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Abstract

We investigate convergence rates of Tikhonov regularization for
nonlinear ill-posed problems when both the right-hand side and the
operator are corrupted by noise. Two models of operator noise are
considered, namely uniform noise bounds and point-wise noise bounds.
We derive convergence rates for both noise models in Hilbert and in
Banach spaces. These results extend existing results where the forward
operator is mostly assumed to be linear.

1 Introduction

We are going to investigate convergence rates of Tikhonov regularization for
nonlinear ill-posed equations

F (x) = y, x ∈ X, (1.1)

when both the right-hand side y ∈ Y and the operator F : D(F ) ⊆ X →
Y are corrupted by some noise. Here F is some nonlinear operator with
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domain D(F ) acting between Hilbert or Banach spaces X and Y . The
inverse problem consists in recovering x† ∈ D(F ) from observed noisy data
yδ ∈ Y near y = F (x†). In this article we assume yδ = F (x†) + δyξ where ξ
denotes the normalized noise and δy is a small positive value measuring the
noise level in the right-hand side, for instance,

‖y − yδ‖ ≤ δy. (1.2)

Such ill-posed inverse problems often arise in many scientific contexts. For
applications we refer to [4, 11,17,28] and the references therein.

Due to ill-posedness, the solutions of equation (1.1) do not depend con-
tinuously on the right-hand side y ∈ Y (a precise definition of ill-posedness
will be given in Section 2). Thus, the presence of noise forces us to apply
regularization methods. In this article we are interested in the following
nonlinear Tikhonov regularization

‖F (x)− yδ‖p + αΩ(x)→ min
x∈D(F )

(1.3)

with the constant p > 1, with a regularization parameter α > 0, and with
a convex stabilizing functional Ω : X → (−∞,∞]. In case of Hilbert spaces
one often chooses p = 2 and the penalty term

Ω(x) = ‖x− x0‖2 (1.4)

with a known initial guess x0 ∈ X.
Conditions on F , D(F ), Ω ensuring the existence of minimizers of (1.3)

are given, for example, in [14]. Also the stability of the minimization problem
is shown there.

When using regularization techniques one should answer the question
how fast the regularized solutions converge to an exact solution of the un-
derlying equation (1.1) if the noise level, i.e. δy in (1.2), decreases. Cor-
responding estimates are usually meant by ‘convergence rates’. Classical
results on convergence rates with the exactly known forward operator F in
Tikhonov regularization (1.3) have been well established in the last decades
for both Hilbert and Banach space settings, see for instance [4, 14] and the
references therein.

The treatment of problems (1.1) becomes more complex when noise ap-
pears in the forward operator F . For example, instead of the exact forward
operator F , only a noisy operator Fδ lying ‘near’ F is known. To retrospect,
noise in operators is considered firstly in linear ill-posed problems as dis-
cretization noise and operator noise where convergence analysis is carried
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out in [19, 23, 29] for standard regularization in Hilbert spaces and Hilbert
scales. Some other regularization methods based on the (regularized) total
least squares and dual regularized total least squares methods are presented
in [7, 20, 27, 30] where multi-parameter regularization approaches naturally
appear provided with a negative regularization parameter removing the in-
fluence of the operator noise. Interests also arise in the stochastic framework
where the linear operator is considered in a singular value decomposition
form and the operator noise is introduced by adding random noise on indi-
vidual singular values, see [3, 10,21].

Though the convergence rates on linear ill-posed problems with operator
noise are quite comprehensive, the literatures on nonlinear ill-posed prob-
lems with operator noise are quite limited and mostly restrict the operator
noise on the discretization error. For instance, in seminal papers [5, 25],
the authors considered an extra noise characterizing the influence of the ap-
proximation error in the forward operator. In both papers, only convergence
results are provided concerning the particular operator noise and no explicit
discussion on the convergence rates. Further discussion with convergence
rates in view of the discretized operator noise on finite-dimensional nonlin-
ear ill-posed problems is provided in [16,24] for Tikhonov regularization and
Landweber iteration respectively. Recently [26] defines a point-wise noise
bound for the noisy operator and discusses the corresponding convergence
rate on iteratively regularized Gauss-Newton methods in the Hilbert space
setting.

In our framework, instead of the standard Tikhonov regularization (1.3)
we consider a modified minimization problem

T δα(x) := ‖Fδ(x)− yδ‖p + αΩ(x)→ min
x∈D(Fδ)

(1.5)

with a known noisy operator Fδ : D(Fδ) ⊆ X → Y . Throughout this article
the corresponding minimizers will be denoted by

xδα ∈ argminx∈D(Fδ)
T δα(x).

In Banach spaces the discrepancy between regularized solutions xδα and
an exact solution x† can be expressed by the Bregman distance

BΩ
ξ†(x

δ
α, x

†) := Ω(xδα) + Ω(x†)− 〈ξ†, xδα − x†〉

where ξ† ∈ ∂Ω(x†) is a subgradient of Ω at x† (see, e.g., [2]). Here, one
has to be aware of the fact that in certain ‘nonsmooth’ Banach spaces, for
instance in the sequence space `1(N), the Bregman distance with respect
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to Ω = ‖•‖ contains only few information on the distance between two
elements, depending on the chosen subgradient. If in a Hilbert space setting
the penalty term Ω(x) is given by (1.4) then the Bregman distance reduces
to the standard Hilbert space norm

BΩ
ξ†(x

δ
α, x

†) = ‖xδα − x†‖2.

To obtain convergence rates for Tikhonov regularization with noise free
operator, abstract assumptions on the smoothness of the unknown exact
solution x† with respect to the operator F are necessarily formulated (e.g.
source conditions), see [4, Section 4.2]. Such assumptions mostly contain
a (Fréchet) derivative F ′[x†] of F at x†. In case of noisy operators Fδ
usage of these smoothness assumptions with respect to the exact operator
implies that the connection between F and Fδ is of high importance, since
only Fδ has influence on the regularized solutions xδα. Two possibilities for
connecting F with Fδ are proposed in the next section, namely uniform noise
bounds and point-wise noise bounds.

The structure of the remaining part of this article is as follows: First
we describe and investigate ill-posedness with respect to noisy data and
with respect to noisy operators in Section 2. Two proposed noise models
for operator noise are introduced in the same section. In Sections 3 and 4,
we derive convergence rates for uniform noise bounds and point-wise noise
bounds respectively. Finally some conclusions and remarks in Section 5 end
the article.

2 Ill-posedness and operator noise

In this section we firstly clarify the term ‘ill-posed’ and then introduce two
noise models for a better understanding of the noisy operators.

2.1 Ill-posedness from a general perspective

In this subsection we show that equations (1.1) which are ill-posed with
respect to data noise are also ill-posed with respect to operator noise.

When solving equations (1.1) in practice, one typically has some a priori
information at hand which allow to restrict attention to a set M ⊆ D(F )
of ‘interesting points’. Such a priori information for example could involve
properties of the iterates generated by an algorithm. In the context of
regularization techniques the set M should contain all possible regularized
solutions. For Tikhonov regularization M can be chosen as a sublevel set
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of the Tikhonov functional (see [14]) or as a sublevel set of the stabilizing
functional Ω.

