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Abstract

The paper is devoted to the analysis of linear ill-posed operator equations Ax = y

with solution x0 in a Hilbert space setting. In an introductory part, we recall

assertions on convergence rates based on general source conditions for wide classes of

linear regularization methods. The source conditions are formulated by using index

functions. Error estimates for the regularization methods are developed by exploiting

the concept of Mathé and Pereverzev that assumes the qualification of such a method

to be an index function. In the main part of the paper we show that convergence

rates can also be obtained based on distance functions d(R) depending on radius

R > 0 and expressing for x0 the violation of a benchmark source condition. This

paper is focused on the moderate source condition x0 = A∗v. The case of distance

functions with power type decay rates d(R) = O
(
R
− η

1−η

)
as R → ∞ for exponents

0 < η < 1 is especially discussed. For the integration operator in L2(0, 1) aimed at

finding the antiderivative of a square-integrable function the distance function can

be verified in a rather explicit way by using the Lagrange multiplier method and by

solving the occurring Fredholm integral equations of the second kind. The developed

theory is illustrated by an example, where the optimal decay order of d(R) → 0 for

some specific solution x0 can be derived directly from explicit solutions of associated

integral equations.
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1 Introduction

In recent papers the first named author and coauthors have introduced the concept of
approximate source conditions for obtaining convergence rates in regularization of linear

ill-posed operator equations

Ax = y (x ∈ X, y ∈ Y ) . (1.1)

Here, X and Y are infinite dimensional separable Hilbert spaces, where the symbol ‖ · ‖
denotes the generic norms in both spaces as well as associated operator norms, and 〈·, ·〉
designates the inner product. Moreover, the bounded linear operator A : X → Y is
assumed to be injective with nonclosed range R(A) and hence the inverse operator A−1 :
R(A) ⊂ Y → X is unbounded. Then finding the uniquely determined solution x0 ∈ X
of (1.1) for y ∈ R(A) in a stable manner requires regularization methods, for example
on the basis of linear regularization schemes (see, e.g., [24], [5, Chapters 3 and 4], [1,
Chapter 2]), whenever only noisy data yδ ∈ Y with ‖yδ − y‖ ≤ δ are given instead of y.

The analysis of convergence and convergence rates for regularized solutions (see, e.g.,
[5], [14], [16], [17], [19], [20] and [23]) gives some essential insight into the interplay
of smoothing properties of the forward operator A characterized by its degree of ill-
posedness (cf., e.g., [11], [12] and [6]) and the relative smoothness of the solution x0

with respect to A expressed by appropriate source conditions. The initial version of
the concept of approximate source conditions (see [8] and [13]) was formulated for the
Tikhonov regularization and motivated by Baumeister’s theorem (see [2, Theorem 6.8])
based on the distance function

d(R) := inf {‖x0 − A∗ v‖ : v ∈ Y, ‖v‖ ≤ R} (R > 0) (1.2)

depending on a radius R. This distance function measures for the solution element x0 the
violation of the moderate source condition

x0 = A∗ v (v ∈ Y ) (1.3)

In subsequent papers the concept was extended to general linear regularization methods
(see [10]) and to distance functions

dψ(R) := inf {‖x0 − ψ(A∗A)w‖ : w ∈ X, ‖w‖ ≤ R} (R > 0) (1.4)

(see [9], also [4]) with general benchmark functions ψ : (0, ‖A∗A‖]→ (0,∞).
Such an approach, however, is only applicable to practical situations if the occur-

ring distance functions or at least appropriate majorants can be verified explicitly. Ex-
plicit majorant functions could be constructed in [3], [10] and [13] whenever range inclu-

sions R(%(G)) ⊂ R((A∗A) 1
2 ) or equvialent link conditions between A and an operator

G : X → X are supposed, where x0 = Gw with some element w ∈ X expresses the so-
lution smoothness. Moreover, for specific solutions x0 and for noncompact multiplication
operators A :=M defined as

[Mx](t) := m(t)x(t) (0 ≤ t ≤ 1)
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mapping in X = Y = L2(0, 1) close upper bounds for the distance function d(R) were
derived in [8, §3]. The corresponding operator equations (1.1) for those multiplication
operators are ill-posed of type I in the sense of Nashed (see [21]).

