
DIRECT AND INVERSE RESULTS IN VARIABLE HILBERT SCALES
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Abstract. Variable Hilbert scales are an important tool for the recent analysis of inverse
problems in Hilbert spaces, as these constitute a way to describe smoothness of objects other
than functions on domains. Previous analysis of such classes of Hilbert spaces focused on
interpolation properties, which allows us to vary between such spaces. In the context of dis-
cretization of inverse problems, first results on approximation theoretic properties appeared.
The present study is the first which aims at presenting such spaces in the context of approx-
imation theory. The authors review and establish direct theorems and also provide inverse
theorems, as such are common in approximation theory.

1. Introduction

In recent analysis of ill-posed linear operator equations Ax = y with bounded linear
operators A : X → Y mapping between Hilbert spaces X and Y smoothness in terms of
general source conditions became attractive, see [14] and the more recent [2, 7]. These general
source conditions are closely related to classes of Hilbert spaces, which are called variable
Hilbert scales. Such classes of Hilbert spaces might be also of interest without the context of
inverse problems. They constitute analogs and extensions to Sobolev type classes of functions
with bounded smoothness. For function classes of this type typical questions arise, and some
of those are the objective of the present study. Precisely we shall discuss whether there are
characteristics for the smoothness of an element x† ∈ X. Within the classical approximation
theory such results are known as direct or Jackson-type theorems. Moreover, there exist
inverse theorems that conclude from the behavior of certain characteristics to the smoothness
of x†.

In contrast to the classical approximation theory here we do not deal with the approxi-
mation of smooth functions, and we use related concepts of smoothness assigned to elements
in Hilbert space. As already mentioned smoothness will be given in terms of general source
conditions. As useful characteristics we analyze two functions, one related to the degree of
approximation, and one measuring the lack of some benchmark smoothness. The latter is of
interest in the case when some source condition is satisfied only approximately, a situation
first studied systematically in [4, 6]. This leads to the notion of a distance function, and
we shall use the modification as introduced in [7, Sect. 5]. Typical direct results assert that
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smoothness yields approximability as well as a certain decay rate for the related distance
function, see e.g., [13, Prop. 2] and [7, Thm. 5.9], respectively.

It is the goal of the present analysis to exhibit some converse results, extending special
cases as studied in the literature, in particular [4, Rem. 1].

2. Notation and preliminary results

We shall assume that we are given a non-negative self-adjoint operator H : X → X, which
in addition is compact and injective. Then it admits a singular value decomposition

(2.1) Hx =
∞
∑

j=1

sj〈x, uj〉uj , x ∈ X,

with (non-increasing) sequence s1 ≥ s2 ≥ · · · > 0, and complete orthonormal system
{uj , j = 1, 2, . . . } ⊂ X . The singular values sj are obtained as eigenvalues of the map-
ping H, in particular we let a := ‖H‖.

If such analysis is dealt with linear operator equations Ax = y as in [7] and [15], then we
can consider H = A∗A and

√
sj are the singular values of A. However, here we focus on pure

approximation aspects and neither corresponding operator equations nor its regularization
are under consideration.

As in [7] we call a function ϕ : [0, a] → [0,∞) an index function if it is continuous and
strictly increasing with ϕ(0) = 0. An index function ϕ is said to obey a ∆2-condition if there
is C2 <∞ for which ϕ(2t) ≤ C2ϕ(t).

2.1. Hilbert scales related to general source conditions. Having fixed the operator H
and any index function ψ we assign, using spectral calculus, the general source set by

(2.2) Hψ := {x ∈ X, x = ψ(H)v, for some v ∈ X, ‖v‖ ≤ 1} .
An element x† is said to satisfy a general source condition, if

(2.3) x† ∈ Hψ.

We mention the following

Lemma 2.1 ([7, Lemma 2.8]). If H : X → X is compact and ψ is an index function, then
the set Hψ is compact in X.

As a consequence we may introduce the following scale of Hilbert spaces. We assign any
index function ψ the space XH

ψ which has the source set Hψ as its unit ball. By Lemma 2.1 the

resulting space is complete and carries a natural scalar product by assigning to any x, y ∈ XH
ψ

with (unique) source representation x = ψ(H)u, y = ψ(H)v the value

〈x, y〉ψ := 〈u, v〉.

