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Abstract
Inverse problems in option pricing are frequently regarded as simple and
resolved if a formula of Black–Scholes type defines the forward operator.
However, precisely because the structure of such problems is straightforward,
they may serve as benchmark problems for studying the nature of ill-posedness
and the impact of data smoothness and no arbitrage on solution properties. In
this paper, we analyse the inverse problem (IP) of calibrating a purely time-
dependent volatility function from a term-structure of option prices by solving
an ill-posed nonlinear operator equation in spaces of continuous and power-
integrable functions over a finite interval. The forward operator of the IP under
consideration is decomposed into an inner linear convolution operator and an
outer nonlinear Nemytskii operator given by a Black–Scholes function. The
inversion of the outer operator leads to an ill-posedness effect localized at
small times, whereas the inner differentiation problem is ill posed in a global
manner. Several aspects of regularization and their properties are discussed. In
particular, a detailed analysis of local ill-posedness and Tikhonov regularization
of the complete IP including convergence rates is given in a Hilbert space setting.
A brief numerical case study on synthetic data illustrates and completes the
paper.

1. Introduction

The past ten years can be considered as a very active period in developing the practice of
pricing structured financial instruments in the context of modern risk management. This
was also the reason for a dramatically growing interest in derivative pricing theory as an
actual part of financial mathematics. Proceeding from the basic papers of Black, Scholes
and Merton [6, 31] stochastic calculus combined with advanced numerical techniques could
be applied successfully for the fair price calculation of options and other financial derivatives
written on an underlying asset in arbitrage-free markets (see, for example, [5, 26, 29] and [33]).
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There also occur inverse option pricing problems aimed at calibrating (identifying) not
directly observable volatilities σ in general as functions depending on time τ and current
asset price X from option prices u observed at the financial market. In particular, the
mathematical background of the so-called volatility smile phenomenon of strike-dependent
implied volatilities is under consideration. Research results concerning inverse problems (IPs)
of option pricing have been intensively published in recent years (see, e.g., [3, 7, 8, 10–13]
and [30]). Most of the papers remark on and motivate the fact that the IPs under consideration
are ill posed in Hadamard’s sense. Frequently they discuss regularizationapproaches for stable
solutions of the IPs without analysing the ill-posedness phenomena of such problems in detail.

Inverse problems in option pricing are frequently regarded as simple and resolved if a
formula of Black–Scholes type defines the forward operator, as in the case of a constant
volatility, where the classical Black–Scholes formula holds. Also purely time-dependent
volatility functions in combination with families of maturity-dependent option prices do not
seem to be of much interest, since the model is rather restricted. But precisely because the
structure of such problems is straightforward, they may serve as benchmark problems for
studying several ill-posedness phenomena occurring in inverse option pricing problems. In
this paper, based on the preliminary studies in [16] and [21], we try to fill a gap in the literature
by analysing ill-posed situations and additional conditions enforcing well-posed subproblems
associated with time-dependent option price and volatility functions in spaces of continuous
and power-integrable functions over a finite time interval. This also provides an insight into
the impact of data smoothness and no arbitrage on solution properties and into the singular
character of at-the-money options. Neither phenomenon becomes apparent if one considers
asset price-dependent volatilities and strike-dependent option prices. We believe that the
analysis of the purely time-dependent case is important as an intermediary step towards the
more general problem of fitting the volatility smile as a whole.

The paper is organized as follows: in the remaining part of the introduction we formulate
in the context of time-dependent functions the option price formula using the Black–Scholes
function and define the specific IP under consideration. The IP consists of solving a nonlinear
operator equation in Banach spaces of real functions defined on a finite interval. The
solution process is decomposed into solving a nonlinear outer operator equation by inverting
a Nemytskii operator and solving a linear inner operator equation by differentiation. Main
properties of the used Black–Scholes function and Nemytskii operator are summarized in
section 2. Based on those properties section 3 deals with the solution of the outer equation
of the IP for smooth option data in spaces of continuous functions. Both ill-posed and, in the
case of arbitrage-free data, well-posed situations occur for this outer equation, whereas the
inner equation acting as numerical differentiation is always ill posed. In section 4 we consider
quasisolutions of the outer equation of the IP and their properties in the case of noisy data in
L p-spaces. Section 5 is devoted to the study of local ill-posedness properties of the complete
ill-posed nonlinear IP in a Hilbert space setting by considering the character of convergence
conditions for the Tikhonov regularization. A brief case study discussion of a discrete approach
in section 6 illustrates and completes the paper.

We consider in this paper a variant of the Black–Scholes model, which is focused on time-
dependent functions over the interval [0, T ] using a generalized geometric Brownian motion
as stochastic process for the price X (τ ) > 0 of an asset, on which options are written. With
constant drift µ ∈ R, time-dependent volatilities σ(τ) > 0 and a standard Wiener process
W (τ ), the stochastic differential equation

dX (τ )

X (τ )
= µ dτ + σ(τ) dW (τ ) (0 � τ � T )
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is assumed to hold. At the initial time τ = 0 let there exist an idealized family of European
vanilla call options written on the asset with current asset price X := X (0) > 0, fixed strike
K > 0, fixed risk-free interest rate r � 0 and remaining times to maturity t continuously
varying between zero and the upper time limit T .

Neglecting the role of dividends and setting for simplicity

a(τ ) := σ 2(τ ) (0 � τ � T ) and S(t) :=
∫ t

0
a(τ ) dτ (0 � t � T )

it follows from stochastic and analytic considerations (for details see, e.g., [29, p 71f.]) that
fair option prices u(t) on arbitrage-free markets are explicitly given by the Black–Scholes-type
formula

u(t) = UBS(X, K , r, t, S(t)) (0 � t � T ). (1)

This formula is based on the Black–Scholes function UBS, which we can define for the variables
X > 0, K > 0, r � 0, τ � 0 and s � 0 as

UBS(X, K , r, τ, s) :=
{

X�(d1)− K e−rτ�(d2) (s > 0)

max(X − K e−rτ , 0) (s = 0)
(2)

with

d1 := ln( X
K ) + rτ + s

2√
s

, d2 := d1 − √
s (3)

and the cumulative density function of the standard normal distribution

�(z) := 1√
2π

∫ z

−∞
e− x2

2 dx . (4)

In the following we always express the volatility term structure of the underlying asset
by the not directly observable volatility function a. Although the formulae (1)–(4) were
originally derived only for positive and Hölder continuous functions a, these formulae also
yield well defined non-negative functions u(t) (0 � t � T ) in the case of not necessarily
continuous but Lebesgue-integrable and almost everywhere finite and non-negative functions
a(τ ) (0 � τ � T ). Namely, such functions a have non-negative and absolutely continuous
primitives S(t) (0 � t � T ), which imply non-negative functions u as a consequence of the
properties of the function UBS listed in lemma 2.1 below.