The present paper, however, is going to complement the analysis with an example
where distance functions (1.2) can be verified explicitly and A is a compact linear integral
operator, hence (1.1) is ill-posed of type II in Nashed’s sense. More precisely, we will
consider A := J , where J mapping in X = Y = L2(0, 1) is the simple integration operator

[J x](s) :=

s∫

0

x(t) dt (0 ≤ s ≤ 1) . (1.5)

with a well-known singular system {σn;un; vn}∞n=1, where the decreasing sequence

σn =
1

π
(
n− 1

2

) ∼ 1

π n
(n = 1, 2, ...) (1.6)

describes the singular values and

un(t) =
√
2 cos

((
n− 1

2

)
πt

)
, vn(t) =

√
2 sin

((
n− 1

2

)
πt

)
(0 ≤ t ≤ 1) (1.7)

the corresponding eigenfunctions satisfying the equations J un = σn vn, J
∗ vn = σn un

(n = 1, 2, ...).

On the one hand, we derive a close majorant for the distance function d(R) in case of
the Volterra integral equation of the first kind Ax = y with A := J , but on the other hand
we also show that finding such a function can be realized by verifying families of solutions
to Fredholm integral equations of the second kind with one scalar parameter and solving
associated eigenvalue problems. By the authors’ opinion the formulated cross-connections
between first and second kind integral equations can be interesting for the understanding
of the inner structure of such problems.

The paper is organized as follows. In Section 2 we recall for linear ill-posed operator
equations (1.1) with solution x0 in the Hilbert space setting assertions on convergence
rates based on general source conditions for wide classes of linear regularization methods.
The source conditions are formulated by using index functions. Error estimates for the
regularization methods are developed by exploiting the concept of Mathé and Pereverzev
that assumes the qualification of such a method to be an index function. In Section 3
we show that convergence rates can also be obtained based on distance functions d(R)
depending on radius R > 0 and expressing for x0 the violation of a benchmark source
condition. This paper is focused on the moderate source condition x0 = A∗v. Section 4

discusses the case of distance functions with power type decay rates d(R) = O
(
R−

η

1−η

)
as

R→∞ for exponents 0 < η < 1. For the integration operator J mapping in L2(0, 1) the
distance function can be verified in a rather explicit way by using the Lagrange multiplier
method and by solving the occurring Fredholm integral equations of the second kind. This
is presented in detail in Section 5. Section 6 completes the paper with an example, where
the optimal decay order of d(R)→ 0 for some specific solution x0 can be derived directly
from the theory presented in Section 5 and from an explicit solution of the associated
integral equation.
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2 Source conditions and convergence rates for general

linear regularization methods

Throughout this paper, we will focus on general linear regularization methods for the
stable approximate solution of equation (1.1). Every such method is generated by a
piecewise continuous function

gα(t) (0 < t ≤ a := ‖A∗A‖, 0 < α ≤ α ≤ a) .

In this context, we distinguish regularized solutions

xα = gα (A
∗A)A∗ y

in the case of noise-free data and

xδα = gα (A
∗A)A∗yδ

in the case of noisy data. For fixed A and x0 the regularization error of the noise-free case
as a function f(α) of the regularization parameter α > 0 can be written as

f(α) := ‖xα − x0‖ = ‖(gα(A∗A)A∗A− I)x0‖ = ‖rα(A∗A)x0‖ , (2.1)

where rα(t) := 1−t gα(t) (0 < t ≤ a) is the residual function of the regularization method.
As obvious in regularization theory (cf. [10]) we pose the following standing assumption:

Assumption 2.1 There exist two constants C1, C2 > 0 such that for all 0 < t ≤ a

(i) lim
α→0

rα(t) = 0 ,

(ii) |rα(t)| ≤ C1 (0 < α ≤ α) ;

(iii)
√
t |gα(t)| ≤

C2√
α

(0 < α ≤ α) .

Example 2.2 The most prominent regularization method is classical Tikhonov regular-
ization with generator function gα(t) = 1/(t+α) and residual function rα(t) = α/(t+α).
This method satisfies Assumption 2.1 with C1 = 1 and C2 = 1/2.

