regularization in [15] and in the recent monographs
[28, 29] are fulfilled. In particular, we assume that R is stabilizing, which means that
for all c ≥ 0 the sublevel sets

MR(c) := {x ∈ D(F ) : R(x) ≤ c}

are sequentially pre-compact in a topology τX weaker than the norm topology of the
Banach space X. In this case minimizers xδα ∈ D(F ) of T δα exist for all α > 0, and we
refer to Section 2 for more details.

The objective in the following study is to control a prescribed non-negative error
functional, say E(xδα, x

†), measuring the deviation of the regularized solution xδα from
an R-minimizing solution, i.e., from a solution x† to (1.1) with noise-free data y, for
which we have

R(x†) = min{R(x) : x ∈ D(F ), F (x) = y} .

Typical examples of error measures would be the norm misfit E(x, x†) = ‖x− x†‖X or
a power E(x, x†) = ‖x − x†‖qX of that with exponents 1 < q < ∞. Within the present
context the Bregman distance

E(x, x†) = DRξ†(x, x
†) := R(x)−R(x†)− 〈ξ†, x− x†〉X∗×X (1.4)

is often used, where we denote by ξ† ∈ ∂R(x†) ⊆ X∗ the subdifferential of the
convex functional R at the point x†. The Bregman distance was introduced into the
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regularization theory by the study [7] in 2004, and henceforth this concept was adopted,
refined and developed by many authors (cf., e.g., [14, 15, 19, 26, 27]). When considering
E from (1.4) we always assume that x ∈ D(R) := {x̃ ∈ X : R(x̃) <∞} and that x†

belongs to the Bregman domain

x† ∈ DB(R) := {x̃ ∈ D(R) : ∂R(x̃) 6= ∅} .

The goal of the present paper is to study convergence rates of E(xδα, x
†) as δ → 0

for several choices of the regularization parameter α = α(δ, yδ). The quality of any
parameter choice (in terms of rates of convergence) will depend on the interplay of the
following four relevant ingredients, as these are

(i) the smoothness of the solution x†,
(ii) the structure of the forward operator F , and its domain D(F ),
(iii) properties of the functional R,
(iv) and the character of the error measure E(·, ·).

In this context, conditions are necessary that link the four factors. For E from (1.4)
such conditions were presented in a rather general form in [15] as variational inequalities.
Here we refer to the following variant (cf. [8, 9, 10, 11]), which uses the concept of index
functions. We call a function ϕ : (0,∞)→ (0,∞) an index function if it is continuous,
strictly increasing, and satisfies the limit condition lim

t→+0
ϕ(t) = 0, see e.g. [16, 21].

Assumption VI (variational inequality) We assume to have a constant 0 < β ≤ 1,
a concave index function ϕ, and a domain of validityM such that

β E(x, x†) ≤ R(x)−R(x†) + ϕ(‖F (x)− F (x†)‖Y ) for all x ∈M. (1.5)

Remark 1 The domain of validityM in Assumption VI must be large enough such that
it contains x† and all regularized solutions xδα under consideration for 0 < δ ≤ δmax.
This is for example the case ifM =MR(R(x†) + c) for some c > 0.

Moreover, there are good reasons to restrict in (1.5) to concave index functions.
Namely, for index functions ϕ with lim

t→+0

ϕ(t)
t

= 0, including the family of strictly convex

index functions, the variational inequality degenerates in the sense that R(x†) ≤ R(x)

for all x ∈ M (see [9, Proposition 12.10], and for a special case [17, Proposition 4.3]).
If 0 < lim

t→+0

ϕ(t)
t
< ∞ then the situation is equivalent to the case ϕ(t) = c t, c > 0, in

(1.5) (see [9, Proposition 12.11]), and for an index function ϕ with lim
t→+0

ϕ(t)
t
↗ +∞ we

can find a concave majorant index function that can be used in (1.5).

The outline of the paper is as follows. We present the general methodology
of our approach in Section 2. Then we draw some consequences of the variational
inequality (1.5) in form of inequalities in Section 3. Parts of these inequalities have
been underestimated or even overlooked in past work. However, they will be essentially
used in Section 4 to derive error bounds for several parameter choices. A concluding
discussion is given in Section 5. In an appendix we shall indicate on the basis of some
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examples from the literature how (1.5) may be derived for linear and nonlinear problems.
Mostly, the examples employ varieties of solution smoothness and nonlinearity structure
for obtaining Assumption VI. Our focus in this paper is on choices of the regularization
parameter and their properties and consequences, but it was not our intention to present
new results and examples concerning the verification of Assumption VI. On the other
hand, we believe that it will be relevant in the future for the credibility of the approach
to provide variational inequalities for important classes of nonlinear inverse problems,
as far as possible also without using explicit source conditions or approximate source
conditions and explicit nonlinearity conditions.

2. Methodology and a fundamental error bound

The existence and behavior of Tikhonov minimizers xδα was analyzed in several studies
(cf., e.g., [15, 28, 29]). Under natural assumptions, stated there, R-minimizing solutions

x† ∈ D := D(F ) ∩ D(R) 6= ∅

exist whenever (1.1) has a solution which belongs to D. Also, minimizers xδα to the
Tikhonov functional (1.3) exist for all data yδ ∈ Y and regularization parameters α > 0,
and these are stable with respect to perturbations in the data for fixed α. Particularly
relevant for our purpose is the following: For any parameter choice α∗ = α∗(y

δ, δ)

satisfying

α∗ → 0 and
δp

α∗
→ 0 as δ → 0 (2.1)

we have convergence for both

R(xδα∗)→ R(x†) and ‖F (xδα∗)− F (x†)‖Y → 0 as δ → 0. (2.2)

Hence, all regularized solutions xδα∗ for sufficiently small δ > 0 belong toMR(R(x†)+c),

for some c > 0, and moreover if δn → 0 then the regularized solutions xδnα∗(δn) converge
to x† in the weaker topology τX of X. This is a weak convergence in the sense of
subsequences if the R-minimizing solution x† is not unique. For more details see, for
example, [29, Section 4.1.2].

