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General information

Goal

Our symposium will bring together experts from the German and
international ‘Inverse Problems Community’ and young scientists.
The focus will be on ill-posedness phenomena, regularization theory
and practice, and on the analytical, numerical, and stochastic treat-
ment of applied inverse problems in natural sciences, engineering,
and finance.

Location

Chemnitz University of Technology
Straße der Nationen 62 (Böttcher-Bau)
Conference hall ‘Altes Heizhaus’
09111 Chemnitz, Germany

Selection of invited speakers

Martin Hanke (Mainz, Germany), opening talk
Thorsten Hohage (Göttingen, Germany)
Stefan Kindermann (Linz, Austria)
Robert Plato (Siegen, Germany)
Elena Resmerita (Linz, Austria)
Masahiro Yamamoto (Tokyo, Japan)

Scientific board

Bernd Hofmann (Chemnitz, Germany)
Peter Mathé (Berlin, Germany)
Sergei V. Pereverzyev (Linz, Austria)
Ulrich Tautenhahn (Zittau, Germany)
Lothar von Wolfersdorf (Freiberg, Germany)
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Organizing committee

Bernd Hofmann
Jens Flemming
Marcus Meyer
Diana Roch
Nadja Rückert
Kerstin Seidel

Conference contacts

Prof. Dr. Bernd Hofmann
Dr. Marcus Meyer, Jens Flemming

Chemnitz University of Technology
Department of Mathematics
Reichenhainer Straße 41
09126 Chemnitz, Germany

Email: ip2010@tu-chemnitz.de
Website: http://www.tu-chemnitz.de/mathematik/ip-symposium
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Timetable

Overview for Thursday, September 23

09.00–09.05 Opening

09.05–10.45 Session 1
M. Hanke, E. Resmerita, M. Yamamoto

10.45–11.05 Coffee break

11.05–12.20 Session 2
P. Mathé, U. Tautenhahn, R. Plato

12.20–13.30 Lunch break

13.30–15:10 Session 3
H. Egger, T. Hein, M. A. Iglesias, T. Lahmer

15.10–15.25 Coffee break

15.25–16:40 Session 4
M. Meyer, G. Hu, G. Wachsmuth

16.40–16.50 Break

16.50–18:00 Session 5
B. Hofmann, J. Flemming, N. Rückert, Y. Shao

18.15 Excursion

Overview for Friday, September 23

09.00–10.30 Session 1
T. Hohage, S. Kindermann, B. Kaltenbacher

10.30–10.50 Coffee break

10.50–12.05 Session 2
H. Harbrecht, C. Clason, T. Raasch

12.05–13.15 Lunch break

13.15–14:30 Session 3
K. S. Kazimierski, A. Cornelio, C. Böckmann

14.30–14.40 Coffee break

14.40–16:00 Session 4
N. Puthanmadam Subramaniyam, U. Aßmann,

N. Togobytska, R. Engbers

16.00–16.05 Break

16.05–17:20 Session 5
E. Loli Piccolomini, M. Schlottbom, J. Müller, D. Roch
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Program for Thursday, September 23

09.00–09.05 Opening

09.05–09.45 Martin Hanke (Mainz, Germany)
The regularizing Levenberg-Marquardt scheme

09.45–10.15 Elena Resmerita (Linz, Austria)
Morozov principle for an augmented Lagrangian

method for solving ill-posed problems

10.15–10.45 Masahiro Yamamoto (Tokyo, Japan)
Inverse problems for Navier-Stokes equations

10.45–11.05 Coffee break

11.05–11.30 Peter Mathé (Berlin, Germany)
Regularization under general noise assumptions

11.30–11.55 Ulrich Tautenhahn (Zittau, Germany)
On the interpolation method for deriving

conditional stability estimates in ill-posed

problems

11.55–12.20 Robert Plato (Siegen, Germany)
The regularizing properties of the trapezoidal

method for weakly singular Volterra integral

equations of the first kind

12.20–13.30 Lunch break

13.30–13.55 Herbert Egger (Graz, Austria)
On model reduction and unique solvability for

fluorescence diffuse optical tomography

13.55–14.20 Torsten Hein (Chemnitz, Germany)
Iterative regularization of Landweber-type

in Banach spaces

14.20–14.45 Marco A. Iglesias

(Cambridge, Massachusetts, USA)
Level-set techniques for facies identification in

reservoir modeling
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14.45–15.10 Tom Lahmer (Weimar, Germany)
Design of Experiments for Ill-Posed Problems