The requirements (i) and (ii) of Assumption 2.1 ensure based on the noise-free error
formula (2.1) the convergence f(α) → 0 as α → 0, but this convergence depends on
‘smoothness’ properties of x0 and can be arbitrarily slow. Taking into account the noise
level δ > 0 the total error of regularization can be estimated by the triangle inequality in
the form

‖xδα − x0‖ ≤ ‖xα − x0‖+ ‖xδα − xα‖
and by the requirement (iii) of Assumption 2.1 as

‖xδα − x0‖ ≤ f(α) +
C2 δ√
α

(0 < α ≤ α) . (2.2)

Index functions (cf. [7], [16]) play an important role in our theory.
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Definition 2.3 We call ψ(t) (0 < t ≤ t) an index function if this function is continuous
and strictly increasing with limit condition lim

t→0
ψ(t) = 0.

To obtain convergence rates for the regularization method gα source conditions

x0 = ϕ(A∗A)w (w ∈ X) (2.3)

with index functions ϕ(t) (0 ≤ t ≤ a) have to be used. Based on (2.3) we then have from
spectral theory

f(α) = ‖rα(A∗A)ϕ(A∗A)w‖ ≤
(
sup

0<t≤a
|rα(t)|ϕ(t)

)
‖w‖ . (2.4)

This can be estimated further from above if we follow the ideas of Mathé and Pereverzev
(see [15] and [16]) to consider the qualification of a regularization method to be an index
function.

Definition 2.4 An index function ψ(t) (0 < t ≤ a) is called a qualification with constant
C0 ∈ [1,∞) of the regularization method gα if

sup
0<t≤a

|rα(t)|ψ(t) ≤ C0 ψ(α) (0 < α ≤ α) .

Then from formula (2.4) we immediately obtain the following proposition.

Proposition 2.5 Let x0 satisfy the source condition (2.3) and let the index function ϕ
be a qualification with constant C0 ∈ [1,∞) of the regularization method gα. Then

f(α) ≤ C0 ϕ(α) ‖w‖ (0 < α ≤ α) (2.5)

and hence

‖xδα − x0‖ ≤ C0 ϕ(α) ‖w‖+
C2 δ√
α

(0 < α ≤ α) . (2.6)

As is well-known (see [16]) by balancing the two terms in the bound of (2.6) for sufficiently
small δ > 0 we find a constant K > 0 such that

‖xδα(δ) − x0‖ ≤ K ϕ(Θ−1(δ)) (0 < δ ≤ δ) , (2.7)

where with ϕ also
Θ(α) :=

√
αϕ(α) (0 < α ≤ α)

is an index function and the regularization parameter is chosen a priori as α(δ) := Θ−1(δ).

In particular for the Tikhonov regularization from the literature (see, e.g., [18] and
[3]) we get a variety of sufficient conditions that characterize qualifications and therefore
ensure estimates (2.6) and (2.7).

Proposition 2.6 Let ψ(t) (0 < t ≤ a) be an index function. If (a) ψ(t)/t is monoton-
ically decreasing on (0, a], or (b) ψ(t) is concave on [0, a], then ϕ is a qualification with
constant C0 = 1 of Tikhonov regularization. If there exists a real number t̂ ∈ (0, a) such
that (c) ψ(t)/t is monotonically decreasing on (0, t̂ ] or (d) ψ(t) is concave on [0, t̂ ], then
the same is true, but with the constant C0 = ψ(a)/ψ(t̂ ).
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Note that any function ψ(t) = t
ν
2 with exponent 0 < ν ≤ 2 is concave and hence a

qualification of Tikhonov’s method (see Example 2.2) with constant C0 = 1.

Remark 2.7 In case that a source condition (2.3) is valid with

ϕ(t) =
√
t (0 < t ≤ a) , (2.8)

we can rewrite it as (1.3), because of R(A∗) = R((A∗A) 1
2 ). Provided that (2.8) is a

qualification with constant C0 for the regularization method gα the error estimates (2.5),
(2.6) and (2.7) in that case attain the form

f(α) ≤ C0

√
α ‖v‖ (0 < α ≤ α) , (2.9)

‖xδα − x0‖ ≤ C0

√
α ‖v‖+ C2 δ√

α
(0 < α ≤ α) ,

and
‖xδα(δ) − x0‖ ≤ K

√
δ (0 < δ ≤ δ)

for the a priori choice α(δ) ∼ δ.