By S(y) ⊆ {x ∈ M : F (x) = y} we denote the set of desired solutions.
Typically one is not interested in an arbitrary solution but in one with
special properties, e.g. Ω-minimizing solutions. In particular, we assume
S(y) 6= ∅.

An important question in the theory of ill-posed problems is how to ex-
press convergence of a sequence of approximate solutions xn ∈ M to an
exact solution x† ∈ S(y) or to the whole set S(y). Note, that we leave out
questions on existence and uniqueness if we use the term ‘ill-posed’. We
are solely interested in the continuity or discontinuity of the ‘inverse’ of F .
In the literature one typically finds results of the type that there are con-
vergent subsequences and that every convergent subsequence converges to
some solution x† ∈ S(y). Another concept is to consider the convergence
dist(xn, S(y))→ 0, where dist(xn, S(y)) := infx∈S(y) ‖xn−x‖. We note that
the assertions on ill-posedness in this section are true for any kind of conver-
gence in X, since the proofs do not rely on the definition of dist(xn, S(y)).
The following example displays the difference between both convergence
concepts and shows that the corresponding notions of ill-posedness differ.

Example 2.1. Let X := l2(N), Y := R, F (x) := ‖x‖, and y := 1. For
simplicity we choose M := X and S(y) := {x ∈ X : ‖x‖ = 1}. Consider
the sequence (xn)n∈N defined by xn := (1 + 1

n)en, where en has a one at
position n and zeros else. Then F (xn) = 1 + 1

n → 1 = y, but (xn)n∈N
neither converges nor it has convergent subsequences. In this sense the
equation F (x) = y is ill-posed. Note that in the weak topology the sequence
(xn)n∈N converges to zero, which is not a solution of F (x) = y. If we use
dist(xn, S(y)) for expressing convergence we see dist(xn, S(y)) → 0 since
en ∈ S(y) and ‖xn − en‖ → 0. In this weaker but nevertheless meaningful
sense the equation F (x) = y is well-posed.

From this simple example one also sees that a sequence of approximate
solutions can become arbitrarily close to the set of solutions without con-
verging to one particular solution.

In contrast to data noise, noisy operators are comparably rarely discussed
in the literatures. Based on the set M of ‘interesting points’ we define the
set of all admissible noisy operators by

NM :=

{
G : M → Y : sup

x∈M
‖G(x)‖ <∞

}
.
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Endowed with the norm

‖G‖M := sup
x∈M
‖G(x)‖, G ∈ NM ,

the set NM becomes a normed vector space. In the following we identify F
with its restriction to M and we assume F ∈ NM .

It might happen that noisy data yδ does not belong to the range of F
or that y does not belong to the range of a noisy operator. Therefore one
has to seek for approximate solutions. The approximation should become
better if the noise level is smaller. For example in case of noisy data and
exact operator a sequence of approximate solutions (xn)n∈N corresponding
to a sequence of noisy right-hand sides (yn)n∈N with yn → y should satisfy
F (xn)− yn → 0.

We now propose a definition of ill-posedness and then show that this def-
inition covers ill-posedness with respect to data noise as well as ill-posedness
with respect to operator noise.

Definition 2.2. Equation (1.1) is locally ill-posed in y ∈ R(F ) if there is a
sequence (xn)n∈N in M such that F (xn)→ y but dist(xn, S(y)) 9 0.

This definition of local ill-posedness is different from the one given in [15].

Proposition 2.3. Equation (1.1) is locally ill-posed in y ∈ R(F ) if and
only if one of the following three equivalent assertions is true:

(i) There are sequences (yn)n∈N in Y and (xn)n∈N in M such that yn → y
and F (xn)− yn → 0, but dist(xn, S(y)) 9 0 (local ill-posedness w.r.t.
data noise).

(ii) There are sequences (Fn)n∈N in NM and (xn)n∈N in M such that ‖Fn−
F‖M → 0 and Fn(xn) − y → 0, but dist(xn, S(y)) 9 0 (local ill-
posedness w.r.t. operator noise).

(iii) There are sequences (yn)n∈N in Y , (Fn)n∈N in NM , and (xn)n∈N in
M such that yn → y, ‖Fn − F‖M → 0, and Fn(xn) − yn → 0, but
dist(xn, S(y)) 9 0 (local ill-posedness w.r.t. combined data and oper-
ator noise).

Proof. Ill-posedness (Definition 2.2) obviously implies (ii) (set Fn := F ).
From (ii) we obtain (iii) by defining yn := y. That item (i) follows after (iii)
can be seen from the estimate

‖F (xn)− yn‖ ≤ ‖F (xn)− Fn(xn)‖+ ‖Fn(xn)− yn‖
≤ ‖F − Fn‖M + ‖Fn(xn)− yn‖ → 0.
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Finally, (i) implies ill-posedness since

‖F (xn)− y‖ ≤ ‖F (xn)− yn‖+ ‖yn − y‖ → 0.

The assertion and the proof of the proposition remain valid if the set NM
of admissible noisy operators is restricted to a smaller class of mappings.
For example we could assume that the original operator F and all possible
noisy operators are (weakly) continuous. This is reasonable because most
regularization techniques require some kind of continuity.

If F is bounded and linear one might assume that a noisy version of this
operator is also bounded and linear. In this case the set M of ‘interesting
points’ is typically bounded. Therefore, without loss of generality we assume
M = {x ∈ X : ‖x‖ ≤ 1}. Then the norm ‖•‖M coincides with the operator
norm and the space NM of admissible noisy operators is simply the normed
vector space of bounded linear operators mapping X into Y . As an example
for linear noisy operators one could consider linear convolution operators F .
Noisy operators then appear if the kernel is not modeled correctly or if the
kernel is constructed from measurements.

To highlight the crucial influence of operator noise we show that even in
case of exactly solvable noisy equations the ill-posedness effect remains.

Proposition 2.4. If equation (1.1) is locally ill-posed in y ∈ R(F ), then
there are sequences (Fn)n∈N in NM and (xn)n∈N in M such that ‖Fn −
F‖M → 0 and Fn(xn) = y, but dist(xn, S(y)) 9 0.

This assertion remains true if F is bounded and linear, M = {x ∈
X : ‖x‖ ≤ 1}, and the set NM of admissible noisy operators contains only
bounded linear operators.

Proof. By the definition of ill-posedness there is a sequence (xn)n∈N such
that F (xn)→ y, but dist(xn, S(y)) 9 0.

If the set NM of admissible noisy operators is not restricted to linear
operators we define Fn ∈ NM by

Fn(x) := F (x) + y − F (xn), x ∈M. (2.1)

Then Fn(xn) = y and ‖Fn − F‖M = ‖y − F (xn)‖ → 0.
If A := F is linear and NM is restricted to bounded linear operators,

definition (2.1) cannot be used. Instead we proceed as follows. If xn = 0 for
all sufficiently large n then choosing An := A and observing y = 0 proves the
assertion. Otherwise we may assume xn 6= 0 for all n ∈ N (take a suitable
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subsequence). For each xn there is a bounded linear functional ξn on X
such that 〈ξn, xn〉 = ‖xn‖ and ‖ξn‖ = 1. Defining bounded linear operators
An : X → Y by

Anx := Ax− 〈ξn, x〉
‖xn‖

(Axn − y), x ∈ X,

we immediately see Anxn = y. Since

‖An −A‖M = sup
x∈M
‖Anx−Ax‖ =

(
sup
x∈M

|〈ξn, x〉|
‖xn‖

)
‖Axn − y‖

= ‖Axn − y‖ → 0,

the assertion is thus proven.