With Application to Water Dam Monitoring

15.10–15.25 Coffee break

15.25–15.50 Marcus Meyer (Chemnitz, Germany)
Parameter identification in nonlinear

elasticity – theory, results, and problems

15.50–16.15 Guanghui Hu (Berlin, Germany)
Uniqueness in Inverse Scattering of Elastic

Waves by Doubly Periodic Structures

16.15–16.40 Gerd Wachsmuth (Chemnitz, Germany)
Regularization results for inverse problems with

sparsity functional

16.40–16.50 Break

16.50–17.15 Bernd Hofmann (Chemnitz, Germany)
Some new aspects of regularization in the

context of variable Hilbert scales

17.15–17.35 Jens Flemming (Chemnitz, Germany)
Variational inequalities versus source conditions

in Hilbert spaces

17.35–17.50 Nadja Rückert (Chemnitz, Germany)
Some studies on regularization of Poisson

distributed data

17.50–18.00 Yuanyuan Shao (Zittau/Chemnitz, Germany)
Generalized discrepancy principle for ill-posed

problems with noisy data

18.15 Excursion to ‘Rabensteiner Felsendome’

with conference dinner

departure 18.15 by bus at hotel ‘Chemnitzer Hof’
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Program for Friday, September 24

09.00–09.30 Thorsten Hohage (Göttingen, Germany)
Inverse problems in photonic imaging

09.30–10.00 Stefan Kindermann (Linz, Austria)
On the convergence of heuristic parameter

choice rules

10.00–10.30 Barbara Kaltenbacher (Graz, Austria)
Regularization by Local Averaging Regression

10.30–10.50 Coffee break

10.50–11.15 Helmut Harbrecht (Stuttgart, Germany)
An efficient numerical method for a shape

identification problem arising from the heat

equation

11.15–11.40 Christian Clason (Graz, Austria)
L1 data fitting for nonlinear inverse problems

11.40–12.05 Thorsten Raasch (Mainz, Germany)
Optimal convergence rates of ℓ1-constrained

Tikhonov regularization under compressibility

assumptions

12.05–13.15 Lunch break

13.15–13.40 Kamil S. Kazimierski (Bremen, Germany)
On Engl’s discrepancy principle

13.40–14.05 Anastasia Cornelio (Modena, Italy)
Regularized Nonlinear Least Squares Methods for

Hit Position Reconstruction in Small Gamma

Cameras

14.05–14.30 Christine Böckmann (Potsdam, Germany)
Levenberg-Marquardt Method under Logarithmic

Source Condition

14.30–14.40 Coffee break
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14.40–15.00 Narayan Puthanmadam Subramaniyam

(Tampere, Finland)
Regularization methods for inverse

EEG problems

15.00–15.20 Ute Aßmann (Duisburg, Germany)
Identification of an unknown parameter in the

main part of an elliptic PDE

15.20–15.40 Nataliya Togobytska (Berlin, Germany)
An inverse problem for laser-induced

thermotherapy arising in tumor tissue imaging

15.40–16.00 Ralf Engbers (Münster, Germany)
Nonlinear Inverse Problem of Myocardial

Blood Flow Quantification

16.00–16.05 Break

16.05–16.25 Elena Loli Piccolomini (Bologna, Italy)
A feasible direction method for the solution of

an inverse ill-posed problem

16.25–16.45 Matthias Schlottbom (Aachen, Germany)
Analysis and regularization in diffuse optical

tomography

16.45–17.05 Jahn Müller (Münster, Germany)
Total Variation Regularization in 3D PET

Reconstruction

17:05–17.20 Diana Roch (Chemnitz, Germany)
Studies on convolution equations
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Marcus Meyer 33
Jahn Müller 34
Robert Plato 35
Narayan Puthanmadam Subramaniyam 36
Thorsten Raasch 37
Elena Resmerita 38
Diana Roch 39
Nadja Rückert 40
Matthias Schlottbom 41
Yuanyuan Shao 42
Ulrich Tautenhahn 43
Nataliya Togobytska 45
Gerd Wachsmuth 46
Masahiro Yamamoto 47

