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Abstract

It is an interesting question for the analysis of linear ill-posed operator equations
Ax = y and it seems to be of some importance for regularization theory whether
a non-compact linear operator with non-closed range applied to a compact linear
operator mapping between Hilbert spaces can alter the degree of ill-posedness de-
termined by the singular value decay rate σn(A) → 0 as n → ∞ of the compact
operator A. For giving some more answer to that question we work in the space
L2(0, 1) and focus on non-compact multiplication operators M applied to the in-
tegration operator J such that A = M ◦ J determines the operator governing the
equation. Compositions of this type occur as linearizations of different nonlinear
inverse problems in natural sciences, engineering, and finance. Specifically, we are
interested in the case of multiplication operators M generated by a multiplier func-
tion m having an essential zero in [0, 1] In particular, in a toy problem of inverse
option pricing multipliers m with exponential-type zeros occur. By analyzing the
strength of source conditions for obtaining convergence rates in regularization it was
conjectured that the ill-posedness situation tends to the worse in the exponential
case compared to the case of power-type zeros in m, for which we have shown in [9]
that the degree of ill-posedness is uniformly one. Now we are going to extend this
result to some family of exponential weight functions m and prove that the asymp-
totics σn(A) ³ n−1 also holds for that family. In this context, we emphasize that
for integration operators with outer weights the use of the operator AA∗ is more ap-
propriate for the analysis of eigenvalue problems and the corresponding asymptotics
of singular values than the former use of A∗A in [9].
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1 Introduction

In this paper, for a specific situation, we are going to analyze the degree of ill-posedness
of linear ill-posed operator equations

Ax = y (x ∈ X, y ∈ Y ) (1.1)

for injective, non-degenerating, compact linear operators A : X → Y mapping between
infinite dimensional separable Hilbert spaces X and Y with norms ‖ · ‖. If preferably the
smoothing properties of the operator A governing the equation (1.1) are under considera-
tion, then the decay rate of the positive, non-increasing sequence {σn(A)}∞n=1 of singular
values of A tending to zero as n→∞ measures the strength of ill-posedness of (1.1) (see,
e.g., Kress [13, p.235], Engl, Hanke, Neubauer [3, p.40] and Hofmann [7, p.31]).
This strength can be expressed by a single number µ = µ(A) ∈ (0,∞) called the degree
of ill-posedness of equation (1.1) if

σn(A) ³ n−µ

is valid1. This a rather specific situation for A, but it plays some important role in the
literature (see, e.g., Louis [15] and Mathé, Pereverzev [16]). Wide families of forward
operators A in numerous inverse problems of form (1.1) have single-valued finite degrees
µ of ill-posedness, for example the problem of finding the µ-th fractional derivative of a
function y. With increasing µ the numerical difficulties occurring in the corresponding
differentiation process systematically grow.

If, on the other hand, the linearization of a nonlinear inverse problem

F (x) = y (x ∈ D(F ) ⊆ X, y ∈ Y ) (1.2)

with continuous nonlinear forward operator F : D(F ) ⊆ X → Y yields a linear operator
equation (1.1) with the Fréchet derivative A = F ′(x0) at an inner solution point x0 ∈ D(F )
with a single-valued degree µ = µ(F ′(x0)) of ill-posedness, then µ can be interpreted here
as local degree of ill-posedness for evaluating the local stability behavior of the nonlinear
operator equation (1.2) at x0. As an important class of nonlinear ill-posed problems
(1.2) we should mention the class of equations with compact nonlinear operators F (see
[3, Chapt. 10]) leading to compact linear operators A = F ′(x0) in the linearization (see
Colton, Kress [2, Theorem 4.19]).