2.2 Two models for operator noise

As stated in the introductory section, one usually assumes a uniform bound
of the data noise in the sense that ‖y − yδ‖ ≤ δy. In view of the defini-
tion on ill-posedness in the previous subsection, we firstly propose a uni-
form operator noise in an analogue way. Such uniform noise could for
example appear if the kernel of a convolution opertator is not known ex-
actly. Recall that M ⊆ D(F ) is the set of ‘interesting points’ and that
S(y) ⊆ {x ∈ M : F (x) = y} in the noise-free operator setting. For the
noisy operator framework we additionally assume M ⊆ D(F )∩D(Fδ). The
uniform operator noise is thus imposed on the whole set M such that there
holds

sup
x∈M
‖F (x)− Fδ(x)‖ ≤ δMF (2.2)

with a known constant δMF referring to the operator noise level. Note, that
the δ in the symbol Fδ does not denote the noise level. The noisy operator
under consideration is denoted by Fδ and the corresponding noise level is
δMF . In principle, assumption (2.2) can be realized as a generalization of the
approximation operator in the existing literatures, for instance (2.2) in [24].
Similar to [16, 24], the uniform noise bound assumption allows us to obtain
convergence rates in terms of δy and δMF in both Hilbert and Banach space
settings which are provided in Section 3.

Next to uniform noise bounds other models for operator noise could
be suitable in real applications. For example one could ask for point-wise
bounds connection F and Fδ. Such an idea is recently proposed in [26] for
Fréchet differentiable operators F and Fδ where the authors assume

‖F (x†)− Fδ(x†)‖ ≤ δF , ‖F ′[x†]− F ′δ[x†]‖ ≤ δF ′ .

8



We mention that a particular nonlinear ill-posed problem which satisfies
the corresponding operator noise assumptions can be found in the same
literature. In our current work, we also slightly change the assumptions in
a similar manner such that{

‖F (x†)− Fδ(x†)‖ ≤ δF ,
‖F ′[x†]∗F ′[x†]− F ′δ[x†]∗F ′δ[x†]‖ ≤ δ2

F ′ .
(2.3)

Note that in the forthcoming analysis, we need the following result of op-
erator monotonicity whose definition can be found in [1, V.1, Thm. X.1.1]
and [22] for finite-dimension and infinite-dimension cases respectively.

Theorem 2.5. [1,22] Let f be operator monotone on (0,∞) with f(0) = 0.
For any pair A,B of non-negative self-adjoint operators in the Hilbert space
we have

‖f(A)− f(B)‖ ≤ f(‖A−B‖).

A special consequence of operator monotonicity is

‖Aµ −Bµ‖ ≤ ‖A−B‖µ, µ ∈ (0, 1].

One can observe that the second inequality in (2.3) immediately implies

‖F ′[x†]− F ′δ[x†]‖ ≤ δF ′

(choose µ = 1
2 in Theorem 2.5). Notice that the assumption (2.3) only holds

true at the exact solution x† which is referred as point-wise noise bounds.
Convergence rates in terms of δy, δF , and δF ′ are shown in Section 4.

3 Convergence rates for uniform noise bounds

In case of uniform noise bounds (2.2) for the operator noise we have the
following two estimates. The first estimate in Banach spaces bases on a
variational inequality, which includes nonlinearity assumptions on F and
smoothness assumptions with respect to F on the exact solution x† (cf. [14]).
The second estimate in Hilbert spaces bases on a standard source condition
and explicit nonlinearity assumptions (cf. [4]). In principle, the nonlinearity
and smoothness assumptions carrying out the convergence rates for uniform
noise bounds are the same as those with exact operators.
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Theorem 3.1. Assume (1.2) and (2.2). Further, let β > 0 and let ϕ :
[0,∞)→ [0,∞) be monotonically increasing and concave. If

βBΩ
ξ†(x, x

†) ≤ Ω(x)− Ω(x†) + ϕ(‖F (x)− F (x†)‖p) for all x ∈M

then for all α > 0, δy ≥ 0, δMF ≥ 0 such that xδα ∈M the estimate

BΩ
ξ†(x

δ
α, x

†) ≤ 4

β

(δy + δMF )p

α
+

1

β
(−ϕ)∗

(
−1

4p−1α

)
holds true. Here (−ϕ)∗ denotes the Fenchel conjugate function of −ϕ given
by (−ϕ)∗(s) = supt≥0(st+ ϕ(t)).

Proof. By the minimizing property of xδα we see

Ω(xδα)− Ω(x†) =
1

α

(
‖Fδ(xδα)− yδ‖p + αΩ(xδα)

)
− Ω(x†)− 1

α
‖Fδ(xδα)− yδ‖p

≤ 1

α
‖Fδ(x†)− yδ‖p −

1

α
‖Fδ(xδα)− yδ‖p.

The triangle inequality yields

‖F (xδα)− F (x†)‖p ≤ 2p−1‖Fδ(xδα)− Fδ(x†)‖p

+ 2p−1‖F (xδα)− Fδ(xδα) + Fδ(x
†)− F (x†)‖p

≤ 4p−1‖Fδ(xδα)− yδ‖p + 4p−1‖yδ − Fδ(x†)‖p

+ 4p−1‖F (xδα)− Fδ(xδα)‖p + 4p−1‖Fδ(x†)− F (x†)‖p

≤ 4p−1‖Fδ(xδα)− yδ‖p + 4p−1‖yδ − Fδ(x†)‖p + 22p−1
(
δMF
)p
.

Applying both estimates to the variational inequality we then obtain

βBΩ
ξ†(x, x

†) ≤ 1

α
‖Fδ(x†)− yδ‖p −

1

α
‖Fδ(xδα)− yδ‖p

+ ϕ
(
4p−1‖Fδ(xδα)− yδ‖p + 4p−1‖yδ − Fδ(x†)‖p + 22p−1

(
δMF
)p)

=
2

α
‖Fδ(x†)− yδ‖p +

2

α

(
δMF
)p

− 1

4p−1α

(
4p−1‖Fδ(xδα)− yδ‖p + 4p−1‖Fδ(x†)− yδ‖p + 22p−1

(
δMF
)p)

+ ϕ
(
4p−1‖Fδ(xδα)− yδ‖p + 4p−1‖Fδ(x†)− yδ‖p + 22p−1

(
δMF
)p)

≤ 2

α
(δy + δMF )p +

2

α

(
δMF
)p

+ sup
t≥0

(
−1

4p−1α
t+ ϕ(t)

)
≤ 4

(δy + δMF )p

α
+ (−ϕ)∗

(
−1

4p−1α

)
.
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Choosing the regularization parameter similar to [6, Section 4.2] the
theorem provides the convergence rate

BΩ
ξ†(x

δ
α, x

†) = O
(
ϕ((δy + δMF )p)

)
as δy + δMF → 0.