9



Identification of an unknown parameter

in the main part of an elliptic PDE

Ute Aßmann, Arnd Rösch

We are interested in identifying an unknown material parameter
a(x) in the main part of an elliptic partial differential equation

−div (a(x) grad y(x)) = g(x) in Ω

with corresponding boundary conditions. We discuss a Tichonov
regularization

min
a
J(y, a) = ‖y − yd‖

2
L2(Ω) + α‖a‖2

Hs(Ω)

with s > 0. Moreover, we require the following constraints for the
unknown parameter

0 < amin ≤ a(x) ≤ amax.

The talk starts with results on existence of solutions and necessary
optimality conditions. The main part of the talk will be devoted to
sufficient optimality conditions.
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Levenberg-Marquardt Method under

Logarithmic Source Condition

Christine Böckmann

We regard a general - possibly nonlinear and ill-posed - operator
equation F (x) = y, where the operator F : D(F ) → Y is Fréchet
differentiable on its domain D(F ) ⊂ X and X, Y are Hilbert spaces.
We assume that the exact data y is attainable and there exists
an exact solution x† ∈ D(F ) (which need not to be unique) with
F (x†) = y. However, we have only noisy data yδ by hand satisfy-
ing ‖yδ − y‖ ≤ δ. A lot of applications, e.g. heat conduction and
potential theory, are severely ill-posed. For such problems logarith-
mic source conditions have natural interpretations whereas classical
Hölder source conditions are far too restrictive. Using logarithmic
source condition instead of the Hölder type one,

fp(λ) :=

{

(ln e
λ)−p for 0 < λ ≤ 1, p > 0

0 for λ = 0
,

we show logarithmic convergence rate of the Levenberg-Marquardt
method

xδ
n+1 = xδ

n + (F ′[xδ
n]∗F ′[xδ

m] + αnI)
−1F ′[xδ

n]∗(yδ − F (xδ
n))

under appropriated properties of F as well as Morozov’s discrepancy
principle. Finally, we apply the method to recover the shape of a
homogeneous mass distribution from the knowledge of measurements
of its gravitational potential.
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L1 data fitting for nonlinear inverse problems

Christian Clason, Bangti Jin

This talk is concerned with L1 data fitting for nonlinear inverse
problems, which is advantageous if the data is corrupted by impulsive
noise. In particular, we are interested in the minimization problem

min
u∈L2

‖S(u) − yδ‖L1 +
α

2
‖u‖2

L2 ,

where u ∈ L2 is the unknown parameter, yδ ∈ L∞ represents exper-
imental measurements corrupted by (impulsive) noise, and S is the
parameter-to-observation mapping. Even if S has sufficient differen-
tiability and continuity properties, the problem is not differentiable
and lacks local uniqueness, which makes its numerical solution chal-
lenging.

In this talk, we discuss approximation properties of the minimizers
to nonlinear functionals with L1 data fitting and suggest a strategy
for selecting the regularization parameter based on a balancing prin-
ciple. We also introduce a regularized primal-dual formulation of this
problem, for which local uniqueness can be shown under a (reason-
able) second order sufficient condition. The same condition permits
the application of a superlinearly convergent semi-smooth Newton
method for the numerical solution of the discretized problem.

We illustrate our approach through the model problem of recov-
ering the potential in an elliptic boundary value problem from dis-
tributed observational data.
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Regularized Nonlinear Least Squares

Methods for Hit Position Reconstruction

in Small Gamma Cameras

Anastasia Cornelio

To improve the spatial resolution of a gamma camera and con-
sequently the quality of the image reconstruction, it’s fundamental
to accurately reconstruct the photon hit position on the detector
surface. The methods proposed in literature to estimate the hit po-
sition work well at the center of the detector but tipically deteriorate
near the edges. The increasing demand of small PET systems with
very high performance and the consequent necessity to recover the
information near the edges are the motivations of this work.