It is an interesting question for the analysis of linear ill-posed operator equations
whether a non-compact, bounded linear operator with non-closed range applied to a com-
pact linear operator mapping between Hilbert spaces can alter the degree of ill-posedness.
We asked this question in the recent paper [9] and gave some partial answer for the Hilbert
space X = Y = L2(0, 1) and for the composition A = M ◦ J of a multiplication operator
M generated by a weight (multiplier) function m with essential zeros in [0, 1] and the
integration operator

[J x](t) =

∫ t

0

x(s)ds (0 ≤ t ≤ 1). (1.3)

1As usual we use the notation an ³ bn for sequences of positive numbers an and bn satisfying inequal-
ities c1 ≤ an/bn ≤ c2 for positive constants c1 and c2 and all n ∈ N. If moreover lim

n→∞
an/bn = 1 we write

an ∼ bn. If the quotients an/bn are only limited from above by a constant, then we write an = O(bn).
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Compositions of this type occur as linearizations of different nonlinear inverse problems
in natural sciences, engineering and finance. For more details we refer to the paper [8]
which was communicated by Rainer Kress. Precisely, for A from

[Ax](t) = m(t)

∫ t

0

x(s)ds a.e. on [0, 1] (1.4)

and weight functions m of power-type m(t) = tα with α > −1 we proved that the
well-known degree µ(J) = 1 of ill-posedness carries over to the composition in the form
µ(M ◦ J) = 1. We will recall this result in detail as a proposition in Section 2.

Now we learned from Klann, Maaß, Ramlau that such a resistance of the degree
of ill-posedness of a compact operator to additional influence factors can be advantageous,
since they developed a new two-step regularization approach in [14], for which convergence
rates results require a fixed single-valued degree of ill-posedness. So it seems to be of some
interest to extend the results of [9] to further families of composite operators. We will do
this in the following for a family of exponential weight functions m(t) = 1

t2
exp

(

− c
t

)

with
c > 0 in (1.4). The decay rate of m(t) → 0 as t→ 0 for exponential weights is much faster
than in the power-case. Nevertheless, we can formulate a theorem on the non-altering
degree of ill-posedness for that exponential family in Section 4 based on an equivalence
result proven in Section 3. In this context, we emphasize that for integration operators
with outer weights the use of the operator AA∗ is more appropriate for the analysis of
eigenvalue problems and the corresponding asymptotics of singular values than the former
use of A∗A in [9].

Example 1.1 Another specific reason for studying exponential multipliers m is due to
the paper [6] of Hein, Hofmann, where as an inverse toy problem in finance the deter-
mination of a purely time-dependent volatility function x(t) (t ∈ [0, 1]) from maturity-
dependent option prices y(t) on the same interval can be written in the form (1.2) with
X = Y = L2(0, 1). In this example, the nonlinear forward operator F = N ◦ J with
domain D(F ) = {x ∈ L2(0, 1) : x(t) ≥ c > 0 a.e.} mapping in L2(0, 1) is a composition of
the integration operator J and a nonlinear Nemytskii operator N determined by a smooth
generator function k(t, u) with (t, u) ∈ [0, 1]× [c,∞) of the form

[F x](t) = k(t, [J x](t)) (0 ≤ t ≤ 1). (1.5)

The function k(t, u) and its partial derivative ku(t, u) can be derived in an explicit manner
from the structure of the well-known Black-Scholes formula generalized to time-varying
volatlities. For an inner point x0 ∈ D(F ) the Fréchet derivative of F then has the form

[F ′(x0)h](t) = m(t) [J h]](t) with m(t) = ku(t, [J x0](t)) (0 < t ≤ 1) (1.6)

With the exception of the case of at-the-money options it could be shown in [6] that the
weight function m(t) in (1.6) has an essential zero at t = 0. This zero is of exponential
type. Precisely, it satisfies the inequalities

C
4
√
t

exp
(

−c
t

)

≤ m(t) ≤ C√
t

exp

(

− c√
t

)

(0 < t ≤ 1) (1.7)

for some positive constants c, c, C and C.
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2 A review of well-known results and conjectures for

the integration operator with weights

We begin this section with a sufficient condition for the compactness of the operator
A = M ◦ J defined in (1.4). In this context, we note that we are focused throughout the
paper on injective operators M and A which occur if and only if m(t) 6= 0 a.e. in [0, 1].