The same rate can be obtained by applying the discrepancy principle with
noise level δy + δMF for choosing the regularization parameter, but with a
proof slightly different from the one given above. Next, we establish the
convergence rate in Hilbert spaces under uniform noise bounds.

Theorem 3.2. Let X and Y be Hilbert spaces. Assume that the nonlinear
operators F, Fδ are weakly closed and that assumptions (1.2) and (2.2) are
satisfied. Moreover, assume that D(F ) ∩ D(Fδ) is convex, F is Fréchet
differentiable and there exists a Lipschitz constant L > 0 such that

‖F ′[x1]− F ′[x2]‖ ≤ L‖x1 − x2‖

for all x1, x2 ∈ D(F ) ∩ D(Fδ). If there exists some v ∈ Y such that the
source condition

x† − x0 = F ′[x†]∗v,

L‖v‖ ≤ 1

is satisfied, then all global minimizers xδα fulfill the error bounds

‖xδα − x†‖ ≤

√
2

1− L‖v‖

(
δy + δMF√

α
+
√
α‖v‖

)
‖Fδ(xδα)− yδ‖ ≤

√
2
(
δy + δMF

)
+ (
√

2 + 1)α‖v‖.

If we choose α = δy + δMF , the estimations imply

‖xδα − x†‖ ≤

√
2

1− L‖v‖
(1 + ‖v‖)

√
δy + δMF ,

‖Fδ(xδα)− yδ‖ ≤
(√

2 + (
√

2 + 1)‖v‖
) (
δy + δMF

)
.

The same convergence rates hold true if one applies the discrepancy princi-
ple.

Proof. The first several steps are the same as the classic proof in [5]. Note
the Lipschitz continuity of the Fréchet derivative F ′ implies that

F (xδα) = F (x†) + F ′[x†](xδα − x†) + rδα
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holds with

‖rδα‖ ≤
L

2
‖xδα − x†‖2.

The minimizer xδα satisfies

‖Fδ(xδα)− yδ‖2 + α‖xδα − x0‖2 ≤ ‖Fδ(x†)− yδ‖2 + α‖x† − x0‖2.

By adding α‖xδα − x†‖2 − α‖xδα − x0‖2 in both sides, we obtain

‖Fδ(xδα)− yδ‖2 + α‖xδα − x†‖2 ≤ ‖Fδ(x†)− yδ‖2 + 2α〈x† − x0, x
† − xδα〉.

The first and second terms in the right-hand side can be estimated as follows
by using the triangle inequality and Lipschitz continuity property,

‖Fδ(x†)− yδ‖2 ≤ 2
(
‖Fδ(x†)− F (x†)‖2 + ‖F (x†)− yδ‖2

)
≤ 2

(
δMF

2
+ δ2

y

)
,

2α〈x† − x0, x
† − xδα〉 = 2α〈v, F ′[x†](x† − xδα)〉

≤ αL‖v‖‖xδα − x†‖2 + 2α‖v‖‖F (xδα)− Fδ(xδα)‖
+ 2α‖v‖‖Fδ(xδα)− yδ‖+ 2α‖v‖‖yδ − F (x†)‖

≤ αL‖v‖‖xδα − x†‖2 + 2α‖v‖δMF
+ 2α‖v‖‖Fδ(xδα)− yδ‖+ 2α‖v‖δy.

One then obtains(
‖Fδ(xδα)− yδ‖ − α‖v‖

)2
+ α(1− L‖v‖)‖xδα − x†‖2 ≤ 2

(
δMF +

α‖v‖
2

)2

+ 2

(
δy +

α‖v‖
2

)2

.

The desired results then follow after some simple calculations. With respect
to the discrepancy principle

c1(δy + δMF ) ≤ ‖Fδ(xδα)− yδ‖ ≤ c2(δy + δMF )

with 1 ≤ c1 ≤ c2 we use the fact that

‖xδα − x†‖2 ≤ 2〈x† − x0, x
† − xδα〉.
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4 Convergence rates for point-wise noise bounds

4.1 Low order rates in Banach spaces

Throughout this subsection we assume that F and Fδ are Fréchet differen-
tiable at x† and we denote the corresponding Fréchet derivatives by F ′[x†]
and F ′δ[x

†].
If point-wise noise bounds (2.3) for the operator noise are valid then

we have to control the nonlinearity of Fδ. This is contrary to the previous
section where the nonlinearity of F is controlled by a variational inequality
and no explicit nonlinearity assumptions on Fδ are required. Controlling the
nonlinearity of Fδ but assuming smoothness of x† with respect to F or F ′[x†]
implies that in case of a point-wise noise bound variational inequalities are
not an appropriate tool for obtaining convergence rates. The problem is
that variational inequalities combine nonlinearity and solution smoothness
into one condition which either has to hold for F or for Fδ. But assuming
a variational inequality for F does not influence the nonlinearity of Fδ and
assuming a variational inequality for all possible noisy operators Fδ is a too
strong assumption. In the latter case on the one hand one would implicitly
assume that x† is smooth with respect to many different operators and on the
other hand the variational inequality would depend on noise considerations
violating the idea of an universal sufficient condition for convergence rates.

Instead we use the concept of approximate source conditions introduced
in [12] for Hilbert space problems and extended to Banach spaces in [8, 9].
Before we go into the details we provide a first convergence rate result based
on the typical source condition ξ† = F ′[x†]∗η† in Banach spaces, where
ξ† ∈ ∂Ω(x†) and η† ∈ Y ∗. Additionally we assume the property

‖x− x†‖q ≤ cqBΩ
ξ†(x, x

†) for all x ∈M (4.1)

with some q > 1 and cq > 0 and a sufficiently large set M . The proofs
also work without this q-coercivity assumption but then we have to assume
that all regularized solutions xδα lie in a bounded set M and the obtained
convergence rates will be slower. In case of Hilbert spaces with Ω(x) =
‖x − x0‖2 we have q = 2. More details on the Hilbert space setting are
provided in the next subsection.

Theorem 4.1. Assume (1.2), (2.3), (4.1), and

‖Fδ(x)− Fδ(x†)− F ′δ[x†](x− x†)‖ ≤ cNLB
Ω
ξ†(x, x

†) for all x ∈M (4.2)

13



with cNL > 0 and a sufficiently large set M . Further let there be some
η† ∈ Y ∗ with cNL‖η†‖ < 1 such that ξ† = F ′[x†]∗η†. Then

BΩ
ξ†(x

δ
α, x

†) ≤ 4

1− cNL‖η†‖
(δy + δF )p

α
+

4(p− 1)

1− cNL‖η†‖

(
‖η†‖
p

) p
p−1

α
1
p−1

+ (q − 1)c
1
q−1
q

(
2‖η†‖

q(1− cη†‖η†‖)

) q
q−1

δ
q
q−1

F ′ .