In particular an element x ∈ X belongs to XH
ψ if and only if

∑∞
j=1 |〈x, uj〉|2 /ψ2(sj) <∞. We

agree to denote the corresponding norm in XH
ψ by ‖ · ‖ψ. We mention that in this context

Lemma 2.1 asserts that the spaces XH
ψ ⊂ X are densely and compactly embedded.
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2.2. Degree of approximation. We study approximation by a (nested) sequence {Xn}n∈N

of finite dimensional subspaces of X, where we normalize to dim(Xn) = n. We agree to
call such a sequence an approximation scheme. In approximation theory there are various
characteristics to describe the quality of an approximation scheme with respect to some
smoothness class, and we introduce two of those next.

One way is to ask for the related best approximation of a given x† ∈ X by means of
elements from Xn, i.e., we consider the degree of approximation

(2.4) En(x
†) := dist(x†, Xn) = ‖(I − Pn)x

†‖,
where Pn denotes the orthogonal projection onto the space Xn. If Pn converge point-wise
to the identity I : X → X as n → ∞, then En(x

†) → 0 for each element x†, and a fortiori
for each compact subset M ⊂ X. Convergence may not be uniform for ‖x†‖ ≤ 1. But, by
Lemma 2.1, rates of convergence can be expected uniformly for x† ∈ Hψ, which will yield a
direct Theorem. Results of such type constitute part of classical approximation theory, and
we refer the reader to [9, Chapt. 4 und 5].

The approximative power of finite dimensional subspaces with respect to some subset
M ⊂ X may be measured in various ways, and we refer the reader to [21]. Here we shall
restrict our consideration to ellipsoids, which are obtained as images of some linear mapping
in Hilbert spaces: Specifically this holds for the sets Hψ:

In particular, we introduce the n-th Kolmogorov widths of the set Hψ in the spaces X as

(2.5) dn(Hψ, X) := inf
dim(Z)≤n

sup
x∈Hψ

dist(x,Z),

where the infimum is taken over all at most n-dimensional subspaces Z ⊂ X. For ellipsoids
in Hilbert space these Kolmogorov widths coincide with the linear widths, given as

an(Hψ, X) = inf
rank(L)≤n

sup
x∈Hψ

‖x− Lx‖,

this time L ranges among the linear mappings in X with rank at most n. We close with the
introduction of another quantity used in classical approximation theory, the Bernstein widths,
see the formal introduction in [19] and [21]. For any Hψ ⊂ X we let

(2.6) bn(Hψ, X) = sup
dim(Z)≥n+1

inf
06=u∈Z∩Hψ

‖u‖
‖u‖ψ

.

Remark 2.2. For ellipsoids in Hilbert spaces all n-widths coincide, see [21, Chapt. IV] or [20,
Chapt. 11]. However, in general these n-widths may obey different asymptotics, and much
effort was undertaken to establish precise asymptotics, and they reflect different aspects of
approximation, see e.g. [21, 20, 18]. Thus, within the present context, any approximation
scheme {Xn}n∈N

, which is suited for optimal linear approximation provides optimal behavior
of the Bernstein widths. We postpone further discussion to § 2.4.

As mentioned above, the n-widths just introduced coincide and agree with the correspond-
ing eigenvalues λn+1(ψ(H)) of the mapping ψ(H). Thus we state the following well known
result.

Proposition 2.3 ([1, 20, 21]). Let ψ be any index function. Then

an(Hψ, X) = dn(Hψ, X) = bn(Hψ, X) = ψ(sn+1), n = 0, 1, 2, . . .
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2.3. Approximate source conditions. As second indicator we use distance functions mea-
suring for an element x† ∈ X the violation of a benchmark smoothness characterized by the
index function ϕ. Having fixed (H,ϕ) we assign any x† ∈ X the distance function

(2.7) %x†(t) = %
(H,ϕ)

x†
(t) = dist(tx†,Hϕ).

We recall the following result, similar to [7, Lemma 5.3].

Lemma 2.4. Suppose that

(2.8) x† 6∈ R(ϕ(H)).

Then the mapping t 7→ %x†(t) is a convex index function. Moreover, also the mapping
t 7→ %x†(t)/t is an index function.