3 Distance functions yielding convergence rates

If the solution x0 ∈ X of the ill-posed operator equation (1.1) is not smooth enough
to satisfy the moderate source condition (1.3) (or in more generality a source condition
x0 = ψ(A∗A)w (w ∈ X) with some benchmark index function ψ), we can suggest an
alternative approach for finding convergence rates for the regularization method generated
by gα. This approach exploits the fact that x0 satisfies the considered source condition
at least in an approximate manner and uses the distance function d(R) from (1.2) (or
more generally dψ(R) from (1.4)) for constructing convergence rates f(α) = O(ϕ(α)) as
α → 0, where the rate function ϕ is determined by properties of the associated distance
function. In the remaining part of this section we formulate such rate results for (1.3) and
d(R), because this situation will be studied later for equation (1.1) with the integration
operator A := J . For an extension of the assertions given below to the case dψ with
general benchmark function ψ we refer to [10, Theorem 5.5].

Evidently, for every x0 ∈ X the nonnegative distance function (1.2) is well-defined
and nonincreasing for all radii R > 0 and satisfies the limit condition lim

R→∞
d(R) = 0 as a

consequence of the injectivity of A implying R(A∗)) = X. There are two cases: Case (a)
with x0 6∈ R(A∗), where d(R) > 0 for all R > 0, as well as case (b) with x0 ∈ R(A∗), where
we have for some R0 > 0 the situation d(R) > 0 (0 < R < R0) and d(R) = 0 (R ≥ R0).
Only the case (a) is of interest here. For that case one can show using the Lagrange
multiplier method (cf. [8, Proof of Lemma 2.5]) that d(R) is a strictly decreasing function
for R ∈ (0,∞) and consequently that d(1/t) is an index function for t > 0. Hence

θ(t) := t d(1/t) (t > 0) (3.1)

is an index function on every interval [0, t ]. We also use the notation θ(t) if d(R) in (3.1)

is replaced by a strictly decreasing majorant function d̃(R) such that

d(R) ≤ d̃(R) (0 < R ≤ R <∞), lim
R→∞

d̃(R) = 0.
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Lemma 3.1 Let
√
t (0 ≤ t ≤ a) be a qualification with constant 1 ≤ C0 < ∞ for the

regularization method generated by gα. Then with d(R) from (1.2) we obtain for that
method the error estimate

f(α) = ‖xα − x0‖ ≤ C1 d(R) + C0

√
αR ≤ max (C0, C1)

(
d̃(R) +

√
αR

)
(3.2)

for all 0 < R ≤ R <∞ and 0 < α ≤ α.

Proof: Taking into account the fact that the square-root function is a qualification for
gα, for any v ∈ X with ‖v‖ ≤ R we can estimate by the triangle inequality as follows:

‖xα − x0‖ = ‖rα(A∗A)x0‖
= ‖rα(A∗A)x0 − rα(A

∗A)A∗ v + rα(A
∗A)A∗ v‖

≤ ‖rα(A∗A) (x0 − A∗ v)‖ + ‖rα(A∗A)A∗ v‖

≤ C1 ‖x0 − A∗ v‖ +
(
sup

0<t≤a
|rα(t)|

√
t

)
‖v‖

≤ C1 ‖x0 − A∗ v‖ + C0

√
αR .

Since this estimate remains true when ‖x0 − A∗ v‖ is substituted by its infimum over all
v from the centered ball of X with radius R > 0, we immediately obtain the required
inequality (3.2). This proves the lemma.

We recall that the assumption of Lemma 3.1 is satisfied for the Tikhonov regularization
with C0 = 1.

Theorem 3.2 Let the assumptions of Lemma 3.1 hold. Moreover let

x0 6∈ R(A∗) . (3.3)

Then with α̃ ∈ (0, α] sufficiently small we have an error estimate

f(α) = ‖xα − x0‖ ≤ 2 max (C0, C1)

√
α

θ−1(
√
α)

(0 < α ≤ α̃) (3.4)

for the regularization method generated by gα.

Proof: We use the estimate (3.2), which is valid for sufficiently large R > 0, and equate

the terms d̃(R) and
√
αR. By setting t := 1/R this is equivalent to the equation

θ(t) =
√
α for θ(t) = t d̃(1/t). Having α > 0 small enough there is some t = t(α) =

θ−1(
√
α) such that this equation is fulfilled and we find (3.4) from (3.2) taking into ac-

count that all the function
√
t, θ(t), and θ−1(t) are index functions for sufficiently small

t > 0. This proves the theorem.