Proof. First we observe

−〈ξ†, xδα − x†〉 ≤ ‖η†‖‖F ′[x†](xδα − x†)‖
≤ ‖η†‖‖(F ′[x†]− F ′δ[x†])(xδα − x†)‖+ ‖η†‖‖Fδ(xδα)− Fδ(x†)‖

+ ‖η†‖‖Fδ(xδα)− Fδ(x†)− F ′δ[x†](xδα − x†)‖
≤ δF ′‖η†‖‖xδα − x†‖+ ‖η†‖‖Fδ(xδα)− Fδ(x†)‖

+ cNL‖η†‖BΩ
ξ†(x

δ
α, x

†).

By implementing (4.1) and Young’s inequality ab ≤ 1
qa

q + q−1
q b

q
q−1 with

a :=
(q

2
(1− cNL‖η†‖)BΩ

ξ†(x
δ
α, x

†)
) 1
q

and b :=
c
1
q
q ‖η†‖δF ′( q

2(1− cη†‖η†‖)
) 1
q

we obtain

δF ′‖η†‖‖xδα − x†‖ ≤ δF ′‖η†‖c
1
q
q B

Ω
ξ†(x

δ
α, x

†)
1
q

≤ 1− cNL‖η†‖
2

BΩ
ξ†(x

δ
α, x

†) +
(q − 1)c

1
q−1
q ‖η†‖

q
q−1 δ

q
q−1

F ′

q
q
q−1
(

1
2(1− cη†‖η†‖)

) 1
q−1

and therefore

−〈ξ†, xδα − x†〉 ≤
1 + cNL‖η†‖

2
BΩ
ξ†(x

δ
α, x

†) + cδ
q
q−1

F ′ + ‖η†‖‖Fδ(xδα)− Fδ(x†)‖

with

c :=
(q − 1)c

1
q−1
q ‖η†‖

q
q−1

q
q
q−1
(

1
2(1− cη†‖η†‖)

) 1
q−1

> 0.

Consequently we derive

1− cNL‖η†‖
2

BΩ
ξ†(x

δ
α, x

†) = Ω(xδα)− Ω(x†)− 〈ξ†, xδα − x†〉 −
1 + cNL‖η†‖

2
BΩ
ξ†(x

δ
α, x

†)

≤ Ω(xδα)− Ω(x†) + ‖η†‖‖Fδ(xδα)− Fδ(x†)‖+ cδ
q
q−1

F ′ .
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Noticing the minimization property of the Tikhonov functional such that

Ω(xδα)− Ω(x†) =
1

α

(
‖Fδ(xδα)− yδ‖p + αΩ(xδα)

)
− Ω(x†)− 1

α
‖Fδ(xδα)− yδ‖p

≤ 1

α
‖Fδ(x†)− yδ‖p −

1

α
‖Fδ(xδα)− yδ‖p,

we obtain

1− cNL‖η†‖
2

BΩ
ξ†(x

δ
α, x

†) ≤ 1

α
‖Fδ(x†)− yδ‖p −

1

α
‖Fδ(xδα)− yδ‖p

+ ‖η†‖‖Fδ(xδα)− yδ‖+ ‖η†‖‖Fδ(x†)− yδ‖+ cδ
q
q−1

F ′

and applying Young’s inequality ab ≤ 1
pa

p + p−1
p b

p
p−1 twice with

a :=
( p
α

) 1
p ‖Fδ(. . .)− yδ‖ and b :=

(
α

p

) 1
p

‖η†‖

shows

1− cNL‖η†‖
2

BΩ
ξ†(x

δ
α, x

†) ≤ 2
(δy + δF )p

α
+ 2(p− 1)

(
‖η†‖
p

) p
p−1

α
1
p−1 + cδ

q
q−1

F ′ .

If we choose α ∼ (δy + δF )p−1 the theorem implies the convergence rate

BΩ
ξ†(x

δ
α, x

†) = O
(
δy + δF + δ

q
q−1

F ′

)
as δy + δF + δ

q
q−1

F ′ → 0.

The same rate can be obtained via the discrepancy principle but with a
slightly different proof.

The source condition above provides only one fixed rate in the sense
that either the obtained rate can be shown or not. The second convergence
rate result is based on approximate source conditions and thus provides a
wide range of possible convergence rates, that is, the rate is adapted to the
(abstract) smoothness of the exact solution. This concept relies on distance
functions

d(r) := inf{‖F ′[x†]∗η − ξ†‖ : η ∈ Y ∗, ‖η‖ ≤ r}, r ≥ 0,

measuring the smoothness of x† w.r.t. F ′[x†]∗. For noisy operators we define

dδ(r) := inf{‖F ′δ[x†]∗η − ξ†‖ : η ∈ Y ∗, ‖η‖ ≤ r}, r ≥ 0. (4.3)
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Then we have a trivial estimate

dδ(r) ≤ inf
‖η‖≤r

(
‖F ′δ[x†]∗−F ′[x†]∗‖‖η‖+ ‖F ′[x†]∗η− ξ†‖

)
≤ δF ′r+d(r) (4.4)

for all r ≥ 0.
Note that the nonlinearity condition (4.2) seems to be unsuitable for a

solution smoothness under F ′[x†] (up to now there are no convergence rate
results for this case). Therefore we assume

‖F ′δ[x†](x− x†)‖ ≤ cs‖Fδ(x)− Fδ(x†)‖s for all x ∈M (4.5)

with some s ∈ (0, p).

Theorem 4.2. Assume that (1.2), (2.3), (4.1), and (4.5) hold. Further we
assume d(r) ≤ cνr

−ν for all r > 0 with some ν > 0. Then the following
error estimate holds true

BΩ
ξ†(x

δ
α, x

†) ≤ 4
(δy + δF )p

α
+ 4c̄αγ + 4c̄δκF ′

for sufficiently small δy, δF , δF ′ , α, where

γ := min


sνq
q−1

p+ (p−s)νq
q−1

,
sν

(p− s)(ν + 1)


and

κ := min


νq
q−1

p(q−1)
(p−s)q + ν

,
qν

(q − 1)(ν + 1)

 .

The constant c̄ > 0 is independent of δy, δF , δF ′ , α.

Proof. By (4.5) for all η ∈ Y ∗ with ‖η‖ ≤ r we have

−〈ξ†, xδα − x〉 = 〈F ′δ[x†]η − ξ†, xδα − x†〉+ 〈η, F ′δ[x†](xδα − x†)〉
≤ ‖F ′δ[x†]η − ξ†‖‖xδα − x†‖+ csr‖Fδ(xδα)− Fδ(x†)‖s

and therefore (take the infimum over all η)

1

2
BΩ
ξ†(x

δ
α, x

†) = Ω(xδα)− Ω(x†)− 1

2
BΩ
ξ†(x

δ
α, x

†)− 〈ξ†, xδα − x†〉

≤ Ω(xδα)− Ω(x†)− 1

2
BΩ
ξ†(x

δ
α, x

†) + dδ(r)‖xδα − x†‖+ csr‖Fδ(xδα)− Fδ(x†)‖s

16



for all r ≥ 0. By using (4.1) we derive

dδ(r)‖xδα − x†‖ ≤ c
1
q
q dδ(r)B

Ω
ξ†(x

δ
α, x

†)
1
q

and Young’s inequality ab ≤ 1
qa

q + q−1
q b

q
q−1 with

a :=
(q

2

) 1
q
BΩ
ξ†(x

δ
α, x

†)
1
q and b :=

(
2cq
q

) 1
q

dδ(r)

yields

dδ(r)‖xδα − x†‖ ≤
1

2
BΩ
ξ†(x

δ
α, x

†) +
(q − 1)(2cq)

1
q−1

q
q
q−1

dδ(r)
q
q−1 .