We apply iterative optimization methods based on regularization
of the nonlinear least squares problem to estimate the hit position.
The idea is to find a model f , depending on unknown parameters
z ∈ R

n (with n tipically less than 5), that well describes the light
distribution, produced by the photon impact on the detector, and
then to use the least squares method to choose the parameters z
that best fit f to the observed data v. We state the problem as a
nonlinear least squares problem

min
z

F(z) = 1
2‖f(z) − v‖2

2. (∗)

The problem is ill conditioned so it needs regularization to obtain
meaningful solutions in presence of noise. We apply regularization
either by adding a regularization term to the objective function F ,
or by solving (∗) with an iterative regularization method, in which
the number of iterations is made to play the role of regularization
parameter, in order to avoid the semiconvergent behaviour of the
solution. Newton-type and descend methods are applied to solve
this regularized nonlinear problem.

Numerical results show that the proposed methods allow to obtain
good results with a very small number of iterations, and consequently
with a low computational cost, and to recover information near the
edges of the detector.
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On model reduction and unique solvability

for fluorescence diffuse optical tomography

Herbert Egger

Fluorescence tomography is a medical imaging technique based
on the following measurement principle: (i) an object is illuminated
by a light source; (ii) a part of the excitation light is absorbed by
fluorophores and re-emitted at a longer wavelength; (iii) the emit-
ted light is detected at the boundary. This process is governed by
a coupled system of elliptic partial differential equations. The goal
of fluorescence tomography is to obtain cross-sectional images of the
fluorophore distribution inside the body by ”inversion” of the mea-
surements.

In this talk, we discuss certain simplifications of the forward prob-
lem and derive error estimates for the error introduced by these ap-
proximations. We illustrate, that the model reductions have advan-
tages, both, from a numerical point of view, but also for the analysis
of the inverse problem. In particular, we are able to establish unique
solvability for one of the reduced models.

References

[1] S. R. Arridge. Optical tomography in medical imaging. Inverse

Problems, 15:R41R93, 1999.

[2] H. Egger, M. Freiberger and M. Schlottbom. On forward and inverse
models in fluorescence optical tomography. Inv. Probl. Imag., 2010,
accepted.

[3] M. A. O’Leary, D. A. Boas, B. Chance and A. G. Yodh. Reradia-
tion and imaging of diffuse photon density waves using fluorescent
inhomogeneities. J. Lumin., 60&61:281–286, 1994.
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Nonlinear Inverse Problem of

Myocardial Blood Flow Quantification

Ralf Engbers

Dynamic positron emission tomography (PET) allows for nonin-
vasive examination of physiological processes. Radioactive water
(H2

15O) as a PET-tracer is the preferred candidate for examining
myocardial blood flow because of its short half-time, resulting in a
low radiation burden to the patient, and its high diffusibility. Un-
fortunately, the short half-time leads to noisy, low-resolution recon-
structions.

The common approach for this quantification problem is to re-
construct images for each temporal dataset independently via the
standard EM-algorithm or FBP and to compute the parameters
from these images. However, the temporal correlation between the
datasets is neglected in this approach.

Rather than using the correlation between noisy, low resolution im-
ages we want to use the temporal correlation inherent in the datasets.
This can be achieved by building up a nonlinear physiological model
depending on physiological parameters (e.g. perfusion) and solving
the respective parameter identification problem. As another advan-
tage, regularization can be added to each parameter independently
to ensure meaningful results. A forward-backward operator splitting
method can be used to solve this inverse problem numerically.

References

[1] M. Benning. A Nonlinear Variational Method for Improved Quan-
tification of Myocardial Blood Flow Using Dynamic H2

15O PET,
2008, Diploma Thesis.
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Variational inequalities versus

source conditions in Hilbert spaces

Jens Flemming

For proving convergence rates of regularized solutions of ill-posed
operator equations one has to pose assumptions on the ‘smoothness’
of the exact solution. We discuss four concepts for expressing solu-
tion smoothness:

• source conditions,

• approximate source conditions,

• variational inequalities,

• approximate variational inequalities.

The focus will lie on the third one. Variational inequalities have
been introduced in a Banach space setting in 2007 (see [1]) and sev-
eral extensions were developed by the Chemnitz group (see, e.g.,
[2,3]). To understand this powerful concept (cf. [4]) we concentrate
on Hilbert space situations and show that the amount of informa-
tion contained in a variational inequality is exactly the same as for
approximate source conditions. The proof of this fact is based on
the (quite technical) idea of approximate variational inequalities. It
turns out that variational inequalities can be interpreted as Fenchel
dual formulations of source conditions.