This gives rise to the following methodology: In view of the convergence as stated
in (2.2) and the variational inequality (1.5) the following stability region is of interest.

Definition (stability region). Given δ > 0 and a concave index function ϕ we let

FK,C(δ) :=
{
x ∈ D : R(x)−R(x†) ≤ Kϕ(Cδ), ‖F (x)− F (x†)‖Y ≤ Cδ

}
,

be a stability region for the R-minimizing solution x† ∈ D of (1.1) with constants
K > 0, C ≥ 1.

Notice that FK,C(δ) ⊂MR(R(x†) +Kϕ(Cδ)), such that minimizers which are directed
towards FK,C(δ) belong to specified sublevel sets, in agreement with the outline in the
beginning of this section. Here the constants C and K do not depend on δ, however
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on the exponent p > 1, and on additional parameters used for the specific parameter
choice.

This methodology immediately allows for the following very elementary but
fundamental error bound.

Proposition 1 Let x† obey Assumption VI for some setM. If the approximate solution
x ∈M belongs to a stability region FK,C(δ) for some K > 0, C ≥ 1 and δ > 0 then

E(x, x†) ≤ C
K + 1

β
ϕ(δ) . (2.3)

Above, we used the fact that ϕ(Cδ) ≤ Cϕ(δ) is valid for all concave index functions ϕ
and all δ > 0, C ≥ 1.

The concept of stability region only controls the excess penalty R(x)−R(x†), but
not its modulus |R(x)−R(x†)|. In the proofs given below, we shall obtain the following
strengthening. The parameter choices will direct the approximate solutions towards the
convergence region, given similarly to the Definition of the stability region as

Definition (convergence region). For δ > 0 and a concave index function ϕ let

F conv
K,C (δ) :=

{
x ∈ D :

∣∣R(x)−R(x†)
∣∣ ≤ Kϕ(Cδ), ‖F (x)− F (x†)‖Y ≤ Cδ

}
,

be a convergence region for the R-minimizing solution x† ∈ D of (1.1) with constants
K > 0, C ≥ 1.

Plainly, the inclusion F conv
K,C (δ) ⊂ FK,C(δ) holds. But the additional requirement provides

us with a rate of convergence for R(xδα)→ R(x†), a surplus which we kindly appreciate.

Proposition 2 Let x† obey Assumption VI for some setM. If the approximate solution
x ∈ M belongs to a convergence region F conv

K,C (δ) for some K > 0, C ≥ 1 and δ > 0

then, in addition to the assertion from Proposition 1, we have∣∣R(x)−R(x†)
∣∣ ≤ KCϕ(δ) and ‖F (x)− F (x†)‖Y ≤ Cδ.

The above bounds quantify the convergence assertions from (2.2) under Assumption VI.

We shall exhibit this methodology for a natural a priori parameter choice as well
as for the discrepancy principle, and a variant of the Lepskĭı (balancing) principle in
Section 4 yielding convergence rates for the error measure E and deviations of Ω of
the type O(ϕ(δ)) as δ → 0 whenever ϕ in (1.5) is a concave index function. The
methodology based on Assumption VI is not helpful for providing enhanced convergence
rates as proven for the Bregman distance (1.4) as error measure in [23, 25] up to the
order O(δ4/3) by using source conditions of higher order in combination with duality
mappings. Note that a first step to extend the variational inequality approach to higher
rates was made in [12].
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3. Preliminary estimates based on the variational inequality

Before discussing parameter choice in detail we shall draw some first conclusions from
the validity of the variational inequality. Here we neglect the specific structure of the
error functional E(·, ·), and we only use its non-negativity. Let xδα be any minimizer of
the Tikhonov functional T δα from (1.3). The first observation is the following.

Lemma 1 Under Assumption VI we have for α > 0 and xδα ∈M that

R(x†)−R(xδα) ≤ ϕ(‖F (xδα)− F (x†)‖Y ), and

R(xδα)−R(x†) ≤ δp

pα
.

Proof: The first assertion is an immediate consequence of (1.5) taking into account that
β > 0 and E(xδα, x

†) ≥ 0. For the second we use the minimizing property to see that
‖F (xδα)− yδ‖pY

p
+αR(xδα) ≤ ‖F (x†)− yδ‖pY

p
+αR(x†) ≤ δp

p
+αR(x†), (3.1)

from which the assertion follows. �
Another conclusion is less obvious.

Lemma 2 Under Assumption VI we have for α > 0 and xδα ∈M that
‖F (xδα)− F (x†)‖pY

p
≤ 2p

δp

p
+ α2p−1ϕ(‖F (xδα)− F (x†)‖Y ).

Proof: By using the first inequality of Lemma 1 and formula (3.1) we can estimate as

0 ≤ R(xδα)−R(x†) + ϕ(‖F (xδα)− F (x†)‖Y )

≤ 1

α

(
δp

p
− 1

p
‖F (xδα)− yδ‖pY

)
+ ϕ(‖F (xδα)− F (x†)‖Y ).

As a consequence of the inequality

(a+ b)p ≤ 2p−1 (ap + bp), a, b ≥ 0, p ≥ 1,

we also have the following lower bound

‖F (xδα)− yδ‖pY
p

≥ 1

2p−1

‖F (xδα)− F (x†)‖pY
p

− δp

p
.