Lemma 2.1 The linear operator A : L2(0, 1) → L2(0, 1) defined by formula (1.4) is
compact if m is a measurable function on [0, 1] satisfying the condition.

1
∫

0

tm2(t) dt <∞ . (2.1)

Proof: In view of (2.1) the kernel

K(s, t) =

{

m(t) for 0 ≤ t ≤ s ≤ 1
0 for 0 ≤ s < t ≤ 1

of the operator A (considered a linear Fredholm integral operator) has a finite double-norm

1
∫

0

1
∫

0

K2(s, t) dt ds =

1
∫

0

tm2(t) dt <∞,

i.e., K is a Hilbert-Schmidt kernel. This implies the compactness of A (see, e.g., [20,
Chapter 11, §2]).

Remark 2.2 Condition (2.1) is fulfilled in the two cases

(i) m ∈ L2(0, 1) and (ii) m(t) = tα (α > −1) ,

which are of main importance in our study.

By using the explicit structure of the integral operator A∗A and motivated by the
paper [19] of Vu Kim Tuan, Gorenflo we have derived in [9, Theorem 2.1] a result on
the singular value asymptotics of A for all relevant power functions, which is recovered
here in the following proposition.

Proposition 2.3 For the singular values of a compact linear operator A : L2(0, 1) →
L2(0, 1) defined by the formula (1.4), where the multiplier function m is of power-type

m(t) = tα (0 < t ≤ 1)

with some exponent α > −1, we have

σn(A) ∼ 1

(α + 1)πn
=

1

πn





1
∫

0

m(t)dt



 .
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Moreover, we had conjectured in [9] that the formula

σn(A) ∼ 1

πn





1
∫

0

m(t)dt



 (2.2)

implying a constant degree of ill-posedness µ(A) = 1 for A from (1.4) remains valid for
the whole family of weights

0 < m(t) ≤ C tα a.e. on [0, 1],

where α > −1 and C > 0. This would involve the exponential case (1.7) arising in the
finance application. The formula (2.2) could be fully confirmed by a series of numerical
experiments of Freitag reported in [5], which also included exponential weight functions
m.

On the other hand, source conditions

x0 = A∗v (v ∈ Y ) (2.3)

yielding convergence rates of order

‖xβ − x0‖ = O(
√

β)

as β → 0 for the method of Tikhonov regularization with

xβ = (A∗A+ βI)−1A∗y (y = Ax0)

and other linear regularization methods also measure the strength of ill-posedness of an
operator equation (1.1). So we can compare the strength of condition (2.3) for the case
A = J with the simple integration operator J defined by formula (1.3) written as

x0(t) = [J∗ v](t) =

1
∫

t

v(s) ds (0 ≤ t ≤ 1; v ∈ L2(0, 1)) (2.4)

and the strength of condition (2.3) for the case A = M ◦ J with the composite integral
operator from (1.4) with weights m having zeros. Provided that weight functions m occur
we can write (2.3) as

x0(t) = [J∗M∗ v](s) = [J∗M v](t) =

1
∫

t

m(s) v(s) ds (0 ≤ t ≤ 1; v ∈ L2(0, 1)). (2.5)

If we assume that the multiplier function m has an essential zero only at t = 0, then the
condition (2.4) that implies

x0 ∈ H1(0, 1) with x0(1) = 0 (2.6)

is weaker than the condition

x′0
m
∈ L2(0, 1) with x0(1) = 0 (2.7)
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obtained from (2.5) by differentiation, since the new factor 1
m

occurring in (2.7) in not
in L∞(0, 1). Note that the pairs of conditions (2.4) and (2.6) on the one hand and (2.5)
(2.7) on the other hand are even equivalent.

Consequently in order to satisfy the source condition (2.5), the generalized derivative
of the function x0 has to compensate in some sense the pole of 1

m
at t = 0. The level of

compensation grows when the decay rate of m(t) → 0 as t → 0 gets accelerated. Hence,
the strength of the requirement (2.5) imposed on x0 grows for the families of weights
m with exponential zeros compared to weights with power-type zeros. Nevertheless, the
degree of ill-posedness is not altered as we will see below.