Applying the techniques to linear operators in Banach spaces mo-
tivates extended use of Bregman distances instead of norms.

References

[1] B. Hofmann, B. Kaltenbacher, C. Pöschl, O. Scherzer: A convergence

rates result for Tikhonov regularization in Banach spaces with non-

smooth operators. Inverse Problems, 2007, vol. 23, 987–1010.
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[2] T. Hein, B. Hofmann:Approximate source conditions for nonlinear

ill-posed problems—chances and limitations. Inverse Problems, 2009,
vol. 25, 035033 (16pp).

[3] J. Flemming, B. Hofmann: A new approach to source conditions

in regularization with general residual term. Numerical Functional
Analysis and Optimization, 2010, vol. 31, 254-284.

[4] J. Flemming: Theory and examples of variational regularization with

non-metric fitting functionals. Preprint series of the Department
of Mathematics 2010-14, Chemnitz University of Technology, 2010,
submitted.

[5] J. Flemming: Solution smoothness of ill-posed equations in Hilbert

spaces: four concepts and their cross connections. 2010, submitted.
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The regularizing

Levenberg-Marquardt scheme

Martin Hanke

In 1997 we introduced a variant of the Levenberg-Marquardt
method for nonlinear ill-posed problems. Like the original
Levenberg-Marquardt method this method modifies the Gauss-
Newton iteration by searching in each iteration the local update
within a certain trust region. In contrast to the usual definition of a
trust region we proposed to choose the update with minimal norm
that reduces the linearized residual by a certain (prescribed) amount.
In this talk we show that if the iteration is terminated according to
the discrepancy principle then the method is a regularization method
with optimal order accuracy – under standard assumptions on the
nonlinearity of the underlying operator equation.
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An efficient numerical method

for a shape identification problem

arising from the heat equation

Helmut Harbrecht, Johannes Tausch

The present talk is dedicated to the determination of the shape
of a compactly supported constant source in the heat equation from
measurements of the heat flux through the boundary. This shape
identification problem is formulated as the minimization of a least-
squares cost functional for the desired heat flux at the boundary. The
shape gradient of the shape functional under consideration is com-
puted by means of the adjoint method. A gradient based nonlinear
Ritz-Galerkin scheme is applied to discretize the shape optimization
problem. The state equation and its adjoint are computed by a fast
space-time boundary element method for the heat equation. Numer-
ical experiments are carried out show the feasibility of the present
approach.
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Iterative regularization of Landweber-type

in Banach spaces

Torsten Hein

Let X and Y denote two Banach spaces. We consider the linear
ill-posed operator equation

Ax = y x ∈ X, y ∈ Y,

where A : X −→ Y describes a linear bounded operator which non-
closed range R(A). For δ > 0 and given noisy data yδ ∈ Y with
knowing bound ‖yδ − y‖ ≤ δ for the noise level we deal with the
Landweber iteration approach

xδ
0 := x0 ∈ X, x∗0 := Js(x

δ
0)

x∗n+1 := x∗n − µnψ
∗
n

xδ
n+1 := J−1

s (x∗n+1)

together with the discrepancy principle as stopping criterion for the
iteration process. Here, ψ∗

n ∈ X∗ describes either the gradient of
the functional x 7→ 1

p‖Ax − yδ‖p or a modified variant. Moreover,
p, s ∈ (1,∞) and Js denotes the duality mapping from the space X
into its dual space X∗ with gauge function t 7→ ts−1.

In order to achieve a tolerable speed of convergence of the algo-
rithm we have to apply a proper choice of the step size parameter
µn in each iteration. Motivated by the method of minimal error (in
Hilbert spaces) and taking into account the noisy data we derive a
one-dimensional minimization problem for calculating the (optimal)
parameter µn in each iteration. We present convergence and stability
results of the methods under consideration.