Thus, the following estimation holds

1

2
BΩ
ξ†(x

δ
α, x

†) ≤ Ω(xδα)− Ω(x†) + csr‖Fδ(xδα)− Fδ(x†)‖s + cdδ(r)
q
q−1

for all r ≥ 0 with

c :=
(q − 1)(2cq)

1
q−1

q
q
q−1

> 0.

By the minimizing property of xδα we have

Ω(xδα)− Ω(x†) =
1

α

(
‖Fδ(xδα)− yδ‖p + αΩ(xδα)

)
− Ω(x†)− 1

α
‖Fδ(xδα)− yδ‖p

≤ 1

α
‖Fδ(x†)− yδ‖p −

1

α
‖Fδ(xδα)− yδ‖p

and therefore

1

2
BΩ
ξ†(x

δ
α, x

†) ≤ 2

α
(δy + δF )p − 1

2p−1α

(
2p−1‖Fδ(xδα)− yδ‖p + 2p−1‖yδ − Fδ(x†)‖p

)
+ csr

(
2p−1‖Fδ(xδα)− yδ‖p + 2p−1‖yδ − Fδ(x†)‖p

) s
p

+ cdδ(r)
q
q−1 .

Young’s inequality s
pa

p
s + p−s

p b
p
p−s with

a :=
( p

2p−1sα

(
2p−1‖Fδ(xδα)− yδ‖p + 2p−1‖yδ − Fδ(x†)‖p

)) s
p

and b := csr

(
2p−1sα

p

) s
p
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now yields

1

2
BΩ
ξ†(x

δ
α, x

†) ≤ 2

α
(δy + δF )p +

(p− s)c
p
p−s
s (2p−1s)

s
p−s

p
p
p−s

α
s
p−s r

p
p−s + cdδ(r)

q
q−1 .

We use (4.4) to obtain

cdδ(r)
q
q−1 ≤ c (δF ′r + d(r))

q
q−1 ≤ 2

1
q−1 cδ

q
q−1

F ′ r
q
q−1 + 2

1
q−1 cc

q
q−1
ν r

−νq
q−1

for all r ≥ 0. Therefore

1

2
BΩ
ξ†(x

δ
α, x

†) ≤ 2

α
(δy + δF )p + c̃

(
α

s
p−s r

p
p−s + δ

q
q−1

F ′ r
q
q−1 + r

−νq
q−1

)
for all r ≥ 0 with some constant c̃ > 0 independent of δy, δF , δF ′ , α, r. If
r ≥ 1 then

1

2
BΩ
ξ†(x

δ
α, x

†) ≤ 2

α
(δy + δF )p + c̃

((
α

s
p−s + δ

q
q−1

F ′

)
r

max
{

q
q−1

, p
p−s

}
+ r

−νq
q−1

)
and choosing r such that(

α
s
p−s + δ

q
q−1

F ′

)
r

max
{

q
q−1

, p
p−s

}
= r

−νq
q−1 ,

that is

r =

(
α

s
p−s + δ

q
q−1

F ′

)−min

{
1

p
p−s+

νq
q−1

, q−1
q(ν+1)

}
,

we obtain

1

2
BΩ
ξ†(x

δ
α, x

†) ≤ 2

α
(δy + δF )p + 2c̃

(
α

s
p−s + δ

q
q−1

F ′

)min

{ νq
q−1

p
p−s+

νq
q−1

, ν
ν+1

}

≤ 2

α
(δy + δF )p + 2c̄α

min

{
sνq
q−1

p+
(p−s)νq
q−1

, sν
(p−s)(ν+1)

}
+ 2c̄δ

min

 νq
q−1

p(q−1)
(p−s)q+ν

, qν
(q−1)(ν+1)


F ′

with some constant c̄ > 0.

With the parameter choice

α ∼ (δy + δF )
max

{
p+

(p−s)νq
q−1

1+
νq
q−1

,
(p−s)(ν+1)

ν+1− sp

}
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the theorem provides the convergence rate

BΩ
ξ†(x

δ
α, x

†) = O

(δy + δF )
min

{ sνq
q−1

1+
νq
q−1

, sν
ν+1− sp

}
+ δ

min

 νq
q−1

p(q−1)
(p−s)q+ν

, qν
(q−1)(ν+1)


F ′


as δy + δF + δF ′ → 0.

In a Hilbert space setting with Ω(x) given by (1.4) and linear operator
A := F we have p = 2, q = 2, s = 1. Suppose x† − x0 is in the range of
(A∗A)µ with µ ∈ (0, 1

2) we then derive ν = 2µ
1−2µ (see [13, Theorem 1]). In

this case the obtained convergence rate reduces to

‖xδα − x†‖2 = O
(

(δy + δF )
4µ

2µ+1 + δ4µ
F ′

)
. (4.6)

If the benchmark source condition is satisfied, that is, if d(r) = 0 for
sufficiently large r, then we have

BΩ
ξ†(x

δ
α, x

†) ≤ 4
(δy + δF )p

α
+ c1α

s
p−s + c2δ

q
q−1

F ′ .

With α ∼ (δy + δF )p−s the corresponding rate is

BΩ
ξ†(x

δ
α, x

†) = O
(

(δy + δF )s + δ
q
q−1

F ′

)
.

4.2 High order rates in Hilbert spaces

Since point-wise noise bounds are only recently proposed in [26], it is worth-
while for us to take a close look of such assumptions within the framework
of Tikhonov regularization in Hilbert spaces.

The first statement concerns a standard source condition which is the
same as in [26]. We also refer to Theorem 4.1 where a similar situation is
considered in the Banach space setting.

Theorem 4.3. Assume that the nonlinear operators F, Fδ are weakly closed,
Fréchet differentiable and that assumptions (1.2), (2.3) are satisfied at x†.
Moreover, we assume that D(F ) ∩ D(Fδ) is convex and that there exists a
Lipschitz constant L > 0 such that

‖F ′δ[x1]− F ′δ[x2]‖ ≤ L‖x1 − x2‖
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for all x1, x2 ∈ D(F ) ∩D(Fδ). If a source condition

x† − x0 = F ′[x†]∗v,

(L+ ‖v‖)‖v‖ ≤ 1

for some v ∈ Y is satisfied, then all global minimizers xδα fulfill the error
bounds

‖xδα − x†‖ ≤ δF ′ +
δF + δy + α‖v‖√
α(1− (L+ ‖v‖)‖v‖)

‖Fδ(xδα)− yδ‖ ≤ δF + δy +
√
αδF ′ + 2α‖v‖.