Now let there be given at time τ = 0 a data function uδ(t) (0 � t � T ) of observed
call option prices as noisy data of the fair price function u(t) (0 � t � T ) according to
formula (1) with a noise level δ � 0. Then we can formulate the IP under consideration aimed
at calibrating the volatility function a as follows.

Definition 1.1 (Inverse problem—IP). Under the assumptions stated above find at time
τ = 0 the time-dependent volatility function a(τ ) (0 � τ � T ) from noisy observations
uδ(t) (0 � t � T ) of the maturity-dependent fair price function u(t) (0 � t � T ).

2. Black–Scholes function and Nemytskii operators

We first summarize the main properties of the Black–Scholes function UBS defined by the
formulae (2)–(4). The results of the following lemma can be proven straightforwardly by
elementary calculations.
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Lemma 2.1. Let the parameters X > 0, K > 0 and r � 0 be fixed. Then the non-
negative function UBS(X, K , r, τ, s) is continuous for (τ, s) ∈ [0,∞)× [0,∞). Moreover, for
(τ, s) ∈ [0,∞)× (0,∞), this function is continuously differentiable with respect to τ , where
we have

∂UBS(X, K , r, τ, s)

∂τ
= r K e−rτ�(d2) � 0, (5)

and twice continuously differentiable with respect to s, where we have with ν := ln( X
K )

∂UBS(X, K , r, τ, s)

∂s
= �′(d1)X

1

2
√

s

= X

2
√

2πs
exp

(
− [ν + rτ ]2

2s
− [ν + rτ ]

2
− s

8

)
> 0 (6)

and

∂2UBS(X, K , r, τ, s)

∂s2
= −�′(d1)X

1

4
√

s

(
− [ν + rτ ]2

s2
+

1

4
+

1

s

)

= − X

4
√

2πs

(
− [ν + rτ ]2

s2
+

1

4
+

1

s

)
exp

(
− [ν + rτ ]2

2s
− [ν + rτ ]

2
− s

8

)
. (7)

Furthermore, we find the limit conditions

lim
s→0

∂UBS(X, K , r, τ, s)

∂s
=

{
∞ (X = K e−rτ )

0 (X �= K e−rτ )
(8)

and

lim
s→∞ UBS(X, K , r, τ, s) = X. (9)

On the other hand, the partial derivative

∂UBS(X, K , r, τ, s)

∂K
= −e−rτ�(d2) < 0 (10)

exists and is continuous for (τ, s) ∈ [0,∞)× (0,∞).

The Black–Scholes function UBS allows us to define a Nemytskii operator N by the formula

[N(v)](t) := UBS(X, K , r, t, v(t)) (0 � t � T ). (11)

This operator

N : D+ := {v(t)(0 � t � T ) : v(t) � 0} −→ D+ (12)

mapping the set D+ of non-negative functions over the interval [0, T ] into itself will help verify
the nature of the IP below.

From formula (6) of lemma 2.1 we obtain ∂UBS(X,K ,r,τ,s)
∂s > 0 for all (τ, s) ∈ [0, T ]×(0,∞)

and hence the following lemma.

Lemma 2.2. The Nemytskii operator N defined by formulae (11) and (12) is injective on its
domain D+.

In general (see, e.g., [1, p 15]), a Nemytskii operator N : v(t) �→ k(t, v(t)) applied
to real-valued scalar functions v(t) is defined by a kernel function k(t, s), where t varies
in a finite interval I ⊂ R and s varies in R. If s �→ k(t, s) is continuous for almost
every t ∈ I and t �→ k(t, s) is measurable for all s ∈ R, the Nemytskii operator
satisfies the Carathéodory condition. If the Nemytskii operator moreover satisfies a growth
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condition |k(t, s)| � c1 + c2|s|p/q with positive constants c1 and c2, then it maps continuously
from L p(I ) to Lq(I ) for 1 � p, q < ∞ (see, e,g, [1, theorem 2.2]). In the context of
formula (11) we set I := [0, T ] and

k(t, s) := UBS(X, K , r, t, s) (s � 0), k(t, s) := UBS(X, K , r, t, 0) (s < 0).

From lemma 2.1 it follows that the function UBS(X, K , r, t, s) generating the Nemytskii
operator N is continuous and uniformly bounded with |UBS(X, K , r, t, s)| < X due to the
formulae (6) and (9) for all (t, s) ∈ [0, T ] × [0,∞). Then the Carathéodory condition and a
growth condition are satisfied and we have continuity of N between spaces of power-integrable
functions on the interval [0, T ] as the following lemma asserts.

Lemma 2.3. The Nemytskii operator N defined by formula (11) with domain D+ ∩ L p(0, T )
maps continuously from L p(0, T ) to Lq(0, T ) for all 1 � p, q < ∞.

As obvious throughout this paper we denote by L p(a, b) (1 � p < ∞) the Banach
space of p-power integrable real functions x(t) (a � t � b) with the norm ‖x‖L p(a,b) :=
(
∫ b

a |x(t)|p dt)1/p, by L∞(a, b) the Banach space of essentially bounded real functions on
the interval (a, b) with the norm ‖x‖L∞(a,b) := ess sup t∈(a,b) |x(t)| and by C[a, b] the
Banach space of continuous real functions defined on [a, b] with the norm ‖x‖C[a,b] :=
maxt∈[a,b] |x(t)|.

If we restrict the domain of N to the set

D0 := {v ∈ C[0, T ] : v(0) = 0, v(t) � 0 (0 < t � T )},
then because of lemma 2.1 we have

N : D0 ⊂ C[0, T ] −→ D+ ∩ C[0, T ].

Using the substitutions w := √
v
t as well as �(t, w) := UBS(X, K , r, t, v) we derive for all

t > 0 and w > 0

0 <
∂�(t, w)

∂w
= X

√
t�′(d̄1) � X

√
t√

2π
with

d̄1 := ln( X
K ) + t (r + w2

2 )√
tw

.

Consequently, for functions v1, v2, w1, w2 ∈ D0 with vi (t) = tw2
i (t) (i = 1, 2) there are

pointwise estimations

|[N(v1)](t)− [N(v2)](t)| �
∣∣∣∣∂�(t, wt)

∂w

∣∣∣∣ 1√
t

∣∣∣√v1(t)− √
v2(t)

∣∣∣ (0 < t � T )

with an intermediate value wt between w1(t) and w2(t) and

|[N(v1)](t)− [N(v2)](t)| � X√
2π

∣∣∣√v1(t)− √
v2(t)

∣∣∣ (0 � t � T ). (13)

From (13) we directly obtain the following.