Finally we give a short numerical example which illustrates the
efficiency of the presented algorithms.
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Some new aspects of regularization

in the context of variable Hilbert scales

Bernd Hofmann

In this talk, we discuss the cross connections between different
approaches to convergence rates in regularization for linear ill-posed
operator equations in Hilbert spaces using variable Hilbert scales. It
is well-known that the concept developed by Tautenhahn (see [2])
and the concept by Mathé and Pereverzev (see [3]) lead to com-
parable results in essential points even if the derived formulae and the
required convexity/concavity conditions have different structure. In
classical regularization theory for linear ill-posed problems presented
in the monographs by Vainikko et al. 1986 and Engl et al.

1996 the qualification of a regularization method is a positive real
number or infinity characterizing the upper limit of order optimal-
ity occurring for the method. In the context of recent progress in
regularization theory arising from the stringent consideration of gen-
eral source conditions and variable Hilbert scales with index func-
tions a more sophisticated qualification concept was introduced (see
[3] and the more recent papers [5] and [6]). Qualification is now
a function-valued concept for any linear regularization method and
characterizes appropriate approximation properties of the method
with respect to the regularization parameter. As was shown recently
in [7], for every element in a Hilbert space and every positive self-
adjoint and injective linear operator there is an index function for
which a general source condition holds true. This allows us to es-
tablish the variable Hilbert scale approach in regularization as an
all-embracing tool for obtaining convergence rates. By using link
conditions like range inclusions (see [4] and [5]) such approach can
be extended to a wider field of a priori information concerning the
expected solution. It was an open problem whether the conditions
of the early published concept by Hegland (see [1]) plays another
role. Along the lines of the recent paper [8] we can show now that
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the basic results and conditions of all three mentioned concepts coin-
cide, but their shapes and their potential for interpretation are quite
different. Parts of the talk refer to joint work with Peter Mathé

(WIAS Berlin) and Markus Hegland (ANU Canberra).
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Inverse problems in photonic imaging

Thorsten Hohage

Photonic imaging is a growing research field with huge impact on
the life sciences including techniques such as fluorescence microscopy,
x-ray imaging using phase retrieval, and positron emission tomogra-
phy. A common theme is that data are given in the form of photon
counts of an array of detectors, and an inverse problem needs to be
solved to reconstruct the desired quantity. The number of counts in
each detector is a Poisson distributed random variable. We introduce
Poisson processes as natural continuous framework for describing
photon count data. Moreover, we present regularization methods for
linear and nonlinear inverse problems involving the Kullback-Leibler
divergence as natural data misfit functional and show convergence
and convergence rates as the total number of counts tends to infin-
ity. We conclude with some real data examples from 4Pi fluorescence
microscopy and x-ray optics.
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Uniqueness in Inverse Scattering of Elastic

Waves by Doubly Periodic Structures

Guanghui Hu, Johannes Elschner

This talk is concerned with the inverse scattering of a time-har-
monic elastic wave by an unbounded doubly-periodic structure in R

3.
Such structures are also called diffraction gratings and have many
important applications in diffractive optics, radar imaging and non-
destructive testing.

We assume that a polyhedral diffraction grating divides the three-
dimensional space into two non-locally perturbed half-spaces filled
with homogeneous and isotropic elastic media, and that a time-
harmonic pressure or shear wave is incident on the grating from
above. Furthermore, the grating is supposed to have an impenetra-
ble surface on which normal stress and tangential displacement (resp.
normal displacement and tangential stress) vanish. This gives rise
to the so-called the third (resp. fourth) kind boundary conditions
for the Navier equation. We firstly show some solvability results on
the direct scattering problem in Lipschitz domains; and then classify
all the grating profiles that can not be uniquely determined from a
knowledge of the scattered field measured above the grating; finally,
we demonstrate some examples of the unidentifiable gratings for il-
lustrating that, in general case, one incident elastic wave fails to
uniquely determine a doubly periodic structure under the boundary
conditions of the third or fourth kind.

The main tool we used is the reflection principle for the Navier
equation, which was recently established by Elschner J. and Ya-
mamoto M. [Inverse Problems, 26 (2010) pp. 045005/1–045005/8].
Relying on such principle, we prove that the total fields are analytic
functions in R

3 and remain rotational and reflectional invariance, if
they are generated by two different gratings and have the same mea-
surement. This enables us to determine and classify all the uniden-
tifiable grating profiles corresponding to each incident elastic wave,
even in the resonance case where a Rayleigh frequency is allowed.