Inserting this we see that

0 ≤ 2
δp

p
− 1

2p−1

‖F (xδα)− F (x†)‖pY
p

+ αϕ(‖F (xδα)− F (x†)‖Y ),

which completes the proof. �
The bound in Lemma 2 can be used on two ways. First, given a specific value of the
parameter α > 0 we can bound the norm misfit from above. Secondly, assuming that
the norm misfit is larger than δ we can bound the value of the parameter α from below.
Both consequences will prove important. In this context we introduce the function

Φp(t) :=
tp

ϕ(t)
, t > 0, (3.2)

where ϕ is an arbitrary concave index function. Since p > 1, also Φp is an index function.
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Corollary 1 Let α∗ be given from

α∗ := Φp(δ). (3.3)

Then we have for α ≤ α∗ and xδα ∈M that

‖F (xδα)− F (x†)‖Y ≤ 2(2 + p)1/(p−1)δ.

Proof: If ‖F (xδα) − F (x†)‖Y > δ then we use the bound from Lemma 2 and the value
for α∗ to obtain

‖F (xδα)− F (x†)‖pY
p

≤ 2p
δp

p
+ α2p−1ϕ(‖F (xδα)− F (x†)‖Y )

≤ 2p
δp

p
+ α∗2

p−1ϕ(‖F (xδα)− F (x†)‖Y )

= 2p
δp

p
+ δp2p−1ϕ(‖F (xδα)− F (x†)‖Y )

ϕ(δ)

=
δp

p

(
2p + p2p−1ϕ(‖F (xδα)− F (x†)‖Y )

ϕ(δ)

)
≤ 2p−1(2 + p)

δp

p

ϕ(‖F (xδα)− F (x†)‖Y )

ϕ(δ)

≤ 2p−1(2 + p)
δp

p

δ−1‖F (xδα)− F (x†)‖Y ϕ(δ)

ϕ(δ)

= 2p−1(2 + p)
δp−1

p
‖F (xδα)− F (x†)‖Y .

Because of 2(2 + p)1/(p−1) > 1 the bound given in the corollary is also valid for
‖F (xδα)− F (x†)‖Y ≤ δ. �

Corollary 2 Let τ > 1. Suppose that the parameter α > 0 is chosen such that xδα ∈M
and the residual obeys ‖F (xδα)− yδ‖Y > τδ. Then we have

α ≥ 1

p2p−1

τ p − 1

τ p + 1
Φp((τ − 1)δ). (3.4)

Proof: Using the first assertion in Lemma 1 and that xδα ∈ M is a minimizer of T δα we
have under the assumption made on α that
τ pδp

p
≤ ‖F (xδα)− yδ‖pY

p
≤ δp

p
+ α

(
R(x†)−R(xδα)

)
≤ δp

p
+ αϕ(‖F (xδα)− F (x†)‖Y ).

Thus
δp

p
≤ 1

τ p − 1
αϕ(‖F (xδα)− F (x†)‖Y ).

We plug this into the bound in Lemma 2, and we temporarily abbreviate
tα := ‖F (xδα)− F (x†)‖Y . We thus obtain that

tpα
p
≤ 2p

δp

p
+ α2p−1ϕ(tα) ≤ 2p

1

τ p − 1
αϕ(tα) + α2p−1ϕ(tα)

=

(
2p

τ p − 1
+ 2p−1

)
αϕ(tα) = 2p−1 τ

p + 1

τ p − 1
αϕ(tα).
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Since τδ ≤ tα + δ, we arrive, using the function Φp from (3.2), at

Φp((τ − 1)δ) ≤ Φp(tα) ≤ p2p−1 τ
p + 1

τ p − 1
α,

and the proof is complete. �

4. Parameter choice

The objective of this study is the error analysis of several parameter choice strategies,
commonly used in regularization theory. This concerns a priori strategies, i.e., when
α∗ = α∗(δ) does not depend on the given data yδ, as well as a posteriori strategies,
when α∗ = α∗(y

δ, δ).

4.1. A natural a priori parameter choice

Several a priori parameter choices can be found in earlier studies (cf. [5, 8]). Here we
present an intuitive parameter choice, which was obtained in [11] by means of tools
from convex analysis. Our approach, however, is elementary and directly based on
Assumption VI. In addition we show that this parameter choice pushes the approximate
solution xδα∗ into a specific set F conv

K,C (δ). We recall the index function Φp from (3.2).

Theorem 1 Suppose that x† obeys Assumption VI for some concave index function ϕ.
Let α∗ = α∗(δ) = Φp(δ) be chosen a priori.

(i) If xδα∗ ∈M then xδα∗ ∈ F
conv
K,C (δ) with K = 1 and C = 2(2 + p)1/(p−1).

(ii) If xδα∗ ∈ M for all 0 < δ ≤ δmax and some δmax > 0, then this a priori parameter
choice yields the convergence rates

E(xδα∗ , x
†) = O(ϕ(δ)), ‖F (xδα∗)−F (x†)‖Y = O(δ), and |R(xδα∗)−R(x†)| = O(ϕ(δ)),

as δ → 0.

Proof: Corollary 1 provides us with a bound of the norm misfit ‖F (xδα∗)− F (x†)‖Y . In
view of the first assertion of Lemma 1 this also bounds R(x†)−R(xδα∗), appropriately.
Furthermore, from the second assertion of Lemma 1 we have that R(xδα∗) − R(x†) ≤
δp/(pα∗) ≤ ϕ(δ), by the choice of α∗. The convergence rates in Item (ii) are a
consequence of Propositions 1 & 2. �

Remark 2 An inspection of the proofs in Section 3 shows that the first two convergence
rates in Theorem 1 use only the implication xδα∗ ∈M⇒ xδα∗ ∈ FK,C(δ), for sufficiently
small δ > 0. Only for the third R-rate the membership xδα∗ ∈ F

conv
K,C (δ) is required. The

a priori parameter choice from (3.3) satisfies the condition (2.1).
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4.2. A posteriori parameter choice

For the a posteriori parameter choice we restrict the selection of the regularization
parameter to a discrete exponential grid. Precisely, we select 0 < q < 1, choose a largest
parameter α0 and consider the set

∆q :=
{
αj : αj := qjα0, j = 1, 2, . . .