3 An equivalence lemma and its consequences

We note that the singular values σn(A) of a compact operator A are the square roots
of the eigenvalues of both positive definite operators A∗A and AA∗. Now we consider A
from (1.4), where the corresponding adjoint operator A∗ of A can be explicitly expressed
by the formula

[A∗y](s) =

1
∫

s

m(t) y(t) dt (0 ≤ s ≤ 1) . (3.1)

In detail we consider for measurable m satisfying (2.1), where m(t) 6= 0 a.e. on [0, 1], the
explicit structure

[AA∗x](t) = m(t)

t
∫

0





1
∫

τ

m(s)x(s) ds



 dτ = m(t)

t
∫

0





t
∫

τ

m(s)x(s)ds+

1
∫

t

m(s)x(s)ds



 dτ

= m(t)





t
∫

0





t
∫

τ

m(s)x(s)ds



 dτ + t

1
∫

t

m(s)x(s) ds





= m(t)





t
∫

0

sm(s)x(s) ds+ t

1
∫

t

m(s)x(s) ds





following from the expressions (1.4) for Ax, (3.1) for A∗y, and by considering the fact
that interchanging the order of integration yields the identity

t
∫

0





t
∫

τ

ψ(s) ds



 dτ =

t
∫

0

s ψ(s) ds

for any integrable function ψ(s) (0 ≤ s ≤ t).

We search for reciprocals λ > 0 of the eigenvalues of AA∗ and corresponding non-zero
eigenfunctions x ∈ L2(0, 1) satisfying the equation λAA∗x = x. To do so we have to solve
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the integral equation

x(t) = λm(t)





t
∫

0

sm(s)x(s) ds+ t

1
∫

t

m(s)x(s) ds



 . (3.2)

Putting u(t) = x(t)/m(t) from (3.2) we have the relation

u(t) = λ





t
∫

0

sm2(s)u(s) ds+ t

1
∫

t

m2(s)u(s) ds



 . (3.3)

Differentiating (3.3) yields

u′(t) = λ

1
∫

t

m2(s)u(s) ds , (3.4)

and by differentiating (3.3) a second time we obtain the second order differential equation

u′′(t) + λm2(t)u(t) = 0 (0 < t < 1) . (3.5)

Furthermore, from (3.3) and (3.4) the boundary conditions

u(0) = u′(1) = 0 (3.6)

can be derived. Conversely, integrating (3.5) two times and observing (3.6) we come back
to (3.2). So, we have proven the following lemma.

Lemma 3.1 The integral equation (3.2) and the eigenvalue problem (3.5) – (3.6) are
equivalent with respect to the substitution x = mu.

Remark 3.2 In accordance with the boundary conditions (3.6) we are looking for so-
lutions u ∈ C[0, 1] of problem (3.5) – (3.6). In case (i) m ∈ L2(0, 1) then it follows
x = mu ∈ L2(0, 1). In case (ii) m(t) = tα (α > −1) the functions u(t) behave like t as
t → 0 (see Example 3.3 below) so that the functions x(t) behave like t1+α as t → 0 and
we obtain x ∈ C[0, 1]. In general, by assumption (2.1), we have x ∈ L2(0, 1) if u ∈ C[0, 1]
with u(t) = O(t1/2) as t → 0. We also mention that the condition m(t) 6= 0 a.e. in [0, 1]
can be omitted if we are only interested in the construction of x = mu via the solutions
u of (3.5) – (3.6).