If we choose α = δF + δy, the estimations imply

‖xδα − x†‖ ≤ δF ′ +
1 + ‖v‖√

1− (L+ ‖v‖)‖v‖
√
δF + δy,

‖Fδ(xδα)− yδ‖ ≤ (1 + 2‖v‖)(δF + δy) +
√
δF + δyδF ′ .

We omit the proof here but refer to those of Theorems 3.2 and 4.1. One
can observe that the same convergence rate holds for the discrepancy prin-
ciple with noise level δy +δF for choosing the regularization parameter. The
saturation of the convergence rate appears when the a posteriori parameter
choice rule is implemented. We will not touch this topic in detail but re-
fer to the monograph [4]. Finally, we investigate a higher monomial source
condition such that

x† − x0 = (F ′[x†]∗F ′[x†])µw

for µ ∈ (1/2, 1]. The following theorem is the main statement of convergence
rates on point-wise noise bounds with a monomial source condition large
than 1/2.

Theorem 4.4. Assume that the nonlinear operators F, Fδ are weakly closed,
Fréchet differentiable and that assumptions (1.2), (2.3) are satisfied at x†.
Moreover, we assume that D(F ) ∩ D(Fδ) is convex and that there exists a
Lipschitz constant L > 0 such that

‖F ′δ[x1]− F ′δ[x2]‖ ≤ L‖x1 − x2‖

for all x1, x2 ∈ D(F ) ∩D(Fδ). If the source conditions

x† − x0 = F ′[x†]∗v,

x† − x0 = (F ′[x†]∗F ′[x†])µw
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are satisfied for µ ∈ (1/2, 1] and variables v ∈ Y and w ∈ X such that
(L + ‖v‖)‖v‖ ≤ 1, then with an a priori parameter choice α ∼ (δy + δF +

δ2µ+1
F ′ )

2
2µ+1 all global minimizers xδα fulfill the error bound

‖xδα − x†‖ = O
(

max
{

(δy + δF + δ2µ+1
F ′ )

2µ
2µ+1 , δF ′

})
.

The convergence rate of Theorem 4.4 can also be presented in the form

‖xδα − x†‖ = O
(

max
{

(δy + δF )
2µ

2µ+1 + δ2µ
F ′ , δF ′

})
where the consistence with the results of linear ill-posed problems in Banach
spaces can be observed (see i.e. (4.6)) but with a saturation rate on δF ′ .
The proof of the theorem is based on the classic ones for the convergence
rate analysis of nonlinear ill-posed problems in [4, Thm.10.7] and [18] where
the forward operator is exactly known. For sake of convenience, we denote
B = F ′[x†] and Bδ = F ′δ[x

†]. Similar to these references, we introduce an
auxiliary element

zα = x† − α(Bδ
∗Bδ + αI)−1(x† − x0).

The following lemma is important.

Lemma 4.5. Assume that the assumptions in Theorem 4.4 are valid. Then
the following estimation for the auxiliary element zα holds true

‖zα − x†‖ ≤ Cµ‖w‖αµ + ‖w‖δ2µ
F ′

≤ Cµ‖w‖αµ + ‖w‖(δy + δF + δ2µ+1
F ′ )

2µ
2µ+1

with a constant Cµ independent of α, δy, δF and δF ′.

Proof. By using the operator monotonicity, the estimation follows after the
fact that

zα − x† = −α(Bδ
∗Bδ + αI)−1(Bδ

∗Bδ)
µw − α(Bδ

∗Bδ + αI)−1((B∗B)µ − (Bδ
∗Bδ)

µ)w

and

‖zα − x†‖ ≤ Cµ‖w‖αµ + ‖w‖δ2µ
F ′ .

Here and in what follows Cµ represents the constant which is induced by
the Tikhonov regularization for linear ill-posed problems with a monomial
smoothness µ. For detailed descriptions, we refer to [23, Definition 1].
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In addition, we occasionally use the property of the partial isometry U
(see also in [18]) that allows the relation

(B∗B)1/2Uv = (B∗B)µw ⇒ Uv = (B∗B)µ−1/2w

since µ ∈ (1/2, 1]. Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. From the minimization property of the Tikhonov
functional, it follows that

α‖xδα − x†‖2 ≤ ‖Fδ(zα)− yδ‖2 − ‖Fδ(xδα)− yδ‖2 + α‖zα − x†‖2

+ 2α〈zα − x†, x† − x0〉 − 2α〈xδα − x†, x† − x0〉. (4.7)

Note the Lipschitz continuity of the Fréchet derivative F ′δ[x
†] implies that

Fδ(zα) = Fδ(x
†) +Bδ(zα − x†) + sα, s.t. ‖sα‖ ≤

L

2
‖zα − x†‖2

Fδ(x
δ
α) = Fδ(x

†) +Bδ(x
δ
α − x†) + rα, s.t. ‖rα‖ ≤

L

2
‖xδα − x†‖2.

Moreover, we can derive that

Fδ(zα)− yδ = Fδ(zα)− Fδ(x†) + Fδ(x
†)− yδ

= Bδ(zα − x†) + sα + Fδ(x
†)− yδ.

The basic source condition x† − x0 = F ′[x†]∗v = B∗v yields

2α〈zα − x†, x† − x0〉 = 2α〈Bδ(zα − x†), v〉+ 2α〈(B −Bδ)(zα − x†), v〉;
−2α〈xδα − x†, x† − x0〉 = −2α〈Bδ(xδα − x†), v〉 − 2α〈(B −Bδ)(xδα − x†), v〉

= −2α〈Fδ(xδα)− yδ, v〉+ 2α〈rα, v〉 − 2α〈yδ − Fδ(x†), v〉
− 2α〈(B −Bδ)(xδα − x†), v〉.

Substitute these equalities into (4.7), we obtain

‖xδα − x†‖2 ≤
1

α
‖Bδ(zα − x†) + αv‖2 +

1

α
‖sα + Fδ(x

†)− yδ‖2

+
2

α

(
〈Bδ(zα − x†), sα + Fδ(x

†)− yδ〉+ α〈Fδ(x†)− yδ, v〉
)

+ 2〈(B −Bδ)(zα − x†), v〉+ 2〈rα, v〉 − 2〈(B −Bδ)(xδα − x†), v〉

+ ‖zα − x†‖2 −
1

α
‖Fδ(xδα)− yδ + αv‖2. (4.8)
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The third line in the previous inequality (4.8) can be estimated as follows

2〈(B −Bδ)(zα − x†), v〉+ 2〈rα, v〉 − 2〈(B −Bδ)(xδα − x†), v〉
≤ 2‖v‖δF ′‖zα − x†‖+ L‖v‖‖xδα − x†‖2 + 2‖v‖δF ′‖xδα − x†‖
≤ (L+ ‖v‖)‖v‖‖xδα − x†‖2 + ‖zα − x†‖2 + (1 + ‖v‖2)δ2

F ′ .

By omitting the negative term in (4.8) and defining

M := 〈Bδ(zα − x†), sα + Fδ(x
†)− yδ〉+ α〈v, Fδ(x†)− yδ〉,

we obtain the following estimation from (4.8) such that√
1− (L+ ‖v‖)‖v‖‖xδα − x†‖ ≤

1√
α
‖Bδ(zα − x†) + αv‖+

1√
α
‖sα + Fδ(x

†)− yδ‖

+

√
2

α

√
M +

√
2‖zα − x†‖+

√
1 + ‖v‖2δF ′ .