Note that the estimate (3.4) is of the form (2.5), f(α) = O(ϕ(α)) as α → 0, with

rate ϕ(α) =
√
α

θ−1(
√
α)

implying a corresponding estimate (2.6) in the noisy data case. It

is important to mention that this rate ϕ(α) is slower than the rate
√
α provided by the

moderate source condition (1.3), since lim
t→0
1/θ−1(t) = ∞. This is a natural consequence

of the assumption (3.3) expressing the missing smoothness of x0.
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4 Power-type decay of distance functions

Now let x0 /∈ R(A∗) be a solution of (1.1) such that for some constants c > 0 and
0 < η < 1

d(R) ≤ c

R
η

1−η

(0 < R ≤ R <∞) . (4.1)

Note that η
1−η attains all positive real numbers if η varies through the open interval (0, 1).

Whenever
√
t (0 < t ≤ a) is a qualification with constant C0 of the regularization method

generated by gα, we obtain from (3.4) and (4.1) with d̃(R) = cR−
η

1−η and θ(t) = c t
1

1−η

the estimate
f(α) = ‖xα − x0‖ ≤ c̃ α

η

2 (0 < α ≤ α̃) , (4.2)

where the constant can be made explicit as c̃ = 2 max (C0, C1) c
1−η and α̃ > 0 is suffi-

ciently small.

In the case of compact operators A there has been formulated a converse result on the
distance function d(R) in [9, Theorem 1] (for an extension to dψ(R) with monomials ψ as
benchmark see also [4]). Using Young’s inequality and the equivalence

x0 ∈ R
(
(A∗A)

η

2

)
⇐⇒

∞∑

i=1

〈x0, ui〉2
σ2η
i

<∞ (4.3)

(see [5, Proposition 3.13]) for the singular system {σn;un; vn}∞n=1 of A it could be proven
that, for all 0 < η < 1,

x0 = (A∗A)
η

2 w (w ∈ X) (4.4)

implies an inequality of form (4.1). As is well-known (cf. [22]) the rate f(α) = O(α µ

2 )
as α → 0 yields a source condition (4.4) for all 0 < η < µ. If then the supremum µsup
of all such µ is positive, due to x0 /∈ R(A∗) we have µsup ∈ (0, 1] and µsup equals the
supremum of all η satisfying the source condition (4.4). Moreover, for compact A and if
0 < µsup < 1, this value is also the maximum ηmax of all η satisfying an inequality (4.1).

Now we focus on the integration operator A := J in X = Y = L2(0, 1) introduced in
formula (1.5). Since the adjoint operator J ∗ of J is explicitly given by

[J∗ y](t) :=

1∫

t

y(s) ds (0 ≤ t ≤ 1) ,

the moderate source condition (1.3) is equivalent to

x0 ∈ H1[0, 1] , x0(1) = 0 . (4.5)

If, for example, the function x0(t) (0 ≤ t ≤ 1) is continuously differentiable, but fails to
satisfy the boundary condition x0(1) = 0, then (1.3) cannot hold, but a weaker source
condition of power type (4.4) with 0 < η < 1 may be valid. For studying such a situation
we consider for simplicity in the sequel the constant function

x0(t) = 1 (0 ≤ t ≤ 1) (4.6)
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and the integration operator A := J (see also [9, §5]). Then using the explicit structure
of the singular system (1.6) and (1.7) we find for the singular values σn ∼ n−1 and for the
inner products in L2(0, 1) occurring in (4.3) 〈x0, un〉 ∼ σn ∼ n−1 as n→∞. Consequently,

∞∑

i=1

〈x0, ui〉2
σ2η
i

<∞ if and only if
∞∑

i=1

i2η−2 <∞ . (4.7)

Therefore, we can state that (4.4) is satisfied for all 0 < η < 1/2 and hence we have
ηmax =

1
2

characterizing the maximum of all η satisfying an estimate of the form (4.1) for
the distance function d(R) and x0 from (4.6). So the limit rate in the right-hand side of
(4.1) for that x0 is

d(R) ≤ c

R
(0 < R ≤ R <∞) . (4.8)

In the next section we will prove this estimate directly by analyzing linear integral equa-
tions of the second kind.