}
. (4.1)

Above, the parameter q determines the roughness of searching for the optimal parameter.
If q is close to one than we scan for the optimal parameter accurately, however, many
trials may be necessary to find the best candidate. If q is small than we roughly scan
for the parameter, at a dispense of loosing accuracy.

4.2.1. Discrepancy principle Previous use of the discrepancy principle for nonlinear
problems in Banach space was restrictive; a stronger version was used. Precisely, for
two parameters 1 < τ1 < τ2 <∞ the chosen parameter α∗ was assumed to fulfill

τ1δ ≤ ‖F (xδα∗)− y
δ‖Y ≤ τ2δ (4.2)

(cf. [1, 2, 9]). We shall call this the strong discrepancy principle. It is not clear that this
is always possible, and it was mentioned in [29, Chapt. 4] that for nonlinear operators
F there may be a duality gap due to the non-convexity of the functional T δα which
prevents the use of this strong discrepancy principle. Here we establish the use of the
in general applicable classical discrepancy principle for which the variational inequality
in Assumption VI is strong enough to ensure convergence rates. For another alternative
version of the discrepancy principle in the context of Tikhonov regularization we also
refer to [24].

Theorem 2 Let τ > 1 be given. Let α∗ ∈ ∆q, α∗ < α1 (no immediate stop) be chosen,
according to the discrepancy principle, as the largest parameter within ∆q for which

‖F (xδα)− yδ‖Y ≤ τδ.

Suppose that x† obeys Assumption VI for some concave index function ϕ. Then the
following holds true.

(i) If xδα ∈ M, α ≥ α∗, then xδα∗ ∈ F
conv
K,C (δ) with K = 1

2q
max

{(
2

τ−1

)p τp+1
τp−1

, 2q
}
, and

C = τ + 1.

(ii) If xδα∗ ∈M for all 0 < δ ≤ δmax and some δmax > 0, then this a posteriori parameter
choice yields the convergence rates

E(xδα∗ , x
†) = O(ϕ(δ)), ‖F (xδα∗)−F (x†)‖Y = O(δ), and |R(xδα∗)−R(x†)| = O(ϕ(δ)),

as δ → 0.

Proof: We first bound

‖F (xδα∗)− F (x†)‖Y ≤ ‖F (xδα∗)− y
δ‖Y + ‖F (x†)− yδ‖Y ≤ τδ + δ = (τ + 1)δ.
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Under Assumption VI this also gives R(x†) − R(xδα∗) ≤ ϕ((τ + 1)δ), cf. Lemma 1.
For bounding the negative R-difference we use Corollary 2 as follows. The (previous)
parameter α∗/q fulfills the assumption from Corollary 2, and we bound from below as

α∗/q ≥
1

p2p−1

τ p − 1

τ p + 1
Φp((τ − 1)δ).

This, together with the second assertion of Lemma 1, yields

R(xδα∗)−R(x†) ≤ δp

pα∗
≤

2p−1
(
τp+1
τp−1

)
δp

qΦp((τ − 1)δ)

=
1

2q

(
2

τ − 1

)p
τ p + 1

τ p − 1
ϕ((τ − 1)δ)

≤ 1

2q

(
2

τ − 1

)p
τ p + 1

τ p − 1
ϕ((τ + 1)δ).

The convergence rates in Item (ii) are again consequences of Propositions 1 & 2. �

Remark 3 We emphasize that here we bounded

R(xδα∗)−R(x†) ≤ 1

2q

(
2

τ − 1

)p
τ p + 1

τ p − 1
ϕ((τ + 1)δ),

whereas the strong discrepancy principle mentioned above yields R(xδα∗) − R(x†) ≤ 0,
which seems to be chicken–hearted, and this points at the limitations of this strong
principle.

4.2.2. The Lepskĭı principle The Lepskĭı (balancing) principle is studied here for the
first time within the context of nonlinear equations in Banach space regularization.
However, it was used for nonlinear equations in Hilbert space, and we refer to [3].
Actually, by its very construction this parameter choice is not sensitive to the problem
at hand, a generic formulation for this principle was given in [20]. This principle requires
that the error functional is a metric, and we assume this within the present section
without further mentioning. We will need the following fact.

Lemma 3 Suppose that x† obeys Assumption VI, and that the parameter αAP is given
as in Theorem 1. Then for all αm ≤ α ≤ αAP and for xδα ∈M we have that

βE(xδα, x
†) ≤

(
1

p
+ 2(2 + p)1/(p−1)

)
δp

α
.

Proof: Under Assumption VI, and using Lemma 1 and Corollary 1 we see that

βE(xδα, x
†) ≤ R(xδα)−R(x†) + ϕ(‖F (xδα)− x†‖Y )

≤ δp

pα
+ ϕ(Cpδ) ≤

δp

pα
+ Cpϕ(δ)

=
δp

pα
+ Cp

δp

α
=

(
1

p
+ Cp

)
δp

α
,
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where we abbreviated Cp := 2(2 + p)1/(p−1), the constant from Corollary 1. �
We want to use the Lepskĭı principle, as this is outlined in [20], by using a multiple of
the decreasing function α→ δp/α, and we let

Ψ(α) :=
1 + pCp
pβ

δp

α
, α > 0. (4.3)

From [20, Prop. 1] we draw the following conclusion.

Theorem 3 Fix m > 1 (large) and let α∗ ∈ ∆q be the largest parameter α for which

E(xδα′ , x
δ
α) ≤ 2Ψ(α′), for all α′ ∈ ∆q, αm ≤ α′ < α.

Moreover, suppose that x† obeys Assumption VI for some concave index function ϕ. If
xδα ∈M for all αm ≤ α ≤ α∗ and if E(xδαm

, x†) ≤ Ψ(αm), then

E(xδα∗ , x
†) ≤ 3

1 + pCp
pqβ

ϕ(δ).