2.4. Bernstein- and Jackson-type inequalities. The following assumptions are “loosely”
related to inequalities of Bernstein- and Jackson-type, where we refer to [9] for the classical
context. Given an approximation scheme {Xn}n∈N

we agree to denote the realized approx-
imability with respect to the operator H by

(2.9) ηn := ‖H(I − Pn) : X → X‖, n = 1, 2, . . . ,

Typically this is known to us (up to constants). In view of the approximation numbers as
introduced above we require the following

Assumption A.1. There is a constant C <∞ such that

(2.10) ηn ≤ Csn+1, n = 1, 2, . . .

This assumption requires that the subspaces are of optimal order with respect to linear
approximation, since by Proposition 2.3 we have sn+1 ≤ ηn.

The other assumption is related to the smoothness of the elements from Xn, used for
approximation. Within the classical context, when using trigonometric polynomials, this
results in a norm bound of the derivative in terms of the degree of the polynomial, we refer
to [9, Chapt. 3.2] for the Bernstein inequality in its original form. Assumptions of such type
are frequently met in the analysis of projection methods for ill-posed problems in Hilbert
scales, see [16] and [10], where this is called inverse property. Explicitly such assumptions
were made in [12].

We start with the following observation. Suppose that κ is an index function. If {Xn}n∈N
is

an approximation scheme with Xn ⊂ XH
κ , then we assign the following measure of injectivity

(2.11) j(Hκ, Xn) := inf
06=u∈Xn

‖u‖
‖u‖κ

, n ∈ N.

By construction of the Bernstein widths from (2.6) we obtain

(2.12) κ(sn) = sn(Jκ : XH
κ → X) = bn−1(Hκ, X) ≥ j(Hκ, Xn), n ∈ N.

The assumption to be made is that the deviation is only up to a constant.

Assumption A.2 (Bernstein-type inequality). Let κ be an index function and {Xn}n∈N
be an

approximation scheme such that Xn ⊂ XH
κ , n = 1, 2, . . . The approximation scheme is said

to obey a (H,κ)-Bernstein inequality if there is a constant CB ≥ 1 such that

j(Hκ, Xn) ≥
1

CB
κ(sn), n ∈ N.
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We will extend this to “intermediate” smoothness by appropriate interpolation, and we
recall the following variant of the interpolation inequality [13, Append. A].

Proposition 2.5. Suppose that ϕ,ψ and κ are index functions arranged such that both the
functions κ/ϕ and κ/ψ are such. If the composition

(2.13) t −→
(

κ

ϕ

)2




(

(

κ

ψ

)2
)−1

(t)



 , 0 < t ≤ κ2(a)

ψ2(a)

is concave, then

(2.14)

(

κ

ϕ

)−1(‖x‖ϕ
‖x‖κ

)

≤
(

κ

ψ

)−1(‖x‖ψ
‖x‖κ

)

, 0 6= x ∈ XH
κ .

Corollary 2.6. Suppose that {Xn}n∈N
is an approximation scheme which obeys the (H,κ)-

Bernstein inequality with constant CB. If ϕ is another index function for which

t 7→ t/ϕ2(
(

κ2
)−1

(t)) is a concave index function, then XH
κ ⊂ XH

ϕ , and the approximation
scheme also obeys the (H,ϕ)-Bernstein inequality with constant CB. Precisely we have

(2.15) ‖Pnu‖ϕ ≤ CB
ϕ(sn)

‖Pnu‖, u ∈ X, n = 1, 2, . . .

Proof. The interpolation inequality (2.14) provides us with
(

κ

ϕ

)−1(‖Pnu‖ϕ
‖Pnu‖κ

)

≤ κ−1

( ‖Pnu‖
‖Pnu‖κ

)

, 0 6= Pnu ∈ XH
κ .

Straight calculation yields

‖Pnu‖
‖Pnu‖ϕ

≥ ϕ

(

κ−1

( ‖Pnu‖
‖Pnu‖κ

))

,

and we need to bound the right hand side from below. To this end the assumption that t 7→
t/ϕ2(t) is increasing implies for every 0 < c ≤ 1 that c2t2/ϕ2

(

(κ2)−1(c2t2)
)

≤ t2/ϕ2((κ2)−1(t2)),
which in turn yields

(2.16) ϕ(κ−1(ct)) ≥ cϕ(κ−1(t)).