Example 3.3 First we apply Lemma 3.1 to power functions

m(t) = tα (0 < t ≤ 1) with exponents α > −1 (3.7)

as multiplier functions in (1.4). In that case we can rewrite the differential equation (3.5)
by multiplying t2 on both sides in the form

t2 u′′(t) + λ t2(α+1) u(t) = 0 . (3.8)
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This is useful, because the equation (3.8) has an explicit general solution (cf. Erdélyi

[4, p.13, formula (62)]). Setting σ := 1/
√
λ this solution can be verified as

u(t) = t1/2Z%

(

1

σ(α+ 1)
tα+1

)

= t1/2
[

C1J%

(

1

σ(α + 1)
tα+1

)

+ C2J−%

(

1

σ(α + 1)
tα+1

)]

,

where Z% denotes the general cylinder function and J%, J−% are the Bessel functions of first
kind and order % = 1

2(α+1)
> 0. For simplicity, we have taken % 6= 1, 2... . The boundary

condition u(0) = 0 leads to C2 = 0 and the other boundary condition u′(1) = 0 yields the
eigenvalue equation

%J%(z) + zJ ′%(z) = 0 with z =
1

σ(α+ 1)
,

which by the relation %J% + zJ ′% = zJ%−1 (cf. [4, p.11, formula (54)]) is equivalent to the
equation

J−ν

(

1

σ(α + 1)

)

= 0 with ν =
2α + 1

2α + 2
. (3.9)

Equation (3.9) was also obtained in [9] by working with the operator A∗A and implies the
asymptotics (2.2) for the singular values of A in the case of weights m from (3.7) (cf. [9,
Theorem 2.1]).2

Example 3.4 Our main interest in this paper is focused on the case of exponential func-
tions m, which was missing up to now. So let us consider as a specific family of this type
the multiplier functions

m(t) =
1

t2
exp

(

−c
t

)

(0 < t ≤ 1) with constants c > 0 (3.10)

and taking into account Lemma 3.1 the associated differential equation

t4 u′′(t) + λ exp

(

−2c

t

)

u(t) = 0 . (3.11)

By substituting y := 2c
t

in (3.11), for the function v(y) = u(t) we then have the
differential equation

v′′(y) +
2

y
v′(y) + η exp(−y) v(y) = 0 with η =

λ

4 c2
, (3.12)

which has the general solution (cf. Kamke [12, p.442, formula (23)])

v(y) =
1

y
Z0(2

√
η e−y/2) =

C1

y
J0(2

√
η e−y/2) +

C2

y
Y0(2

√
η e−y/2) (2c < y <∞) , (3.13)

2We take the opportunity to correct a typo in the verfication of the asymptotic relation (28) in [9,
p.431]. In the second term of the asymptotic formula for J ′

−ν
(t) as t → 0 above formula (28) of [9] the

factor (1− 2

ν
) is missing.

8



where Z0, J0, Y0 denote the general, first kind and second kind Bessel function of zero
order, respectively. The boundary condition u(0) = 0 means v(∞) = lim

y→∞
v(y) = 0. As

y →∞ it holds e−y/2 → 0, and therefore

v(y) ∼ C1

y
+
C2

y

2

π
ln[
√
η e−y/2] ∼ −C2

π
as y →∞ ,

since J0(z) ∼ 1 and Y0(z) ∼ 2
π

ln( z
2
) as z → 0 (cf. [4, p.8, formula (33)]). This implies

C2 = 0. Further, taking C1 = 1 we have

v(y) =
1

y
J0(2

√
η e−y/2)

and

v′(y) =

√
η

y
e−y/2 J1(2

√
η e−y/2)− 1

y2
J0(2

√
η e−y/2)

since J ′0(z) = −J1(z). The boundary condition u′(1) = 0 is equivalent to the condition
v′(2c) = 0, i.e.,

c z J1(z)− J0(z) = 0 with z = 2
√
η e−c =

e−c

c

1

σ
. (3.14)

For σ → 0 we have z →∞ and (cf. [4, p.85, formula (3)])

J0(z) =

(

1

2
πz

)−1/2

cos
(

z − π

4

)

+ O
(

z−3/2
)

as z →∞

and

J1(z) =

(

1

2
πz

)−1/2 [

cos

(

z − 3

4
π

)

− 3

8z
sin

(

z − 3

4
π

)]

+ O
(

z−5/2
)

as z →∞.