Proof: As in [20, Prop. 1] we introduce the parameter

α+ := max
{
α : E(xδα′ , x

†) ≤ Ψ(α′), αm ≤ α′ ≤ α
}
.

(Caution: the notation in [20] differs from here, and some care is needed to transfer
the results.) Let αAP = Φp(δ) be the a priori choice from Theorem 1. If αAP ∈ ∆q

then Lemma 3 yields that α+ ≥ αAP . Otherwise, we consider the index k ≤ m for
which αk < αAP ≤ αk/q, which results in α+ ≥ αk. Proposition 1 in [20] states
that E(xδα∗ , x

†) ≤ 3Ψ(α+). Thus in either case this yields

E(xδα∗ , x
†) ≤ 3Ψ(α+) ≤ 3Ψ(αk) =

3

q
Ψ(αk/q) ≤

3

q
Ψ(αAP ) ≤ 1 + pCp

pqβ
ϕ(δ),

which completes the proof. �

Remark 4 The above application of the Lepskĭı principle does not include the Bregman
distance as error measure E(x, x†) := DR

ξ†(x, x
†), because this is not a metric, in general.

However, if the Bregman distance is q-coercive, DR
ξ†(x, x

†) ≥ c
‖x−x†‖qX

q
, then the validity

of a variational inequality for DR
ξ†(x, x

†) implies the one for ‖x − x†‖qX/q, and we
can apply the Lepskĭı parameter choice to the differences xδα − xδα′, i.e., test whether
‖xδα − xδα′‖X ≤ (21+pCp

pβ
)1/qδp/q/(α′)1/q for α′ ≤ α.

5. Concluding discussion

We summarize the above findings on the parameter choice strategies. First, we
emphasize that the a priori parameter choice from § 4.1 is related to the well-known
a priori parameter choice for linear problems in Hilbert spaces, and this shows how
ϕ is related to smoothness. Indeed, taking into account that E(x, x†) = ‖x − x†‖2

X

measures the squared error, we obtain a rate ‖xδα∗ − x†‖X = O(
√
ϕ(δ)). Presuming
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that this is the optimal rate, we ‘guess’ the relation
√
ϕ(t) ≡ ψ(Θ−1

ψ (t)) by setting
Θψ(t) :=

√
tψ(t), t > 0, where ψ should be the smoothness in the source condition for

x†, meaning that x† = ψ(A∗A)v, ‖v‖X ≤ 1. Taking this for granted we see that

√
α∗ ∼

δ√
ϕ(δ)

=
δ

ψ(Θ−1
ψ (δ))

=
Θψ

(
Θ−1
ψ (δ)

)
ψ(Θ−1

ψ (δ))
=
√

Θ−1
ψ (δ),

and hence Θψ(α∗) = δ, which is the ‘ordinary’ a priori parameter choice in linear
problems in Hilbert space under given source condition x† = ψ(A∗A)v, ‖v‖X ≤ 1

(cf. [21]).
We turn to the a posteriori parameter choices, and we notice that the discrepancy

principle requires to start with some ‘large’ parameter α1, whereas the Lepskĭı principle
one has to start with some smallest αm ∈ ∆q. Thus the latter parameter choice is more
involved as the discrepancy principle. However, for linear problems in Hilbert space, the
discrepancy principle is known for its early saturation, a drawback which is not present
in the Lepskĭı parameter choice. A similar effect is not known for nonlinear problems
in Banach space, and this discussion still has to be done.

The proofs of both principles require that the search for the parameter α does
not stop immediately, i.e., at α1 for the discrepancy principle, or at αm for the Lepskĭı
principle, and these cases require additional attention. In fact, for the discrepancy
principle it may happen that for α := α1 the assumption ‖F (xδα1

) − yδ‖Y ≤ τδ is
already fulfilled. The question is, whether there is still the rate O (ϕ(δ)) to be observed.
This can indeed be proved for linear problems in Hilbert space (cf. [4] for a recent
treatment): For Tikhonov regularization in Hilbert space this corresponds to the case
of having small data, because (for linear problems in Hilbert space) xδα → 0 as α→∞,
and hence immediate stop refers to ‖yδ‖Y ≤ τδ. Within the present context we make
the following observation. If the discrepancy bound τδ holds, then the error bound
E(xδα1

, x†) holds if only R(xδα1
) −R(x†) is small. A look at the second bound given in

Lemma 1 reveals that a bound δp/(pα1) is valid. So, the desired overall error bound
holds provided that δp/(pα1) ≤ K̄ϕ(δ), or equivalently, by using the index function Φp

from (3.2), that

Φp(δ) ≤ K̄ p α1. (5.1)

Plainly, for each solution x† there is δ0 such that Φp(δ) ≤ Φp(δ0) ≤ pα1. Thus, for
0 < δ ≤ δ0 we can bound

R(xδα1
)−R(x†) ≤ δp

pα1

=
δp

Φp(δ)
= ϕ(δ).

This shows that if the initial value α0 is chosen large enough then immediate stop yields
an error bound of the form O (ϕ(δ)). However, for any particular instance x† at hand
we cannot verify whether (5.1) holds, since ϕ is not known to us.

The situation is similar for the Lepskĭı principle. In the formulation of Theorem 3 we
assumed that E(xδαm

, x†) ≤ Ψ(αm). Since Ψ(αm) is known to the user, some exogenous
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knowledge about the expected error size may allow to adjust for the choice of m, and
hence of αm. However, we cannot verify this condition, based on information of δ and
the given data yδ. So, if the Lepskĭı principle stops immediately, one should decrease
the initial value αm until this will not be the case.

Both a posteriori parameter choices do not require to know the function ϕ involved
in Assumption VI. However, the functional Ψ, as it is used in the Lepskĭı principle,
requires the parameter 0 < β ≤ 1. In some cases in which Assumption VI holds the
factor β is known to be one, see Appendix A. In general, the functional Ψ could be
increased by some multiplicative safeguard factor, say ν > 1. In this case the conclusion
of Theorem 3 remains true whenever a variational inequality with factor β > 1/ν holds
on some domain of validity.