In view of Lemma 4.5, we only need to estimate the first three terms in the
right-hand side separately.

Notice the first term satisfies

Bδ(zα − x†) + αv = (−αBδ(Bδ∗Bδ + αI)−1Bδ
∗ + αI)v

− αBδ(Bδ∗Bδ + αI)−1(B∗ −Bδ∗)v.

We then employ the same argument including the partial isometry U in [18]
to derive

‖Bδ(zα − x†) + αv‖ ≤ α2‖(Bδ∗Bδ + αI)−1Uv‖+ α‖Bδ(Bδ∗Bδ + αI)−1(B∗ −Bδ∗)v‖
≤ α2‖(Bδ∗Bδ + αI)−1(Bδ

∗Bδ)
µ−1/2w‖

+ α2‖(Bδ∗Bδ + αI)−1((B∗B)µ−1/2 − (Bδ
∗Bδ)

µ−1/2)w‖
+ α‖Bδ(Bδ∗Bδ + αI)−1(B∗ −Bδ∗)v‖

≤ Cµ−1/2‖w‖αµ+1/2 + ‖w‖αδ2µ−1
F ′ + C1/2‖v‖

√
αδF ′ .

It is quite obvious that with the a priori choice α ∼ (δy + δF + δ2µ+1
F ′ )

2
2µ+1

we can estimate

1√
α
‖Bδ(zα − x†) + αv‖ ≤ Cµ−1/2‖w‖αµ + ‖w‖

√
αδ2µ−1

F ′ + C1/2‖v‖δF ′

≤ Cµ−1/2‖w‖αµ + ‖w‖
√
α(δy + δF + δ2µ+1

F ′ )
2µ−1
2µ+1 + C1/2‖v‖δF ′

= O
(

max
{

(δy + δF + δ2µ+1
F ′ )

2µ
2µ+1 , δF ′

})
.
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We next estimate the second term 1√
α
‖sα + Fδ(x

†)− yδ‖ which is quite

straightforward such that

1√
α
‖sα + Fδ(x

†)− yδ‖ ≤ L

2
√
α
‖zα − x†‖2 +

1√
α
‖Fδ(x†)− yδ‖.

By using the proof of Lemma 4.5, µ > 1/2 and without loss of generality we
assume α < 1 and δF ′ < 1, the following estimation holds true

L

2
√
α
‖zα − x†‖2 +

1√
α
‖Fδ(x†)− yδ‖ ≤ C2

µL‖w‖2α2µ−1/2 +
δ4µ
F ′‖w‖

2

√
α

+
δy + δF√

α

≤ C2
µL‖w‖2αµ +

δ2µ+1
F ′ ‖w‖

2 + δy + δF√
α

.

That is

1√
α
‖sα + Fδ(x

†)− yδ‖ = O
(

(δy + δF + δ2µ+1
F ′ )

2µ
2µ+1

)
with the a priori choice α ∼ (δy + δF + δ2µ+1

F ′ )
2

2µ+1 .

Finally, we estimate the third term
√

2
α

√
M with M := 〈Bδ(zα−x†), sα+

Fδ(x
†)− yδ〉+ α〈v, Fδ(x†)− yδ〉. Notice the facts that

M = 〈−αBδ(Bδ∗Bδ + αI)−1Bδ
∗v, sα + Fδ(x

†)− yδ〉+ α〈v, Fδ(x†)− yδ〉
+ 〈−αBδ(Bδ∗Bδ + αI)−1(B∗ −Bδ∗)v, sα + Fδ(x

†)− yδ〉

and

〈−αBδ(Bδ∗Bδ + αI)−1Bδ
∗v, Fδ(x

†)− yδ〉+ α〈v, Fδ(x†)− yδ〉
= 〈α2(BδBδ

∗ + αI)−1v, Fδ(x
†)− yδ〉.

These equalities yield

M = 〈−αBδ(Bδ∗Bδ + αI)−1Bδ
∗v, sα〉+ 〈α2(BδBδ

∗ + αI)−1v, Fδ(x
†)− yδ〉

+ 〈−αBδ(Bδ∗Bδ + αI)−1(B∗ −Bδ∗)v, sα〉
+ 〈−αBδ(Bδ∗Bδ + αI)−1(B∗ −Bδ∗)v, Fδ(x†)− yδ〉.

We use the same arguments as in the previous estimations with the partial
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isometry U to obtain

M ≤ L

2
‖v‖α‖zα − x†‖2 + Cµ−1/2‖w‖αµ+1/2‖Fδ(x†)− yδ‖+ ‖w‖αδ2µ−1

F ′ ‖Fδ(x
†)− yδ‖

+
L

2
C1/2‖v‖

√
αδF ′‖zα − x†‖2 + C1/2‖v‖

√
αδF ′‖Fδ(x†)− yδ‖

≤ L

2
‖v‖α‖zα − x†‖2 + Cµ−1/2‖w‖αµ+1/2‖Fδ(x†)− yδ‖+ ‖w‖αδ2µ−1

F ′ ‖Fδ(x
†)− yδ‖

+ C2
1/2‖v‖

2αδ2
F ′ +

L2

8
‖zα − x†‖4 +

1

2
‖Fδ(x†)− yδ‖2.

That implies√
2

α

√
M ≤

√
L‖v‖‖zα − x†‖+

√
2Cµ−1/2‖w‖

√
αµ−1/2‖Fδ(x†)− yδ‖1/2

+
√

2‖w‖δµ−1/2
F ′ ‖Fδ(x†)− yδ‖1/2 + C1/2‖v‖δF ′

+
L

2
√
α
‖zα − x†‖2 +

1√
α
‖Fδ(x†)− yδ‖.

We only need to verify the second and the third terms at the a priori choice

α ∼ (δy + δF + δ2µ+1
F ′ )

2
2µ+1 such that√

αµ−1/2‖Fδ(x†)− yδ‖1/2 ∼ (δy + δF + δ2µ+1
F ′ )

µ−1/2
2µ+1

+ 2µ+1
2(2µ+1)

= (δy + δF + δ2µ+1
F ′ )

2µ
2µ+1

and

δ
µ−1/2
F ′ ‖Fδ(x†)− yδ‖1/2 ∼ (δ2µ+1

F ′ )
µ−1/2
2µ+1 ‖Fδ(x†)− yδ‖1/2

≤ (δy + δF + δ2µ+1
F ′ )

µ−1/2
2µ+1

+ 2µ+1
2(2µ+1)

= (δy + δF + δ2µ+1
F ′ )

2µ
2µ+1 .

The theorem is thus proven.

5 Conclusions

In this article, we investigate the convergence rates of Tikhonov regulariza-
tion for nonlinear ill-posed problems when both the right-hand side and the
operator are corrupted by some noise. After introducing two operator noise
models, detailed discussions in Banach and Hilbert spaces are carried out
provided with appropriate assumptions. We aim at filling the gap between
linear and nonlinear ill-posed problems where comprehensive convergence
rates on operator noise have been obtained for the former case.
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