Lemma 2.4. The Nemytskii operator N defined by formula (11) with domain D0 maps
continuously from C[0, T ] to C[0, T ].

If we denote by B1, B2 and B3 Banach spaces of functions defined on the interval [0, T ],
then we can write the IP as a nonlinear operator equation

F(a) = u (a ∈ D(F) ⊂ B1, u ∈ D+ ∩ B2), (14)
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where the nonlinear operator

F = N ◦ J : D(F) ⊂ B1 −→ B2

with domain

D(F) := {ã ∈ L1(0, T ) ∩ B1 : ã(t) � 0 a.e. in [0, T ]}
is decomposed into the inner linear convolution operator J : B1 −→ B3 with

[J (h)](t) :=
∫ t

0
h(τ ) dτ (0 � t � T ) (15)

and the outer nonlinear Nemytskii operator N : D+ ∩ B3 ⊂ B3 −→ B2 defined by (11).
Consequently, the problem of solving the operator equation (14) can be decomposed into

solving, successively, the nonlinear outer operator equation

N(S) = u (S ∈ D+ ∩ B3, u ∈ D+ ∩ B2) (16)

and the linear inner operator equation

J (a) = S (a ∈ D(F) ⊂ B1, S ∈ D+ ∩ B3). (17)

For our domain D(F), all functions of the range J (D(F)) are absolutely continuous, non-
negative and nondecreasing and belong to the set

D↗
0 := {S̃ ∈ C[0, T ] : S̃(0) = 0, S̃(t1) � S̃(t2) (0 � t1 < t2 � T )} ⊂ D0 ⊂ D+.

Therefore the inner equation (17) is only solvable if the solution S of the outer equation (16)
belongs to D↗

0 .
Note that the composition F = N ◦ J under consideration in this paper is reverse to the

situation discussed in [27, chapter 7.5], where as occurring in the case of Hammerstein integral
equations nonlinear composite operators F̃ = A ◦ N with an inner Nemytskii and an outer
bounded linear operator A are analysed.

To solve forward problems of computing maturity-dependent price functions û(t) :=
UBS(X̂ , K̂ , r̂ , t, S(t)) (0 � t � T ) of European vanilla call options with varying parameters
X̂ , K̂ and r̂ based on the solution of the IP it is sufficient to determine the auxiliary function
S from the outer equation (16). In view of the continuity of Nemytskii operators N under
consideration here (see lemma 2.4), the problems of finding û from S are well posed if we
measure the deviations of S and û in the maximum norm. On the other hand, the volatility
function a(t) (0 � t � T ) itself is not used explicitly for computing û. As the subsequent
section will show, this is an advantage. Namely, for arbitrage-free option data uδ of the fair
price function u the outer equation (16) is well posed in a C-space setting. However, the inner
equation (17) aimed at finding the derivative a(t) = S′(t) (0 � t � T ) of the function S is ill
posed in usual Banach spaces B1 and B3 of integrable or continuous functions on the interval
[0, T ] and leads to ill-conditioned problems after discretization (see, e.g., [18]). In the Hilbert
space setting B1 = B3 = L2(0, T ) the differentiation problem is weakly ill posed and has an
ill-posedness degree of one (see, e.g., [28, p 235] and [22, p 33ff]).

Note that for the practitioners it is preferably of interest to solve the complete IP, since
the calibration of volatility functions a is required for pricing American or exotic options by
solving initial boundary value problems of parabolic PDEs, where the volatilities occur as
parameters in the differential equation. The stable approximate solution of the overall IP is
discussed in section 5 below.

Throughout this paper we only analyse the IP for calls. Since out-of-the-money option
prices are more informative regarding the unknown volatilities than in-the-money option prices,
it could be helpful to calibrate from real data of put options in the case X > K . Since for call
prices ucall and associated put prices uput with fixed parameters X, K , r and the same maturity
t the usual put–call parity relation uput(t) = ucall(t)− X + K e−rt holds (see, e.g., [29, p 121]),
the results of the call analysis can be easily transformed to the put case.
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3. Solving the outer equation of the IP in C-spaces for smooth and arbitrage-free option
data

In this section we are going to solve with B2 = B3 = C[0, T ] the outer equation (16) of the
IP for a given function uδ(t) (0 � t � T ) of observed option price data that approximate the
fair price function u = F(a) = N(S). Let the admissible volatility functions possess in the
following a positive essential infimum, i.e., we assume a ∈ D∗(F), where

D∗(F) := {ã ∈ L1(0, T ) : ess inf
t∈(0,T )

ã(t) > 0}.

Moreover, let the data uδ satisfy the following assumption, which is reasonable for data in an
arbitrage-free market (see, e.g., [31]).

Assumption 3.1. The data function uδ(t) (0 � t � T ) is assumed to be continuous and strictly
increasing with

uδ(0) = max(X − K , 0), max(X − K e−rt , 0) < uδ(t) < X (0 < t � T ). (18)

Note that the assumption 3.1 is satisfied for all functions uδ belonging to the range
F(D∗(F)). Namely, the range J (D∗(F)) consists of strictly increasing functions S̃ = J (ã)
with a minimum growth rate S̃(t) � ct (0 � t � T ) and c := ess inf t∈(0,T ) ã(t) > 0.
Consequently, due to lemma 2.1 the continuous functions ũ of the range F(D∗(F)) are strictly
increasing and fulfil a condition of type (18).

For noisy data uδ the outer equation (16) can be rewritten as

UBS(X, K , r, t, Sδ(t)) = uδ(t) (0 � t � T ). (19)

If there exists a solution Sδ ∈ D+ of equation (19) for given data uδ, then from the
injectivity of the Nemytskii operators N (see lemma 2.2) it follows that this solution is unique.
Moreover, the following theorem shows that we can even find a uniquely determined function
Sδ ∈ D0 ⊂ C[0, T ] satisfying (19).

Theorem 3.2. Under the assumption 3.1 there exists a uniquely determined continuous
function Sδ(t) (0 � t � T ) with Sδ(0) = 0 and 0 < Sδ(t) � S̄ (0 < t � T ) solving
the equation (19), where S̄ satisfies the equation UBS(X, K , r, 0, S̄) = uδ(T ) = ‖uδ‖C[0,T ].