As Theorem 2 shows, the discrepancy principle directs the chosen parameter
towards the region of convergence. The parameter choice à la Lepskĭı from Theorem 3
provides us with an error bound, which is obtained regardless whether the approximating
xδα∗ belongs to some set FK,C(δ). In fact, the only information which can be deduced
from Theorem 3 is the following lower bound for α∗: In [20, Prop. 2.1] the information
is given that α∗ ≥ α+, such that α∗ ≥ α+ ≥ qαAP = qΦp(δ). This bounds the excess
penalty R(xδα∗) − R(x†) ≤ ϕ(δ)/q. However, it is not clear whether the discrepancy
‖F (xδα∗)− y

δ‖Y is of the order δ.
Finally, we mention that the roughness parameter q < 1, which describes the

construction for ∆q in (4.1) influences the accuracy by a multiplicative factor 1/q. This
can be seen from the constant K in Theorem 2, and also from Theorem 3.

The obtained rates are valid in all cases where a suitable variational inequality as in
Assumption VI holds. In the Appendix A we highlight several important cases, where
such variational inequalities can be obtained. Thus, in all such cases, the parameter
choices as discussed in this study will yield the rates described through the index
function ϕ in Assumption VI. In particular, we sketch the case of sparse recovery by
using a weighted lq-norm as penalty R in the Tikhonvov functional. For q = 1, and if
ϕ(t) = t in (1.5), the maximal rate ‖xδα∗ − x

†‖X = O(δ) can be obtained for Tikhonov
regularization under sparsity constraints.

We mention that converse results concluding from the validity of Assumption VI
to solution smoothness are not known at present in the general Banach space setting
if the index function ϕ in (1.5) strictly concave, i.e. t = o(ϕ(t)) as t → +0. However,
for linear problems in Hilbert spaces such an assertion concerning Hölder rates and
ϕ(t) = tκ, 0 < κ < 1 was formulated as Proposition 6.8 in [17]. The proof of this
proposition is simply based on the converse results from [22].

Appendix A. Examples for verifying Assumption VI

For the convenience of the reader we briefly sketch some approaches to show how
variational inequalities occur. We suppose that the mapping F : D(F ) ⊆ X → Y
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with some convex domain D(F ) has a one-sided directional derivative at x† given as a
bounded linear operator F ′(x†) : X → Y such that

lim
t→+0

1

t

(
F (x† + t(x− x†))− F (x†)

)
= F ′(x†)(x− x†), x ∈ D(F ). (A.1)

For the application of several variational inequalities of type (1.5) that we will derive
below, in the context of Tikhonov regularization, one still has to show that the
minimizers xδα of (1.3) belong to the domain M of validity of such inequality. This
requires special attention, and we do not tackle this question. We leave details to the
indicated original references (see also [29, Sections 3.2 and 4.2]).

Appendix A.1. Bregman distance as error measure: benchmark case

Here we assume that x† ∈ DB(R) and some corresponding subgradient element
ξ† ∈ ∂R(x†) fulfills the benchmark source condition

ξ† = F ′(x†)∗ v, for some v ∈ Y ∗. (A.2)

Such information allows us to bound for all x ∈ X

〈ξ†, x† − x〉X∗×X = 〈(F ′(x†))∗v, x† − x〉X∗×X = 〈v, F ′(x†)(x† − x)〉Y ∗×Y
≤ ‖v‖Y ∗‖F ′(x†)(x− x†)‖Y .

After adding the term R(x)−R(x†) on both sides this yields that

DRξ†(x, x
†) ≤ R(x)−R(x†) + ‖v‖Y ∗‖F ′(x†)(x− x†)‖Y , x ∈ D(R). (A.3)

Remark 5 We highlight the special case when X is a Hilbert space and R(x) = ‖x‖2
X

with D(R) = X. Then DR
ξ†(x, x

†) = ‖x − x†‖2
X (cf. [28, Example 3.18]), and (A.3)

implies
‖x− x†‖2

X ≤ ‖x‖2
X − ‖x†‖2

X + ‖v‖Y ∗‖F ′(x†)(x− x†)‖Y , x ∈ X.

It was emphasized in [8, Chapter 13] that for bounded linear operators F = A

mapping between Hilbert spaces X and Y solution smoothness can always be expressed
by variational inequalities (1.5) with general index functions ϕ and a domain of validity
M = X.

For the general Banach space setting inequality (A.3) also results in a variational
inequality for bounded linear operators F = A : X → Y . Then Assumption VI is
satisfied with A = F ′(x†), β = 1, E(x, x†) = DR

ξ†(x, x
†) and ϕ(t) = ‖v‖Y ∗t, t > 0 on the

whole spaceM = X as domain of validity.

If the mapping F is nonlinear then we may use certain structure of nonlinearity
to bound ‖F ′(x†)(x − x†)‖Y in terms of ‖F (x†) − F (x)‖Y , and the validity of such
structural conditions requires additional assumptions, which we will not discuss here.
In its simplest form such condition is given as

‖F ′(x†)(x− x†)‖Y ≤ η σ(‖F (x)− F (x†)‖Y ), x ∈M, (A.4)
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for some concave index function σ and constant η > 0 on some set M ⊂ D(F )

(cf. [5]). In this case (A.3) provides us with a variational inequality on M with
β = 1, E(x, x†) = DR

ξ†(x, x
†) and ϕ(t) = η‖v‖Y ∗σ(t), t > 0.