Assumption A.2 gives ‖Pnu‖/‖Pnu‖κ ≥ κ(sn)/CB , thus, using (2.16) we obtain

ϕ

(

κ−1

( ‖Pnu‖
‖Pnu‖κ

))

≥ ϕ

(

κ−1

(

κ(sn)

CB

))

≥ ϕ(sn)

CB
,

and the proof is complete. �

Remark 2.7. In case of monomial smoothness ϕ(t) = tµ, κ(t) := tν with µ < ν the assumption
that t/ϕ2((κ2)−1(t)) concave, is automatically satisfied.
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3. Relating Smoothness and approximability

Clearly, if x† ∈ Hψ then the degree of approximation En(x
†) of x† by the given scheme

{Xn}n∈N
is bounded by the supremum over all elements x ∈ Hψ, hence

En(x
†) ≤ sup

‖x‖ψ≤1
dist(x,Xn).

The right-hand side above should be compared to the best possible approximation of elements
x ∈ Hψ ⊂ X, precisely with its (n + 1)st Kolmogorov width, compare (2.5). The question
arises whether this extends to approximation with respect to the given scheme {Xn}n∈N

,
other than some optimal. Indeed, this holds true for a variety of index functions, and we
recall the following direct result from [13, Append. A, Cor. 2].

Proposition 3.1. Suppose that x† ∈ Hψ for an index function ψ, where the funtion t 7→
ψ2(

√
t) is assumed to be concave. Moreover let ηn be as in (2.9). Then

(3.1) En(x
†) ≤ ‖I − Pn : XH

ψ → X‖ ≤ ψ(ηn), n = 1, 2, . . .

Therefore, to minimize this bound, we shall require that the given scheme {Xn}n∈N
is

almost as good as the best possible accuracy for approximating H.

Corollary 3.2 (Jackson-type inequality). Suppose that the scheme {Xn}n∈N
obeys Assump-

tion A.1. If the function t 7→ ψ2(
√
t) is a concave index function and if x† ∈ Hψ then

(3.2) En(x
†) ≤ Cψ(sn+1), n = 1, 2, . . .

Proof. This is obtained by simple calculation as follows. Suppose that (2.10) holds. Then,
using the concavity we obtain

ψ2(ηn) = ψ2(
√

η2
n) ≤ ψ2(

√

C2s2n+1) ≤ C2ψ2(
√

s2n+1) = C2ψ2(sn+1).

Taking square roots yields the bound (3.2) by Proposition 3.1. �

Remark 3.3. The assumptions in Proposition 3.1 and Corollary 3.2 are fulfilled for the func-
tions ψ(t) := tµ, whenever 0 < µ ≤ 1. If this is the case then En(x

†) ≤ Csµn+1, provided that

x† ∈ Hψ.

We turn to discussing an inverse theorem related to the degree of approximation. First
we recall the following technical

Lemma 3.4 (see e.g., [9, Chapt. 4.4, Lemma 1]). Suppose that f : [a, b] → R
+ is a non-

increasing function. Then there is a constant M <∞ such that for every sequence a ≤ uk ≤
uk+1 ≤ · · · ≤ ul ≤ b with ui/ui−1 ≤ 2 it holds true that

(3.3)
l
∑

i=k

f(ui) ≤M
∑

b 1

2
ukc≤n<ul

f(n)

n
.

The main result in this section is the following
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Theorem 3.5. Suppose that ψ is an index function which obeys a ∆2-condition and is a valid
upper bound for the degree of approximation, i.e., En(x

†) ≤ ψ(sn+1). Assume further that
the singular values of H are such that there is 1 ≤ γ <∞ for which sn/s2n ≤ γ, n ∈ N.

If ϕ is any index function such that

(1) the scheme {Xn}n∈N
obeys the (H,ϕ)-Bernstein inequality,

(2) the function ψ/ϕ is an index function and
(3) the the sum

(3.4)

∞
∑

n=1

1

n

(

ψ

ϕ

)

(sn) <∞

is convergent,

then x† ∈ XH
ϕ .