Proof. As a consequence of lemma 2.1 the function k(t, s) := UBS(X, K , r, t, s) with

∂k(t, s)

∂ t
� 0 and

∂k(t, s)

∂s
> 0

is continuous in both variables t and s, nondecreasing with respect to t and strictly increasing
with respect to s for (t, s) ∈ [0, T ] × (0,∞). Moreover, we have for all t ∈ (0, T ]

lim
s→0

k(t, s) = k(t, 0) = max(X − K e−rt , 0) < lim
s→∞ k(t, s) = X

(see the formulae (2) and (9)). Since the data uδ with uδ(t) � uδ(T ) (0 � t � T ) satisfy the
condition (18), from the family of equations

k(t, s) = uδ(t) (20)

in s, where the parameter t varies in the interval [0, T ], we find in a unique manner values
s = Sδ(t) > 0 for all t ∈ (0, T ] and s = Sδ(0) = 0 for t = 0 because of k(0, 0) = uδ(0).
The value S̄ satisfying k(0, S̄) = uδ(T ) is also uniquely determined. From the estimation
k(0, Sδ(t)) � k(t, Sδ(t)) = uδ(t) � uδ(T ) = k(0, S̄) we get Sδ(t) � S̄. Finally, the
continuity of the function Sδ(t) (0 � t � T ) follows from the implicit function theorem
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(see, e.g., [17, p 421]) considering that k(t, s) is continuous in both variables and strictly
monotonic with respect to s. This proves the theorem. �

Note that the functions Sδ provided by theorem 3.2 are not necessarily monotonic. We
will evaluate pointwise for 0 < t � T the error |Sδ(t) − S(t)| of the continuous positive
function Sδ(t) with limt→0 Sδ(t) = 0 thus obtained, by using the formula

|Sδ(t)− S(t)| =
(
∂UBS(X, K , r, t, Sim(t))

∂s

)−1

|uδ(t)− u(t)|, (21)

where Sim(t) ∈ [min(Sδ(t), S(t)),max(Sδ(t), S(t))] is a positive intermediate function
influencing the error amplification factor

ϕ(t) :=
(
∂UBS(X, K , r, t, Sim(t))

∂s

)−1

> 0 (0 < t � T ).

With limt→0 Sim(t) = 0 we obtain from formula (6) in the case X �= K the limit conditions

lim
t→0

1√
Sim(t)

exp

(
− [ln( X

K ) + r t]2

2Sim(t)

)
= 0

and consequently

lim
t→0

ϕ(t) = ∞ (X �= K ) (22)

for the error amplification factor. That means, in the case X �= K , the problem of determining
Sδ from data uδ satisfying the assumption 3.1 is ill posed in a C-space setting. The ill-posedness
is locally concentrated in a neighbourhood of t = 0. As a consequence of (22), for X �= K
and sufficiently small t , the errors |Sδ(t) − S(t)| may remain large, although the data errors
‖uδ−u‖C[0,T ] get arbitrarily small. In practice the approximate solutions Sδ(t) tend to oscillate
for small t in such a data situation (see also figures 3 and 4 in section 6).

On the other hand, the case X = K is more ambiguous. Namely, in that case
1√

Sim(t)
exp(− r2 t2

2Sim(t)
) tends to infinity as t → 0 whenever we have an inequality of the form

Sim(t) � Ct2 (0 � t � T ) with a constant C > 0 and we get from formula (6) the reverse
limit condition

lim
t→0

ϕ(t) = 0 (X = K ) (23)

for the amplification factor. If however lim inf t→0
1√

Sim(t)
exp(− r2t2

2Sim(t)
) = 0, then for X = K

we obtain lim supt→0 ϕ(t) = ∞.
Closely connected with the limit jump in formula (8) we find a jump situation by comparing

the formulae (22) and (23). At-the-money options with X = K represent a singular situation,
since the instability of the outer equation at t = 0 for in-the-money options and out-of-the-
money options expressed by formula (22) disappears if formula (23) holds. Such a singular
behaviour of at-the-money options seems to be well known in finance. Namely, for a constant
volatility σ , the frequently used option measure theta written in our terms as


(t) := d

d(−t)
UBS(X, K , r, t, S(t)) with S(t) = σ 2t

explodes to −∞ as the time to maturity t tends to zero if and only if X = K (see figure 13.6
in [26, p 321]).

The ill-posedness effect just described in particular for X �= K as well as the missing
monotonicity of Sδ can be overcome for the outer equation by posing a further assumption.
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Assumption 3.3. In addition to assumption 3.1 the data function uδ(t) is assumed to be
continuously differentiable for 0 < t � T with

(uδ)′(t)− Kre−rt�

(
ln( X

K ) + r t − Sδ(t)
2√

Sδ(t)

)
� 0 (0 < t � T ), (24)

where uδ implies the function Sδ ∈ D0 with Sδ(t) > 0 for t > 0 via equation (19) in a unique
manner.

The condition (24) is also a consequence of an arbitrage-free market. Namely, by
comparing appropriate portfolios it can be shown that option prices u(K , t) at time τ = 0
considered as differentiable functions of strike price K and maturity t satisfy inequalities of
the form (see [2, p 11])

∂u(K , t)

∂ t
+ Kr

∂u(K , t)

∂K
� 0. (25)

For the IP we have u(K , t) = UBS(X, K , r, t, S(t)), where ∂u(K ,t)
∂ t = u′(t) and with (10)

∂u(K , t)

∂K
= ∂UBS(X, K , r, t, S(t))

∂K
= −e−rt�

(
ln( X

K ) + r t − S(t)
2√

S(t)

)
.

Consequently, the inequality (25) attains here the form (24).

Theorem 3.4. Under the assumptions 3.1 and 3.3 the uniquely determined solution Sδ of
equation (19) with Sδ(0) = 0 and Sδ(t) > 0 (0 < t � T ) is a nondecreasing and absolutely
continuous function with a continuous and integrable derivative (Sδ)′(t) � 0 (0 < t � T ),
where Sδ(t) = ∫ t

0 (S
δ)′(τ ) dτ (0 < t � T ) and

(Sδ)′(t) = 2
√

Sδ(t)[(uδ)′(t)− Kre−rt�(d∗
2 )]

�′(d∗
1 )X

� 0 (0 < t � T ) (26)

with

d∗
1 := ln( X

K ) + r t + Sδ (t)
2√

Sδ(t)
, d∗

2 := d∗
1 −

√
Sδ(t).