5 Distance functions and Fredholm integral equations

of the second kind in L
2(0,1)

In the general Hilbert space setting of the linear operator equation (1.1) the distance
function d(R) from (1.2) can be verified for given linear operator A : X → Y and solution
x0 ∈ X by exploiting the Lagrange multiplier method. Precisely, for all λ > 0 the uniquely
determined solution v = vλ of the extremal problem

‖A∗v − x0‖2 + λ
(
‖v‖2 −R2

)
→ min, subject to v ∈ Y,

can be found by solving the normal equation

(AA∗ + λ I) vλ = Ax0 .

Because of the equivalence

(AA∗ + λ I)−1A = A (A∗A+ λ I)−1

we can write
d(R) = ‖A∗vλ − x0‖ = λ ‖(A∗A+ λI)−1x0‖ , (5.1)

where for all R > 0 the Lagrange multiplier λ = λ(R) > 0 is the uniquely determined
solution of the equation

‖vλ‖2 = ‖A(A∗A+ λI)−1x0‖2 = R2 . (5.2)

In order to use the interrelations (5.1) and (5.2) for verifying d(R) in case of the
integration operator A := J mapping in X = Y = L2(0, 1), we can search for families
wλ := (J

∗J + λI)−1x0 ∈ X with

d(R) = λ ‖wλ‖ , (5.3)
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where for all R > 0 the corresponding parameter λ = λ(R) > 0 is determined as the
uniquely determined solution of the equation ‖J wλ‖2 = R2. We note that vλ = J wλ is
the antiderivative of the function wλ. It can easily be shown that the functions wλ are
just the solutions of the family of Fredholm integral equations of the second kind

1∫

0

(1−max(s, t))wλ(t) dt+ λwλ(s) = x0(s) (0 < s < 1) (5.4)

with family parameter λ > 0. For all λ > 0 we will present an explicit solution to equation
(5.4) in the subsequent theorem.

Theorem 5.1 For all x0 ∈ L2(0, 1) and all parameters λ > 0 the integral equation (5.4)
has a uniquely determined solution wλ ∈ L2(0, 1) of the form

wλ(s) =
x0(s)

λ
+

1

λ3/2




s∫

0

x0(t) sinh

(
s− t√
λ

)
d t−

cosh
(

s√
λ

)

cosh
(

1√
λ

)
1∫

0

x0(t) sinh

(
1− t√
λ

)
d t




(5.5)
(0 < s < 1) .

Proof: The equation (5.4) is for all λ > 0 equivalent to

λwλ(s) +

s∫

0

(1− s)wλ(t) dt+

1∫

s

(1− t)wλ(t) dt = x0(s) (0 < s < 1) . (5.6)

This is a Fredholm integral equation of the second kind with a bounded measurable
kernel. Further, for all λ > 0 the corresponding homogeneous equation has the trivial
solution wλ,hom = 0 only since wλ,hom ∈ C1[0, 1] and

1∫

0

[wλ,hom(s)]
2 ds+ λ

1∫

0

[w′λ,hom(s)]
2 ds = 0

(cf. (5.8) below with x0 = 0). Hence, the non-homogeneuous equation (5.6) is uniquely
solvable in any space Lp(0, 1) with 1 ≤ p ≤ ∞, in particular in L2(0, 1). Of course, the
unique solvability of (5.6) in L2(0, 1) is also a direct consequence of the positive definitness
of the operator J∗J + λI for all λ > 0.

To show that (5.5) is the corresponding resolvent representation of the solution to (5.6)
we reduce equation (5.6) in usual way to an explicitly solvable boundary value problem
for a second order differential equation supposing

x0, wλ ∈ E := C[0, 1] ∩ C1[0, 1) ∩ C2(0, 1) .