Proof. Suppose that ψ has the properties as stated above. We shall show that the sequence
P2nx

† is a Cauchy sequence is XH
ψ , hence convergent to x†. This in turn ensures x† ∈ XH

ϕ .

Since (2.15) holds true for ϕ, we derive for every m < n that

‖P2nx
† − P2mx

†‖ϕ ≤
n−1
∑

k=m

‖P2k+1x† − P2kx
†‖ϕ ≤ CB

n−1
∑

k=m

1

ϕ(s2k+1)
‖P2k+1x† − P2kx

†‖

≤ 2CB

n−1
∑

k=m

1

ϕ(s2k+1)
‖(I − P2k)x

†‖ ≤ 2CB

n−1
∑

k=m

1

ϕ(s2k+1)
E2k(x

†)

≤ 2CB

n−1
∑

k=m

1

ϕ(s2k+1)
ψ(s2k) ≤ 2CBCγ

n−1
∑

k=m

(

ψ

ϕ

)

(s2k+1)

Now we shall apply Lemma 3.4 with

φ(k) :=

(

ψ

ϕ

)

(sk), 2m ≤ k ≤ 2n−1, and ui := 2i+1, i = m, . . . , n− 1.

This provides us with the following bound

n−1
∑

k=m

(

ψ

ϕ

)

(s2k+1) ≤M
∑

2m≤n<2n−1

1

n

(

ψ

ϕ

)

(sn) ≤M
∑

n≥2m

1

n

(

ψ

ϕ

)

(sn) → 0,

by assumption (3.4), as m→ ∞. The proof is complete. �

At a first glance the assumptions formulated in Theorem 3.5 look rather technical. There-
fore it is worth-wile to see them working in the context of monomials.

Example 3.6. Suppose that the singular values of H obey sn � n−p for some p > 0, and that
Assumption A.2 holds true for some function κ(t) := tr. Then this extends to the validity
of (2.15) for each ϕ(t) := tµ, whenever 0 ≤ µ ≤ r. If the degree of approximation is bounded
for ψ(t) := tν for some 0 < ν ≤ r, then x† ∈ XH

tµ for each 0 ≤ µ < ν, since in this case
∞
∑

n=1

1

n

(

ψ

ϕ

)

(sn) =

∞
∑

n=1

n−1−p(ν−µ) <∞,
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whenever ν − µ > 0.

4. Relating Smoothness and distance functions

A major direct result for this indicator was established in [7, Thm. 5.9], see also [8, Proof
of Thm. 1]. We recall this here as

Proposition 4.1. We suppose that x† ∈ Hψ, and that we consider the distance function

%
(H,ϕ)

x†
(t) with respect to the benchmark index function ϕ. If the quotient (ϕ/ψ) (t) is an index

function for 0 < t ≤ a, then we can estimate

(4.1) %x†(t) ≤ ϕ

(

(

ϕ

ψ

)−1

(t)

)

for all 0 < t ≤ ϕ(a)

ψ(a)
.

The main inverse result is the following

Theorem 4.2. Let x† ∈ X. Assume that there is some ε > 0 and an index function r(t), 0 ≤
t ≤ ε, satisfying the inequality

(4.2) %x†(t) ≤ r(t), 0 ≤ t ≤ ε.

Then there is j0 ∈ N such that

(4.3)
∣

∣

∣
〈x†, uj〉

∣

∣

∣
≤ 2

ϕ(sj)

r−1(ϕ(sj))
, j ≥ j0.

Remark 4.3. We stress that necessarily the decay rate of the coefficients
∣

∣〈x†, uj〉
∣

∣ → 0 as

j → ∞ is smaller than the rate for ϕ(sj) → 0, since r−1 is also an index function. Evidently
due to formula (2.1) we have this rate

(4.4)
∣

∣

∣〈x†, uj〉
∣

∣

∣ = O(ϕ(sj)) as j → ∞

whenever x† satisfies the benchmark source condition

(4.5) x† ∈ R(ϕ(H)) .

Hence, this rate (4.4) can also be considered as an indicator for the corresponding smoothness
of x†. However, the use of a distance function %x† with respect to ϕ is only justified if x† is
not smooth enough, i.e., if it fails to satisfy a source condition (4.5).