An alternative structural condition is given in the form

‖F (x)− F (x†)− F ′(x†)(x− x†)‖Y ≤ ηDRξ†(x, x
†), x ∈M, (A.5)

again for some setM⊂ D(F ), (cf., e.g., [15, 27]). This allows us to bound

‖F ′(x†)(x− x†)‖Y ≤ ηDRξ†(x, x
†) + ‖F (x)− F (x†)‖Y , x ∈M.

Then (A.3) implies a variational inequality (1.5) under

η‖v‖Y ∗ < 1 (A.6)

with 0 < β = 1 − η‖v‖Y ∗ ≤ 1, E(x, x†) = DR
ξ†(x, x

†) and ϕ(t) = ‖v‖Y ∗t, t > 0 onM.
This occurring smallness condition (A.6) indicates that (A.5) is a weaker nonlinearity
condition compared with (A.4).

We conclude this subsection by mentioning that there is some converse result in the
sense that a variational inequality (1.5) just for ϕ(t) = c t, c > 0, implies the validity of
the benchmark source condition (A.2) (cf. [28, Proposition 3.38]).

Appendix A.2. Bregman distance as error measure: violation of the benchmark

If the assumption (A.2) is violated then we may use the method of approximate source
conditions (cf. [5, 14]) to derive variational inequalities. To this end we need additionally
that the distance function

dξ†(R) := inf{‖ξ† − ξ‖X∗ : ξ = F ′(x†)∗v, v ∈ Y ∗, ‖v‖Y ∗ ≤ R}, R > 0,

is nonincreasing and obeys the limit condition dξ†(R) → 0 as R → ∞. As mentioned
in [5] this is the case when F ′(x†)∗∗:X∗∗ → Y ∗∗ is injective. Additionally this approach
presumes that the Bregmann distance is q-coercive, i.e., that

DRξ†(x, x
†) ≥ cq ‖x− x†‖qX for all x ∈M, (A.7)

is satisfied for some exponent 2 ≤ q < ∞ and a corresponding constant cq > 0. Such
assumption is for example fulfilled if R(x) := ‖x‖qX and X is a q-convex Banach space.

Then, for every R > 0 one can find elements vR ∈ Y ∗ and uR ∈ X∗ such that

ξ† =
(
F ′(x†)

)∗
vR + uR with ‖vR‖Y ∗ = R, ‖uR‖X∗ ≤ dξ†(R) ,

and we can estimate for all R > 0 and x ∈M as

−〈ξ†, x− x†〉X∗×X = −〈
(
F ′(x†)

)∗
vR + uR, x− x†〉X∗×X

= −〈vR, F ′(x†)(x− x†)〉Y ∗×Y + 〈uR, x† − x〉X∗×X
≤ R ‖F ′(x†)(x− x†)‖Y + dξ†(R) ‖x− x†‖X .

Adding, as before, the difference R(x)−R(x†) on both sides gives

DRξ†(x, x
†) ≤ R(x)−R(x†) +R ‖F ′(x†)(x− x†)‖Y + dξ†(R) ‖x− x†‖X , x ∈M. (A.8)
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Using the q-coercivity (A.7) we see that

dξ†(R) ‖x− x†‖X ≤ c−1/q
q dξ†(R)

(
DRξ†(x, x

†)
)1/q

.

An application of Young’s inequality yields

dξ†(R) ‖x− x†‖X ≤
1

q
DRξ†(x, x

†) +
c
−q∗/q
q

q∗
(
dξ†(R)

)q∗
.

Plugging this into (A.8) we obtain (with β = 1− 1/q) that

βDRξ†(x, x
†) ≤ R(x)−R(x†) +R‖F ′(x†)(x− x†)‖Y +

c
−q∗/q
q

q∗
(
dξ†(R)

)q∗
. (A.9)

The term ‖F ′(x†)(x − x†)‖Y may be treated under structural conditions, used before
in the benchmark case. To avoid this step we confine ourselves to the linear case
F ′(x†) = A, below.

We equilibrate the second and the third term, depending of R and dξ†(R),
respectively, by means of the auxiliary continuous and strictly decreasing function

Φ(R) :=

(
dξ†(R)

)q∗
R

, R > 0 , (A.10)

which fulfills the limit conditions lim
R→0

Φ(R) = ∞ and lim
R→∞

Φ(R) = 0, thus it

has a continuous decreasing inverse Φ−1 : (0,∞) → (0,∞). By setting R :=

Φ−1
(
‖A(x− x†)‖Y

)
and introducing the index function ζ(t) :=

[
dξ†(Φ

−1(t))
]q∗

, t > 0,
we get from (A.9), with some constant K̂ > 0, a variational inequality of the form

βDRξ†(x, x
†) ≤ R(x)−R(x†) + K̂ ζ(‖A(x− x†)‖Y ), x ∈M.

Remark 6 We observe, with t = Φ(R), R > 0, that

t

ζ(t)
=

Φ(R)[
dξ†(R)

]q∗ =
1

R
→ 0 as t→ 0.

Thus the function t
ζ(t)

decreases to zero as t→ 0. In this case there is a concave majorant
index function ϕ̃ to ζ (cf. [18, Chapt. 5]) such that

β DRξ†(x, x
†) ≤ R(x)−R(x†) + ϕ(‖A(x− x†)‖Y ), x ∈M,

with the constant β = 1− 1/q > 0, and an index function ϕ which is a multiple of ϕ̃.