The validity for any x0, wλ ∈ L2(0, 1) then follows via approximation by C2-functions or
by inserting of (5.5) directly into (5.6).
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Now let be x0, wλ ∈ E. At the right boundary s = 1 we then have from (5.6)

λwλ(1) = x0(1) . (5.7)

Moreover, by differentiation the integral equation (5.6) can be reformulated as integro-
differential equation

λw′λ(s)−
s∫

0

wλ(t) dt = x′0(s) (0 < s < 1) , (5.8)

with boundary condition
λw′λ(0) = x′0(0) (5.9)

at the left side s = 0. Further differentiation of (5.8) yields

λw′′λ(s)− wλ(s) = x′′0(s) (0 < s < 1) . (5.10)

It can be seen that the integral equation (5.4) is equivalent to a boundary value problem
of the differential equation (5.10) with boundary conditions (5.7) and (5.9). The general
solution of (5.10) has the explicit form

wλ(s) = K̃1 cosh

(
s√
λ

)
+ K̃2 sinh

(
s√
λ

)
+

1√
λ

s∫

0

x′′0(t) sinh

(
s− t√
λ

)
dt . (5.11)

Integration by parts of the integral in (5.11) yields

s∫

0

x′′0(t) sinh

(
s− t√
λ

)
dt

= x′0(t) sinh

(
s− t√
λ

)∣∣∣∣
s

0

+
1√
λ

s∫

0

x′0(t) cosh

(
s− t√
λ

)
dt

= −x′0(0) sinh
(

s√
λ

)
+

1√
λ

s∫

0

x′0(t) cosh

(
s− t√
λ

)
dt

= −x′0(0) sinh
(

s√
λ

)
+

1√
λ
x0(t) cosh

(
s− t√
λ

)∣∣∣∣
s

0

+
1

λ

s∫

0

x0(t) sinh

(
s− t√
λ

)
dt

= −x′0(0) sinh
(

s√
λ

)
+

1√
λ
x0(s)−

1√
λ
x0(0) cosh

(
s√
λ

)

+
1

λ

s∫

0

x0(t) sinh

(
s− t√
λ

)
dt .

Hence we have

wλ(s) =

(
K̃1 −

1√
λ
x0(0)

)
cosh

(
s√
λ

)
+

(
K̃2 −

1√
λ
x′0(0)

)
sinh

(
s√
λ

)

+
1

λ
x0(s) +

1√
λ

1

λ

s∫

0

x0(t) sinh

(
s− t√
λ

)
dt . (5.12)
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Finally, the coefficients K1 :=
(
K̃1 − 1√

λ
x0(0)

)
and K2 :=

(
K̃2 − 1√

λ
x′0(0)

)
are to be

determined from the boundary conditions (5.7) and (5.9). Differentiation of (5.12) gives

w′λ(s) =
K1√
λ
sinh

(
s√
λ

)
+
K2√
λ
cosh

(
s√
λ

)
+
1

λ
x′0(s)

+
1

λ2

s∫

0

x0(t) cosh

(
s− t√
λ

)
dt

with boundary condition

w′λ(0) =
K2√
λ
+
x′0(0)

λ
. (5.13)

From (5.13) we obtain by (5.9) that K2 = 0. Moreover, (5.12) yields for s = 1

wλ(1) = K1 cosh

(
1√
λ

)
+
1

λ
x0(1) +

1√
λ

1

λ

1∫

0

x0(t) sinh

(
1− t√
λ

)
dt (5.14)

and together with (5.7) the factor

K1 = −
1

cosh
(

1√
λ

) · 1

λ3/2

1∫

0

x0(t) sinh

(
1− t√
λ

)
dt . (5.15)

This, however, provides us with the explicit solution formula (5.5) coming from (5.12).

6 An example of explicit verification

We consider now for A := J mapping in L2(0, 1) the special case of a constant solution
x0 ≡ 1 (see the discussion around formula (4.6) in Section 4). Then Theorem 5.1 yields
the family

wλ(s) =
1

λ
+

1

λ3/2




s∫

0

sinh

(
s− t√
λ

)
dt−

cosh
(

s√
λ

)

cosh
(

1√
λ

)
1∫

0

sinh

(
1− t√
λ

)
dt




=
1

λ
+
cosh

(
s√
λ

)
− 1

λ
−
cosh

(
s√
λ

)

cosh
(

1√
λ

) ·
cosh

(
1√
λ

)
− 1

λ

=
1

λ

cosh
(

s√
λ

)

cosh
(

1√
λ

)
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of solutions to (5.4) for that x0. From (5.3) we get for these solutions an explicit expression
for the distance function

d(R) =

√√√√√√√

1∫

0

cosh2

(
s√
λ(R)