Hence, as n→∞ the eigenvalue equation (3.14) is asymptotically equal to the equation
J1(zn) = 0 which yields the asymptotic relation (cf. Jahnke-Ende [10, p.146])

zn =
e−c

c

1

σn

∼ πn ,

and consequently the result

σn(A) ∼ S

πn
with S =

∫ 1

0

m(t)dt =
1

c
e−c (3.15)

for the exponential family of weights m from (3.10), which again is in correspondence
with the conjectured formula (2.2).

Based on Lemma 3.1 the conjecture (2.2) for general m follows from results by Kac

and Krein [11] (cf. also [17]) on weighted Sturm-Liouville problems for the string applied
to problem (3.5) – (3.6). In the examples above, we have shown this explicitly for families
of power-type and exponential-type functions, respectively.
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4 The main theorem

Now we are ready to formulate the main theorem of this paper that extends, based on both
examples of Section 3, the Corollary 2.2 of [9] concerning wider classes of weight functions
m in (1.4) implying σn(A) ³ n−1 and hence a non-changing degree of ill-posedness of
corresponding equations (1.1).

Theorem 4.1 For the singular values of a compact linear operator A : L2(0, 1) → L2(0, 1)
defined by the formulae (1.4), where the multiplier function m satisfies for some exponent
α > −1 and for some positive constants c, C, and C the inequalities

C

t2
exp

(

−c
t

)

≤ m(t) ≤ C tα a.e. on [0, 1] , (4.1)

we have

σn(A) ³ 1

n
. (4.2)

Proof: For Ax from (1.4),

[Adown x](t) =
C

t2
exp

(

−c
t

)

∫ t

0

x(s)ds a.e. on [0, 1]

and

[Aup x](t) = C tα
∫ t

0

x(s)ds a.e. on [0, 1]

from (4.1) we directly obtain

‖Adown x‖ ≤ ‖Ax‖ ≤ ‖Aup x‖ for all x ∈ L2(0, 1). (4.3)

Now the Poincaré-Fischer extremum principle (see, e.g., [1, Lemma 4.18]) yields the rep-
resentation

σn(A) = max
Xn⊂L2(0,1)

min
x∈Xn, x6=0

‖Ax‖
‖x‖

for the n-th singular value of the compact operator A, where Xn denotes an arbitrary
n-dimensional subspace of the Hilbert space L2(0, 1). Both the existence of a minimum
of ‖Ax‖/‖x‖ over all non-zero elements from Xn and the existence of a maximum of

min
x∈Xn, x6=0

‖Ax‖
‖x‖ over all finite dimensional subspaces Xn are shown in the context of the

proof of this principle. As a consequence we have for compact operators A and B mapping
in L2(0, 1) which satisfy the inequality ‖Ax‖ ≤ ‖Bx‖ for all x ∈ L2(0, 1) that

min
x∈Xn, x6=0

‖Ax‖
‖x‖ ≤ min

x∈Xn, x6=0

‖B x‖
‖x‖ and σn(A) ≤ σn(B).

This fact was already mentioned in [7, Lemma 2.46]. Then the results σn(Aup) ³ 1
n

from Example 3.3 and σn(Adown) ³ 1
n

from Example 3.4 together with (4.3) prove the
assertion of the theorem.
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Finally we note that Theorem 4.1 also implies µ(A) = 1 for the situation of Exam-
ple 1.1. Precisely, with m from (1.7) the hypothesis (4.1) can be verified for appropriate

constants. On the one hand, the upper bound C√
t

exp
(

− c√
t

)

(0 < t ≤ 1) in (1.7) can be

extended to a continuous function on [0, 1] by setting its function value zero for t = 0.
Hence m(t) ≤ Ĉ (0 < t ≤ 1) for some constant 0 < Ĉ < ∞. On the other hand, given
positive constants C and c there exist other positive constants C and c such that we can
estimate the lower bound of (1.7) as

C

t2
exp

(

−c
t

)

≤ C
4
√
t

exp
(

−c
t

)

≤ m(t) (0 < t ≤ 1)

with some c > c, since the exponential decay is always faster than a power-type decay of
arbitrary order.
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