Proof. Considering the formulae (5), (6) and (24) for 0 < t � T from the implicit
function theorem (see, e.g., [17, p 423ff]) we obtain continuous differentiability of Sδ with
(Sδ)′(t) � 0 and formula (26). Hence Sδ(t) (0 � t � T ) is nondecreasing and based
on [32, theorems 4 and 5, p 236f] we have an integrable derivative (Sδ)′ ∈ L1(0, T ) with∫ t

0 (S
δ)′(τ ) dτ � Sδ(t)− Sδ(0) = Sδ(t) (0 � t � T ). Choosing ε from the interval 0 < ε < t

we get ∫ t

0
(Sδ)′(τ ) dτ =

∫ ε

0
(Sδ)′(τ ) dτ + Sδ(t)− Sδ(ε) = Sδ(t)

and absolute continuity of Sδ , since
∫ ε

0 (S
δ)′(τ ) dτ − Sδ(ε) is a constant and tends to zero as

ε → 0. This proves the theorem. �
As a consequence of theorem 3.4 we obtain for arbitrage-free and sufficiently smooth

option price data uδ(t) (0 � t � T ) by solving equation (19) a function Sδ ∈ D↗
0 , which

is continuously differentiable for positive t and provides an integrable volatility function
aδ(t) := (Sδ)′(t) � 0 (0 < t � T ). The function aδ(t) is continuous for t > 0, but
may tend to infinity as t tends to zero.

The next theorem will show that solving the equation (19) for smooth arbitrage-free data
uδ is a well-posed problem for the Banach spaces B2 = B3 = C[0, T ]. That means that
making option price data uδ free of arbitrage acts as a specific variant of regularization for the
outer equation (16).
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Theorem 3.5. Let {un = N(Sn)}∞n=1 with N from formula (11) be a sequence of arbitrage-
free noisy option price functions satisfying the assumptions 3.1 and 3.3 that converges in the
Banach space B2 = C[0, T ] to the fair option price function u = N(S). Then the associated
sequence of functions {Sn}∞n=1 also converges to S in the Banach space B3 = C[0, T ].

Proof. In view of the positivity and continuity of the partial derivative

∂UBS(X, K , r, t, s)

∂s
on the domain (t, s) ∈ [0, T ] × (0,∞) (see lemma 2.1) we have,

for fixed t ∈ (0, T ],

|Sn(t)− S(t)| �
(
∂UBS(X, K , r, t, Sim(t))

∂s

)−1

|un(t)− u(t)|

with intermediate values Sim(t) between the positive values Sn(t) and S(t). Now, for given
sufficiently small ε > 0 we choose tε ∈ (0, T ] such that S(tε) = ε

4 . Since the function UBS is
increasing with respect to s > 0, the functions Sn and S are increasing for t ∈ [tε, T ] and there
holds limn→∞ un(tε) = u(tε) > max(X − K ertε , 0) as well as limn→∞ un(T ) = u(T ) < X ,
we find 0 < Smin < Smax < ∞ and a positive integer n1 depending on ε such that

Smin � Sn(t) � Smax, Smin � S(t) � Smax (tε � t � T, n � n1).

Then we obtain

‖Sn − S‖C[tε ,T ] � C‖un − u‖C[tε ,T ] (n � n1(ε))

with the constant

C := max
(t,s)∈[tε,T ]×[Smin,Smax]

(
∂UBS(X, K , r, t, s)

∂s

)−1

.

Moreover, there exists an integer n2 depending on ε with

|un(t)− u(t)| � ε

2C
(0 � t � T, n � n2).

This provides

‖Sn − S‖C[tε ,T ] � ε

2
(n � max(n1, n2)).

Using the growth of the functions Sn and S (see theorem 3.4) and the triangle inequality we
get for n � max(n1, n2) the estimations

‖Sn − S‖C[0,tε ] � Sn(tε) + S(tε) � |Sn(tε)− S(tε)| + 2S(tε) � ε

2
+
ε

2
= ε

and

‖Sn − S‖C[0,T ] � ε,

which prove the theorem. �

Note that for nil interest rates r = 0 and data functions uδ(t) continuously differentiable
for 0 < t � T the assumption 3.3 is reduced to a data monotonicity with respect to t .
If, moreover, strictly increasing data functions are required as in assumption 3.1, then the
function Sδ = J (aδ) of theorem 3.4 is also strictly increasing and corresponds to a strictly
positive volatility function aδ(t) > 0 (0 < t � T ).
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4. Solving the outer equation of the IP in Lp-spaces for noisy option data

In this section we measure deviations of the functions uδ and Sδ from u and S on the
interval [0, T ] by means of L p-norms. We consider the Banach spaces B2 = Lq(0, T ) and
B3 = L p(0, T ) with 1 � p, q < ∞ for the outer equation (16) of the IP.

The positive data function uδ(t)(0 � t � T ) of observed maturity-dependent option
prices is not necessarily smooth and arbitrage free in the sense of assumptions 3.1 and 3.3, but
it satisfies assumption 4.1.

Assumption 4.1. The non-negative data function uδ ∈ Lq(0, T ) (1 � q < ∞) is
approximated by the estimate

‖uδ − u‖Lq (0,T ) � δ (27)

the fair option price function u = F(a) = N(S) for a given noise level δ > 0. Moreover, let
a ∈ L∞(0, T ) hold for the volatility function, where we assume an upper bound c̄ � ‖a‖L∞(0,T )
implying 0 � S(t) � κ (0 � t � T ) with κ := c̄T .

We apply a variant of the method of quasisolutions exploiting the fact that

Dκ
+ := {S̃ ∈ D+ : 0 � S̃(t) � κ (0 � t � T ), S̃(t1) � S̃(t2) (0 � t1 < t2 � T )}

is a compactum in the Banach space L p(0, T ) (1 � p < ∞) (see, e.g., [4, example 3, p 26]).
As an approximate solution of the outer equation (16) we use a quasisolution associated with
the data uδ, which is a minimizer Sδ ∈ Dκ

+ of the extremal problem

‖N(S̃)− uδ‖Lq (0,T ) −→ min, subject to S̃ ∈ Dκ
+ .

Then we can prove the following convergence assertion.

Theorem 4.2. Let {Sδn }∞n=1 be a sequence of quasisolutions associated with a sequence of
data {uδn }∞n=1 satisfying the inequality (27), where δn → 0 as n → ∞. Then the convergence
properties

lim
n→∞ ‖Sδn − S‖L p(0,T ) = 0 (1 � p < ∞) (28)

and

lim
n→∞ ‖Sδn − S‖L∞(0,γ ) = 0 for all 0 < γ < T (29)

hold.