Proof of Theorem 4.2. The proof will be based on tools from convex analysis. Given a convex
set M ⊂ X we assign S(y,M) := sup {〈y, z〉, z ∈M} , y ∈ X. We recall the following
identity, see e.g. [22, Chapt. 2.6, Thm. 1].

(4.6) dist(x,M) = sup {〈x, y〉 − S(y,M), ‖y‖ ≤ 1} , x ∈ X.

We apply this with x := tx† and M := Hϕ and obtain

(4.7) %x†(t) = sup
{

t〈x†, y〉 − S(y,Hϕ), ‖y‖ ≤ 1
}

.

In particular this yields the inequality (a specific case of the Fenchel Young Inequality)

(4.8) t〈x†, y〉 ≤ %x†(t) + S(y,Hϕ), ‖y‖ ≤ 1, t > 0.
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Since Hϕ is centrally symmetric this implies
∣

∣

∣〈x†, y〉
∣

∣

∣ ≤ 1

t
(%x†(t) + S(y,Hϕ)) , ‖y‖ ≤ 1, t > 0.

Now, since r(t) ≥ %x†(t), 0 < t ≤ ε, this extends to

(4.9)
∣

∣

∣
〈x†, y〉

∣

∣

∣
≤ 1

t
(r(t) + S(y,Hϕ)) , ‖y‖ ≤ 1, 0 < t ≤ ε.

Let j0 be the smallest index with ϕ(sj) ≤ r(ε). For any j ≥ j0 we use the bound (4.9) for
y := uj , the j-th singular function of H, to derive

∣

∣

∣〈x†, uj〉
∣

∣

∣ ≤ 1

t
(r(t) + S(uj ,Hϕ)) =

1

t
(r(t) + ϕ(sj)) , 0 < t ≤ ε.

Balancing this bound with respect to t yields t∗ := r−1(ϕ(sj)) and we obtain (4.3). The proof
is complete. �

Remark 4.4. Notice that we used the Fenchel Young inequality from (4.8), only. The full
strength of (4.6) was not needed. However, the representation (4.7) proved to be useful in [5],
as it allowed to derive lower bounds for the distance function.

Theorem 4.2 does not necessarily yield the optimal smoothness of x† generated by an
observed decay rate r(t) → 0 as t→ 0 of the distance function %x†. There is a gap, which can
be verified rather clear in case of the monomial (power-type) situation as follows.

Let ϕ(t) = tν with some ν > 0 be the benchmark function for the distance function %x† .
Proposition 4.1 yields, that for x† ∈ XH

ψ for ψ(t) = tµ with µ < ν, the distance function can

be bounded by %x†(t) ≤ tν/(ν−µ), regardless of the behavior of the singular values of H.

On the other hand, if we have %x†(t) ≤ tν/(ν−µ) for 0 < t ≤ ε, then Theorem 4.2 asserts
that

∣

∣〈x†, uj〉
∣

∣ ≤ 2sµj for sufficiently large integers j. If we now suppose that the singular

values of H behave like sj � j−p for some p > 0, then we obtain for given α > 0 that

∞
∑

j=1

∣

∣〈x†, uj〉
∣

∣

2

s2αj
=

∞
∑

j=1

∣

∣〈x†, uj〉
∣

∣

2

s2µj
s
2p(µ−α)
j ≤ C

∞
∑

j=1

j−2p(µ−α) <∞,

only if 2p(µ− α) > 1. Thus, in this case Theorem 4.2 yields x† ∈ XH
tα for all α < µ− 1/(2p).

However, by recent results on distance functions, see [3, 5], and by well-known converse

results from regularization theory, see e.g. [17], we find from r(t) = C t
ν

ν−µ , 0 < µ < ν <∞ for
sufficiently small t > 0 and x† /∈ R(Hν) = XH

tν that the solution smoothness obeys x† ∈ XH
tµ−ι

for arbitrarily small ι > 0.

The occurring smoothness gap depends on the decay rate sj � j−p of the singular values
of H; it is smaller if p is larger, and it tightens as p tends to infinity.