)

cosh2

(
1√
λ(R)

) ds =

√√√√√√√

√
λ(R) sinh

(
2√
λ(R)

)
+ 2

4 cosh2

(
1√
λ(R)

) , (6.1)

where λ(R) denotes the uniquely determined positive number λ satisfying the equation
‖J wλ‖2 = R2. Also the antiderivatives J wλ of the functions wλ can be made explicit
for all λ > 0 as

[J wλ](t) =
1

λ

t∫

0

cosh
(

s√
λ

)

cosh
(

1√
λ

) ds =
1√
λ

sinh
(

t√
λ

)

cosh
(

1√
λ

) (0 ≤ t ≤ 1) .

Then we derive by some algebra

‖J wλ‖2 =

1∫

0

1

λ

sinh2
(

t√
λ

)

cosh2
(

1√
λ

) dt =
exp

(
− 2√

λ

) [
λ exp

(
4√
λ

)
− 4
√
λ exp

(
2√
λ

)
− λ

]

8λ3/2 cosh2
(

1√
λ

)

=
2λ sinh

(
2√
λ

)
− 4
√
λ

8λ3/2 cosh2
(

1√
λ

) =

√
λ sinh

(
2√
λ

)
− 2

4λ cosh2
(

1√
λ

) .

Using the inequalities

sinh t <
1

2
exp(t) < cosh t ,

which are valid for all real numbers t, we can further estimate

‖J wλ‖2 ≤
1
2

√
λ exp

(
2√
λ

)
− 2

4λ
[

1
2
exp

(
1√
λ

)]2 =

1
2

√
λ exp

(
2√
λ

)
− 2

λ exp
(

2√
λ

) =
1

2
√
λ
− 2

λ exp
(

2√
λ

) ≤ 1

2
√
λ
.

Hence, the positive value λ̃(R) satisfying the equation 1
2
√
λ
= R2 is not less than λ(R)

satisfying the equation ‖J wλ‖2 = R2, i.e., λ(R) ≤ λ̃(R). Note that λ(R) as well as λ̃(R)
are well-determined positive numbers for all R > 0.

Finally, for evaluating the distance function (6.1) we note that for all R > 0

d(R) ≤

√√√√√√√√

1
2

√
λ(R) exp

(
2√
λ(R)

)
+ 2

4

[
1
2
exp

(
1√
λ(R)

)]2 =

√√√√√

√
λ(R)

2
+

2

exp

(
2√
λ(R)

) . (6.2)

For sufficiently large R, however, say 0 < R ≤ R < ∞, we have λ(R) > 0 small enough

such that 2

exp

„

2√
λ(R)

« ≤
√
λ(R)

2
holds. Then by (6.2) we have

d(R) ≤ 4
√
λ(R) ≤ 4

√
λ̃(R) =

1√
2R

(0 < R ≤ R <∞) . (6.3)
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Summarizing the last two sections we can state that our explicit approach via solving
second kind integral equations leads to an upper estimate (4.8) with constant c0 = 1/

√
2

of the distance function d(R) if the solution (4.6) of equation (1.1) and the integration
operator A := J in L2(0, 1) is under consideration. In view of (4.7) this estimate is order

optimal for the limiting process R→∞.

By private communication we learned from P. Mathé that Fenchel-Moreau duality

(cf. [25]) allows us to rewrite the distance function (1.2) as

d(R) = sup {〈x0, w〉 −R ‖Aw‖ : w ∈ X, ‖w‖ ≤ 1} (R > 0) (6.4)

yielding lower bounds for appropriate elements w. Precisely, for X = Y = L2(0, 1),
A := J and x0 from (4.6) we have for ξ ∈ (0, 1) and

w(t) :=
χ[ξ,1](t)√
1− ξ

(0 ≤ t ≤ 1)

with the characteristic function χ the properties ‖w‖ = 1 and 〈x0, w〉 − R ‖J w‖ =√
1− ξ − R(1−ξ)√

3
≤

√
3

4R
. This inequality holds as an equation if we set ξ := 1 − 3

4R2 .

Then together with the upper bound (6.3) we obtain in that case the two-sided estimate
√
3

4R
≤ d(R) ≤ 1√

2R

for sufficiently large R > 0.
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