Proof. Since the Nemytskii operator

N : Dκ
+ ⊂ L p(0, T ) −→ Lq(0, T )

is injective and continuous (see lemmas 2.2 and 2.3), we obtain the first limit condition (28)
immediately from Tikhonov’s lemma on the continuity of the inverse of an operator, which
is injective, continuous and defined on a compactum (see, e.g., [4, lemma 2.2]). Moreover,
from [4, theorem 2.8] based on the continuity of the function S we can formulate a further
limit condition

lim
n→∞ ‖Sδn − S‖L∞(β,γ ) = 0 for all 0 < β < γ < T, (30)

where the approximate solution Sδn ∈ Dκ
+ may have discontinuities. Using the triangle

inequality and the growth of the functions S and Sδn we find

‖Sδn − S‖L∞(0,β) � Sδn (β) + S(β) � ‖Sδn − S‖L∞(β,γ ) + 2S(β)
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for arbitrarily small values β > 0. For any given ε > 0 there is a value β0 > 0 such that
S(β0) <

ε
4 , since limβ→0 S(β) = 0. For sufficiently large n we moreover have with (30)

‖Sδn − S‖L∞(β0,γ ) <
ε
2 and hence ‖Sδn − S‖L∞(0,γ ) < ε. This implies the limit condition (29)

and proves the theorem. �

Note that the set Dκ
+ ⊂ L∞(0, T ) fails to be a compactum in the Banach space L∞(0, T ).

Therefore the uniform convergence of approximate solutions Sδ to S cannot be shown on the
whole interval [0, T ]. Moreover, the Lq -data uδ do not allow pointwise error estimations as
given in formula (21).

The stabilization approach for the outer problem discussed in this section is a variant of
descriptive regularization using the monotonicity of S as a priori information. On the other
hand, constraints of the form a(t) � 0 or 0 � a(t) � c̄ < ∞ a.e. on [0, T ] are not able to
stabilize the solution process sufficiently. Therefore, the reconstruction of a ∈ L1(0, T ) from
data Sδ ∈ L p(0, T ) by solving the inner equation (17) is always an unstable component in
solving the IP and requires an additional regularization.

5. On Tikhonov regularization in L2

Now we are going to study ill-posedness properties of the complete ill-posed nonlinear
IP written as operator equation (14) in the Hilbert space setting B1 = B2 = L2(0, T )
by considering the behaviour of Tikhonov regularization with respect to convergence and
convergence rates along the lines of the seminal paper [15] (see also [14]). In particular, we
deal with the operator equation

F(a) = u (a ∈ D†(F) ⊂ L2(0, T ), u ∈ D+ ∩ L2(0, T )), (31)

where the domain of the nonlinear operator F = N ◦ J is restricted to

D†(F) := {ã ∈ L2(0, T ) : ess inf
t∈(0,T )

ã(t) � c > 0}

with a given uniform positive lower bound c. Since J : L2(0, T ) → L2(0, T ) defined by
formula (15) is a compact linear operator (see, e.g., [28, p 235]) and N : D+ ∩ L2(0, T ) ⊂
L2(0, T ) → L2(0, T ) defined by formula (11) is a continuous nonlinear operator as a
consequence of lemma 2.3, the composite nonlinear operator F = N ◦ J : D†(F) ⊂
L2(0, T ) → L2(0, T ) is also compact and continuous. Then based on results of section 2
we have the following lemma.

Lemma 5.1. The nonlinear operator F : D†(F) ⊂ L2(0, T ) → L2(0, T ) possessing a convex
and weakly closed domain D†(F) is injective, compact, continuous, weakly continuous and
consequently weakly closed, and the inverse operator F−1 defined on F(D†(F)) exists.

Then proposition A.3 of [15] applies and we can formulate the following as a corollary of
lemma 5.1.

Corollary 5.2. For a given right-hand side u ∈ F(D†(F)) the operator equation (31) has a
uniquely determined solution a ∈ D†(F). For any ball Br (a) with centre a and radius r > 0
there exists a sequence {an}∞n=1 ⊂ Br (a) ∩ D†(F) with

an ⇀ a but an �→ a and F(an) → u in L2(0, T ) as n → ∞.

Thus, equation (31) is locally ill posed in the sense of [25, definition 2] and F−1 is not
continuous in u.
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Consequently, a regularization is required for the stable approximate solution of (31). We
consider for data uδ with

‖uδ − u‖L2(0,T ) � δ

and a fixed initial guess a∗ ∈ L2(0, T ) Tikhonov regularized solutions aδα as minimizers of

‖F(ã)− uδ‖2
L2(0,T ) + α‖ã − a∗‖2

L2(0,T ) −→ min, subject to ã ∈ D†(F),

which exist for all regularization parameters α > 0 and stably depend on the data uδ

(see [15, theorem 2.1]). Moreover, for

αn = αn(δn) → 0 and
δ2

n

αn(δn)
→ 0 as δn → 0 for n → ∞

any sequence {aδn
αn

}∞n=1 converges to a in L2(0, T ) (see [15, theorem 2.3]).
Now we analyse the usual sufficient conditions for obtaining a convergence rate

‖aδα − a‖L2(0,T ) = O(
√
δ). (32)

Using a well known modification of theorem 2.4 in [15] we have the following proposition.

Proposition 5.3. Under the conditions stated above we obtain for the parameter choice α ∼ δ

a convergence rate (32) of the Tikhonov regularization if there exists a continuous linear
operator

G : L2(0, T ) → L2(0, T )

with adjoint G∗ and a positive constant L such that

(i) ‖F(ã)− F(a)− G(ã − a)‖L2(0,T ) � L
2 ‖ã − a‖2

L2(0,T ) for all ã ∈ D†(F),

(ii) there exists a function w ∈ L2(0, T ) satisfying a − a∗ = G∗w and
(iii) L‖w‖L2(0,T ) < 1.

If there exists a continuous linear operator G mapping in L2(0, T ) and satisfying condition
(i) in proposition 5.3, then it can be considered as the Fréchet derivative F̃ ′(a) at the point a
of an operator F̃ , for which F is the restriction to the domain D†(F) with an empty interior
in the sense of [14, remark 10.30]. Following the ideas of [23], in particular the strength of
requirements (ii) and (iii) yields information about the possibly locally varying ill-posedness
character of the IP. If the derivative G at the point a ∈ D†(F) exists in the case of equation (31),
it is compact as a consequence of the compactness of F (cf [9, p 101]). Then the decay rate
of the ordered singular values θi(G) of G to zero as i → ∞ determines the local degree of
ill-posedness (cf [25, section 3]) of (31) at the point a.