Appendix A.3. On a couple of variational inequalities

For nonlinear operators F and general convex penaltiesR in [2, Condition 3.3] a coupled
system of two variational inequalities

〈ξ†, x† − x〉X∗×X ≤ β1D
R
ξ†(x, x

†) + β2‖F ′(x†)(x− x†)‖Y + β3‖F (x)− F (x†)‖κY (A.11)
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and

‖F (x)− F (x†)− F ′(x†)(x− x†)‖Y
≤ γ1D

R
ξ†(x, x

†) + γ2‖F ′(x†)(x− x†)‖Y + γ3‖F (x)− F (x†)‖κY (A.12)

with constants 0 < κ ≤ 1, β1, β2, β3, γ1, γ2, γ3 ≥ 0 satisfying the relations

β1 < 1, γ2 < 1 and
β2γ1

(1− β1)(1− γ2)
< 1 (A.13)

and valid on some vicinityM of x†, containing x ∈ D satisfying the condition

‖F (x)− F (x†)‖Y ≤ K (A.14)

with some constant K > 0, has been considered. Based on that couple of variational
inequalities convergence rates for the Bregman distance of type O(δκ), 0 < κ ≤ 1, could
be shown by applying the strong discrepancy principle (4.2), where regularized solutions
always belong to the sublevel setMR(R(x†)). Hence for the discussion in [2] the system
(A.11) – (A.14) needs to hold only for M ⊆ MR(R(x†)). For such restricted domain
of validity M (see [2, Lemma 3.6]) the couple of variational inequalities is equivalent to
our variational inequality (1.5), which is in this case of the form

β DRξ†(x, x
†) ≤ R(x)−R(x†) + C ‖F (x)− F (x†)‖κY (A.15)

with some constants 0 < β ≤ 1 and C > 0, in combination with a nonlinearity condition

‖F (x)− F (x†)− F ′(x†)(x− x†)‖Y ≤ γ ‖F (x)− F (x†)‖κY (A.16)

with some constant γ > 0.
In the following we will briefly verify that the fulfillment of the coupled system

(A.11) – (A.14) acts as a sufficient condition for the variational inequality (A.15) even
ifM is not a subset ofMR(R(x†)). By adding R(x)−R(x†), subtracting β1D

R
ξ†(x, x

†)

and dividing by 1− β1 we obtain from (A.11)

DRξ†(x, x
†) ≤ R(x)−R(x†)

1− β1

+
β2

1− β1

‖F ′(x†)(x−x†)‖Y +
β3

1− β1

‖F (x)−F (x†)‖κY .(A.17)

Moreover, we have from the triangle inequality

‖F ′(x†)(x− x†)‖Y ≤ ‖F (x)− F (x†)− F ′(x†)(x− x†)‖Y + ‖F (x)− F (x†)‖Y

together with (A.12) and (A.14)

‖F ′(x†)(x− x†)‖Y ≤ γ1D
R
ξ†(x, x

†) + γ2‖F ′(x†)(x− x†)‖Y + γ4‖F (x)− F (x†)‖κY
for some constant γ4 > 0 and hence

‖F ′(x†)(x− x†)‖Y ≤
γ1

1− γ2

DRξ†(x, x
†) +

γ4

1− γ2

‖F (x)− F (x†)‖κY .

Substituting this into the estimate (A.17) yields with some constant Ĉ > 0

DRξ†(x, x
†) ≤ R(x)−R(x†)

1− β1

+
β2γ1

(1− β1)(1− γ2)
DRξ†(x, x

†) + Ĉ‖F (x)− F (x†)‖κY .

By subtracting β2γ1
(1−β1)(1−γ2)

DR
ξ†(x, x

†) and multiplying by 1 − β1 we arrive at (A.15),
where in view of (A.13) 0 < β = β2γ1

1−γ2 ≤ 1 and C = (1− β1)Ĉ > 0.
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Appendix A.4. Error under sparsity constraints

The authors in [2] also study variational inequalities under sparsity constraints, where
a frame {φλ}λ∈Λ in the Hilbert space X, and penalty functionals

Rq,w(x) :=
∑
λ∈Λ

wλ |〈φλ, x〉|q, 1 ≤ q ≤ 2,

with weights {wλ}λ∈Λ are considered. We confine our analysis to a linear forward
operators A : X → Y with values in the Hilbert space Y . As shown in Appendix
A.3, the coupled system in [2, Condition 3.3] yields a variational inequality

β̃D
Rq,w

ξ†
(x, x†) ≤ Rq,w(x)−Rq,w(x†) + C1‖A(x− x†)‖κY , x ∈ X, (A.18)

with 0 < κ ≤ 1, 0 < β̃ ≤ 1, C1 > 0, and for the Bregmann distanceDRq,w

ξ†
(x, x†) as error

measure. We shall sketch that the inequality (A.18) turns to a variational inequality for
the error measure E(x, x†) = ‖x− x†‖qX under sparsity. Suppose that the solution x† is
sparse, i.e., it has coefficients within a finite subset J of the index set Λ, and that the
restriction A|U of the operator A to the subspace U = span {ϕλ, λ ∈ J} is injective (see
[2, Condition 4.1] for details). Then, based on techniques from [13], the authors in [2,
Lemma 4.2] assert that there are constants µ1, µ2 > 0 such that we have

Rq,w(x− x†) ≤ µ1D
ξ
Rq,w

(x, x†) + µ2‖A(x− x†)‖qY , x ∈ X. (A.19)

Combining the inequalities (A.18)–(A.19), we deduce with 0 < β := min
(

1, β̃/µ1

)
≤ 1

that

βRq,w(x− x†) ≤ Rq,w(x)−Rq,w(x†) + C2‖A(x− x†)‖κY + C3‖A(x− x†)‖qY
for some positive constants C2, C3. In a vicinity of x†, i.e., if we have ‖A(x−x†)‖Y ≤ K

for some K > 0, this yields

βRq,w(x− x†) ≤ Rq,w(x)−Rq,w(x†) + C ‖A(x− x†)‖κY , (A.20)

for some C > 0 and all x in some neighborhoodM of x†. By virtue of [2, Lemma 2.3],
which bounds as ‖x− x†‖qX ≤ µ3Rq,w(x− x†), we finally find the variational inequality

β̄‖x− x†‖qX ≤ Rq,w(x)−Rq,w(x†) + C ‖A(x− x†)‖κY ,

and x as above. For extensions from monomials of ‖A(x− x†)‖Y to more general index
functions we refer to [6].
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