5. Lower bounds for distance functions

Finally we pose the following question: Given x† ∈ X, can we get information about its
distance function %x†(t) with respect to some benchmark smoothness prescribed by the index
function ϕ, without knowing the smoothness of x† relative to H? An answer would provide
us with a further direct result complementary to Proposition 4.1.
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One attempt would be using the identity (4.7). To obtain good lower bounds in this way
one has to properly design elements y, related to t and x† as well as to the operator H. This
approach was undertaken in [5], where it could be carried out succesfully. However, some
smart guess must be made and a careful analysis has to be done.

Here we shall propose a procedure which has its origin in the a posteriori choice of regu-
larization parameters in inverse problems, and we refer to [14] for its first use in that context,
and to [11] for the most recent formulation of the Lepskĭı balancing principle. This will result
in a lower bound, by just carrying out some iteration of some specific operator equation. As
will be seen, by doing so we obtain an increasing function.

To be specific enough we shall exhibit this idea at an approach, related to Landweber
iteration, because there it is most conveniently explained. So, let us choose some benchmark
smoothness ϕ(t) = tp with p > 0 large enough and a parameter µ > 0 such that µ‖H‖ < 1.
Now fix the element x† ∈ X and consider the sequence of xk (k = 0, 1, 2, ...) of iterates

x0 := µHx†,

xk := xk−1 + µH(x† − xk−1), k = 1, 2, . . . .
(5.1)

This sequence has the following approximative property with respect to x†, see e.g. [7,
Thm. 5.5].

(5.2) ‖x† − xk‖ ≤ 1

2

(

2γpk
−p

t
+

2%
(H,tp)

x†
(t)

t

)

.

Remark 5.1. This bound is obtained for Landweber iteration, since, with the notation from [7],
the constant γ1 = 1 while γp = (p/(µe))p, is the constant in the qualification of that method,
see e.g. [23, Chapt. 2.2].

Our subsequent analysis uses the terminology and results of [11]. We fix t > 0. Then
we let Ψ(k) := 2γpk

−p/t, k = 1, 2, . . . This function is decreasing and it does not depend on

(properties of) x†. Moreover, a function Φ(k) is called admissible, if together with Ψ(k) it
is suited for a bound like in (5.2). For technical reasons it must satisfy Φ(1) ≤ Ψ(1). Hence

the constant function 2%
(H,tp)

x†
(t)/t is admissible, if 0 < t ≤ t0, where t0 is determined from

t0‖x†‖ + ϕ(a) ≤ γp. We now assign the positive integer

(5.3) j̄ = j̄(t) := max

{

l ∈ N : ‖xm − xl‖ ≤ 4γp
m−p

t
, for all m < l

}

.

For this choice of parameter j̄ the following bound can be proved.

Theorem 5.2. Let the sequences xk be as in (5.1). Given any 0 < t ≤ t0 determine the
corresponding j̄ as in (5.3). Then

(5.4) %
(H,tp)

x†
(t) ≥ γp(j̄ + 1)−p.

Proof. Having fixed any value t ≤ t0, we can apply the Lepskĭı principle. Thus with [11,
Prop. 2] (and the notation from there) we let

j∗∗ := max
{

j ∈ N : there is admissible Φ for which Φ(j) ≤ 2γpj
−p/t

}

,
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and obtain j̄ ≥ j∗∗. Consequently, for the value j̄ + 1, it holds true that 2γp(j̄ + 1)−p/t ≤
Φ(j̄ + 1) for every admissible function. In particular this is true for 2%

(H,tp)

x†
(t)/t, which in

turn yields (5.4), and the proof is complete. �

The above algorithm can be carried out for any value 0 < t ≤ t0. If this is done for a
decreasing sequence then we obtain a decreasing lower bound.

Corollary 5.3. If 0 < s < t ≤ t0 then j̄(t) ≤ j̄(s).

Proof. This is clear from the construction in (5.3), since smaller values of t yield less restrictive
upper bounds. �

Remark 5.4. From Lemma 2.4 we even know that the function must be convex. So it would
be nice to derive related properties for the lower bound.

As a consequence from Corollary 5.3 we may proceed as follows. We design any decreasing
sequence t0 ≥ t1 > t2 > · · · > tm. For the first value t1 the algorithm yields a choice
n1 := j̄(t1) + 1. Then we continue for t2 by checking (5.3) starting from l := n1 to obtain
n2 := j̄(t2) + 1, and so forth. In this way we may lower bound the distance function %x† at
any fine grid.
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