The operator G can be derived as a (formal) Gâteaux derivative by the limits

[G(h)](t) = lim
ε→0

[F(a + εh)](t)− [F(a)](t)

ε

a.e. on [0, T ] for ε > 0 and admissible directions h ∈ L2(0, T ). With k(t, s) =
UBS(X, K , r, t, s) we can write that limit for 0 < t � T as

lim
ε→0

[F(a + εh)](t)− [F(a)](t)

ε

= lim
ε→0

k(t, S(t) + ε[J (h)](t))− k(t, S(t))

ε
= lim

ε→0

∂k(t,Sεim(t))
∂s ε[J (h)](t)

ε

=
(

lim
ε→0

∂k(t, Sεim(t))

∂s

)
[J (h)](t) = ∂k(t, S(t))

∂s
[J (h)](t),
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where Sεim is an intermediate function satisfying the inequalities

min(S(t), S(t) + ε[J (h)](t)) � Sεim(t) � max(S(t), S(t) + ε[J (h)](t)).

This limiting process leads to a composition G = M ◦ J of the convolution operator J with a
multiplication operatorM described by a multiplier function m in the form

[G(h)](t) = m(t)[J (h)](t) (0 � t � T, h ∈ L2(0, T )). (33)

The multiplier function attains the form

m(0) = 0, m(t) = ∂UBS(X, K , r, t, S(t))

∂s
> 0 (0 < t � T ) (34)

with S = J (a) and we can prove the following.

Theorem 5.4. In the case X �= K , the linear operator G defined by the formulae (33) and (34)
maps continuously in L2(0, T ) with m ∈ L∞(0, T ). Then condition (i) of proposition 5.3 is
satisfied with a constant

L = T C2, where C2 := sup
(t,s)∈Mc

∣∣∣∣∂2UBS(X, K , r, t, s)

∂s2

∣∣∣∣ < ∞

is determined from the set

Mc := {(t, s) ∈ R
2 : s � ct, 0 < t � T }.

Proof. To prove the continuity of G = M ◦ J in L2(0, T ) with the continuous convolution
operator J , it is sufficient to show m ∈ L∞(0, T ), since then the multiplication operator M is
also continuous in L2(0, T ). From formula (6) we obtain for (t, s) ∈ [0, T ] × (0,∞) in the
case X �= K the estimate∣∣∣∣∂UBS(X, K , r, t, s)

∂s

∣∣∣∣ �
√

X K

8π

1√
s

exp

(
− [ln( X

K ) + r t]2

2s

)
.

This implies for (t, s) ∈ Mc∣∣∣∣∂UBS(X, K , r, t, s)

∂s

∣∣∣∣ �
√

X K

8π

(
K

X

) r
c 1√

s
exp

(
− [ln( X

K )]
2

2s

)
. (35)

The right-hand expression in inequality (35) is continuous with respect to s ∈ (0,∞) and tends
to zero as s → 0 and as s → ∞. With a finite constant C1 := sup(t,s)∈Mc

| ∂UBS(X,K ,r,t,s)
∂s | < ∞

we have m ∈ L∞(0, T ), where ‖m‖L∞(0,T ) � C1 comes from the inequality S(t)� ct (0 � t �
T ), which is a consequence of a ∈ D†(F). In order to prove condition (i) of proposition 5.3
we verify the structure of the second derivative ∂2UBS(X,K ,r,t,s)

∂s2 from formula (7). Similar
considerations as in the case of the first derivative also show the existence of a constant
C2 := sup(t,s)∈Mc

| ∂2UBS(X,K ,r,t,s)
∂s2 | < ∞. Then we can estimate with S = J (a), S̃ = J (ã) and

a, ã ∈ D†(F) for all t ∈ (0, T ]:

|[F(ã)− F(a)− G(ã − a)](t)|
=

∣∣∣∣UBS(X, K , r, t, S̃(t))− UBS(X, K , r, t, S(t))

− ∂UBS(X, K , r, t, S(t))

∂s
(S̃(t)− S(t))

∣∣∣∣
= 1

2

∣∣∣∣∂2UBS(X, K , r, t, Sim(t))

∂s2
(S̃(t)− S(t))2

∣∣∣∣ � C2

2

(∫ t

0
(ã(τ )− a(τ )) dτ

)2

,
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where Sim with min(S̃(t), S(t)) � Sim(t) � max(S̃(t), S(t)) for 0 < t � T is an intermediate
function such that the pairs of real numbers (t, S̃(t)), (t, S(t)) and (t, Sim(t)) all belong to the
set Mc. By applying Schwarz’s inequality this provides

‖F(ã)− F(a)− G(ã − a)‖L2(0,T ) � T C2

2
‖ã − a‖2

L2(0,T )

and hence the required condition (i), which proves the theorem. �
For X �= K the nature of local ill-posedness of (31) at a point a ∈ D†(F) arises from two

components, namely from the global decay rate of singular values θi(J ) ∼ 1/ i of the linear
integral operator J forming the compact part in G and from the local decay rate of m(t) → 0 as
t tends to zero of the multiplication operator M as the noncompact part in G. Both components
will occur again in the following if we consider the source condition (ii) and the closeness
condition (iii) of proposition 5.3.

In order to interpret the conditions (ii) and (iii) in the case X �= K , we write (ii) as

(a − a∗)(t) =
∫ T

t
m(τ )w(τ) dτ (0 � t � T, w ∈ L2(0, T )) (36)

using the equations G∗ = J ∗ ◦ M∗ = J ∗ ◦ M and [J ∗(h)](t) = ∫ T
t h(τ ) dτ (0 � t � T ).

Formula (36) directly implies

(a − a∗)(T ) = 0 and
(a − a∗)′

m
∈ L2(0, T ) (37)

with a difference a−a∗ ∈ H 1(0, T ), for which the generalized derivative belongs to a weighted
L2-space with a weight 1

m �∈ L∞(0, T ). The closeness condition (iii) then attains the form∥∥∥∥ (a − a∗)′

m

∥∥∥∥
L2(0,T )

<
1

L
. (38)

The right-hand condition in (37) and condition (38) express the character of ill-posedness
of (31) at the point a as smoothness and smallness requirements on the difference a − a∗.

Following the concept of ill-posedness rates developed in [24, section 4] for IPs including
multiplication operators it should be noted that we have an exponential growth rate of

1
m(t) → ∞ as t → 0. Based on formula (6) we derive for X �= K

1

m(t)
= K

√
S(t) exp(ψ(t)) (0 < t � T )

with a constant K > 0 and

ψ(t) = ν2

2S(t)
+

r2t2

2S(t)
+
νr t

S(t)
+
ν

2
+

r t

2
+

S(t)

8
, ν := ln

(
X

K

)
�= 0.

For S ∈ I (D†(F)) we have ct � S(t) � c̄
√

t (0 � t � T ) with c̄ := ‖a‖L2(0,T ). This implies
for positive constants K and K̄ the estimates

K
√

t exp

(
ν2

2c̄
√

t

)
� 1

m(t)
� K̄ 4

√
t exp

(
ν2

2ct

)
(0 < t � T ) (39)

below and above. Since, for fixed ν �= 0, the function 1
m(t) exponentially grows to infinity as

t → 0, the condition (38) on the difference a − a∗ is very rigorous with respect to small t .
Formula (39) also shows that for X − K → 0 implying ν → 0 the norm ‖m‖L∞(0,T ) tends to
infinity.

Here we also see that at-the-money options with X = K represent a singular situation in
our purely time-dependent model, since we derive from (6) and (7) for ν = 0 the formulae
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limt→0 m(t) = ∞, sup(t,s)∈Mc

∂UBS(X,K ,r,t,s)
∂s = ∞ and sup(t,s)∈Mc

| ∂2UBS(X,K ,r,t,s)
∂s2 | = ∞.

Hence, the multiplication operator M defined by the formulae (34) fails to be bounded in
L2(0, T ) in that case and condition (i) of proposition 5.3 cannot be verified along the lines of
the proof of theorem 5.4. This singularity of X = K disappears if a variety of strike prices K
is used as done in the sophisticated paper [12] presenting a Tikhonov regularization analysis
for the more general IP of option pricing that combines the time- and price-dependent case.
We note, however, that the considerations of [12] with H 1-solutions a and data u from a
non-Hilbertian Sobolev space do not implicate the L2-results of this section.

6. The discrete approach and some case studies

Finally, we briefly address the situation where we have option data uδj := uδ(t j ) approximating
fair prices u j := u(t j) only for a discrete set of maturities t0 = 0 < t1 < t2 < · · · < tk = T
(for further studies see [20]). We assume according to formula (18)

uδ0 = max(X − K , 0), max(X − K e−rt j ) < uδj < X ( j = 1, 2, . . . , k). (40)

Using the composition F = N ◦ J we will consider a discrete approach for solving the IP. In
the first step we determine a vector Sδ = (Sδ1, . . . , Sδk )

T ∈ R
k
+ of non-negative components by

solving the nonlinear equations

UBS(X, K , r, t j , Sδj ) = uδj ( j = 1, 2, . . . , k). (41)

Each of these k equations can be solved by a simple line search algorithm. Since
UBS(X, K , r, t j , s) is strictly increasing with respect to s > 0, due to (6), (9) and (40) all values
Sδj are uniquely determined from (41). The second step contains a numerical differentiation,
which is regularized according to

‖J a − Sδ‖2
2 + α‖L a‖2

2 −→ min, subject to a ∈ R
k
+,

with a minimizing vector aα = (aα1 , . . . , aαk )
T ∈ R

k
+, where α > 0 is the regularization

parameter, ‖·‖2 denotes the Euclidean norm, J is a discretization of the linear Volterra integral
operator J and ‖L a‖2

2 expresses the usual discretization of the L2-norm square ‖a′′‖2
L2(0,T ) of

the second derivative of the function a.
For a case study with computer-generated option price data we use the values X = 0.6,

K = 0.5, r = 0.05, T = 1, t j = j
k ( j = 1, . . . , k = 20) and the convex function

σ(t) = (t − 0.5)2 + 0.1 (0 � t � 1).

The exact data u = (u1, . . . , uk)
T are computed by using the generalized Black–Scholes

formula (1)–(4). Perturbed with a random noise vector η = (η1, . . . , ηk)
T ∈ R

k they yield
noisy data in the form

uδj = u j + δ
‖u‖2

‖η‖2
η j ( j = 1, . . . , k)

for a given relative error δ > 0. Some results of the case study are presented by figures 1
and 2 showing on the one hand the exact solution as a solid curve and on the other hand the
linearly interpolated approximate solution as a dashed curve. Figure 1 illustrates the oscillating
character of the unregularized volatility reconstruction, although the data error is rather small
(δ = 0.1%). For the same situation a quite good regularized solution is presented in figure 2,
where the regularization parameter choice is based on Hansen’s L-curve criterion (see [19]).
As shown in section 3, arbitrage-free option data uδ yield in a unique and stable manner
nonincreasing functions Sδ . If, however, the noisy discrete option data uδj are not necessarily
arbitrage free, then for very small δ the monotonicity may also be lost for values Sδj obtained
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Figure 1. Unregularized solution (δ = 0.001, α = 0).
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Figure 2. Regularized solution (δ = 0.001, α = 7.1263 × 10−7 from the L-curve method).

by a pointwise inversion of the Nemytskii operator N . In particular, if the remaining time to
maturity t j of the option is small, the corresponding values Sδj tend to oscillate (see figure 3).
This phenomenon is a consequence of the fact that Sδ(t) tends to zero for small t . Namely,
as shown in figure 4, the error amplification factor ϕ(t) approximated by ( ∂UBS(X,K ,r,t,S(t))

∂s )−1

grows to infinity as t tends to zero.
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Figure 3. Pointwise reconstruction of Sδ(t) (δ = 0.001, k = 50 grids on [0, 0.2]).
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Figure 4. Behaviour of
(
∂UBS(X,K ,r,t,S(t))

∂s

)−1
approximating the error factor ϕ(t).

7. Conclusions

By studying the problem of calibrating a time-dependent volatility function from a term-
structure of option prices and its ill-posedness phenomena the paper tries to fill a gap in the
literature of IPs in option pricing. The explicitly available structure of the forward operator in
the purely time-dependent case as a composition of an inner linear convolution operator and an
outer nonlinear Nemytskii operator allows us to analyse in detail the occurring ill-posedness
phenomena and ways of regularization. For the outer IP treated in a C-space setting the
use of arbitrage-free data acts as a specific regularizer. In any case, however, the inner classic
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deconvolution (differentiation)problem requires an additional regularization. To overcome the
local ill-posedness of the complete IP, Tikhonov regularization in L2 is applicable, convergence
rates can be proven and source conditions can be evaluated. It is pointed out that at-the-money
options represent a singular situation, in which instability effects occurring for small times
in the cases of in-the-money and out-of-the-money options may disappear and properties of
the forward operator may degenerate. Although, due to the completely different problem
structure, the mathematical analysis used in this paper cannot be generalized to the case
of calibrating price-dependent volatility functions, the observed ill-posedness effects also
influence the chances of the most important practical problem of fitting the volatility smile as
a whole.
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