This is a joint work with Johannes Elschner at WIAS.
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Level-set techniques for facies identification

in reservoir modeling

Marco A. Iglesias, Dennis McLaughlin

In this talk we report the application of level-set techniques for
reservoir facies identification [4]. This ill-posed inverse problem is
formulated as a shape optimization problem, where the aim is to
find a region (a geologic facies) that minimizes the misfit between
predictions and measurements from a subsurface petroleum reser-
voir. The shape optimization problem is constrained by a large-
scale nonlinear system of PDE’s that model multiphase (oil-water)
flow in the reservoir. This model is converted to a weak (integral)
form to facilitate the application of standard results for the com-
putation of shape derivatives. The shape derivatives are needed to
apply the iterative level-set solution approach developed by Burger
in [1,2]. This approach describes the unknown facies shape with a
level-set function that is modified through a sequence of geometrical
deformations. The shape derivatives of the reservoir model define
a level-set velocity that insures that the new shape constructed in
each step of the iterative sequence decreases the data misfit. We
present results for the identification of geologic facies derived with
both the gradient-based (GB) approach of [1] and the Levenberg-
Marquardt (LM) approach of [2]. Our adjoint formulation makes
application of the GB approach straightforward. The LM technique
requires the solution of a large-scale Karush-Kuhn-Tucker system of
equations at each iteration of the scheme. We solve this KKT sys-
tem with a representer-based approach proposed by [3]. We present
experiments to show and compare the capabilities and limitations
of the proposed implementations. When the well configuration is
adequate, both level-set techniques are able to give facies estimates
that recover the main features of the true facies distribution. In rel-
evant cases where the initial shape undergoes substantial changes to
recover the true shape, our representer-based implementation of the
LM technique outperforms the efficiency of the GB approach.
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Regularization by

Local Averaging Regression

Barbara Kaltenbacher, Harro Walk

In this talk we consider combination of the ideas of regression func-
tion estimation on one hand and regularization by discretization on
the other hand to a regularization method for linear ill-posed prob-
lems with additive stochastic noise. A general convergence result is
provided and its assumptions are verified for the partitioning estima-
tors and to some extent for kernel estimators. As an example of an
inverse problem we consider Volterra integral equations of the first
kind.
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On Engl’s discrepancy principle

Kamil S. Kazimierski

In this talk we present a new choice rule for the parameter α of
the Tikhonov functional

Tα(x) := 1
p‖Ax− yδ‖p

Y + α1
q‖x‖

q
X p, q > 1,

where A is a linear, continuous operator mapping between the Ba-
nach spaces X and Y .

For the a-priori choice rule α(δ) ∼ δκ a convergence rate of the
form

DjX
q

(x†, xδ
α(δ)) ∼ δν

for the Bregman distance DjX
q

with

0 < ν ≤ 4
3

can be proven (under appropriate source conditions).
However, one strives for an a-posteriori parameter choice rule

which attains similar rates. Often the discrepancy principle of
Morozov is used as such rule, i.e. one chooses α(δ, yδ) such that
‖Axδ

α(δ,yδ)
− yδ‖ ∼ δ. However, to the authors best knowledge then

at best rates with 0 < ν ≤ 1 can be proven.
In this talk we will discuss another discrepancy based parameter

choice rule, where α(δ, yδ) is chosen such that

‖A∗jYp (Axδ
α(δ,yδ) − yδ)‖q∗

X∗ ∼ δrα−s,

with the duality mapping jYp and appropriately chosen parameters
r, s. We remark that this rule was proposed originally by Engl for
linear operators mapping between two Hilbert spaces. We will show
that Engl’s approach can also be extended to linear operators map-
ping between Banach spaces, where the same rates as for the a-priori

parameter choice rules can be obtained.
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On the convergence of heuristic

parameter choice rules

Stefan Kindermann

We study convergence properties of minimization based heuristic
(or noise-level free) parameter choice rules in the regularization the-
ory of ill-posed problems. According to a result by Bakushinskii any
worst-case convergent parameter choice rule has to take into account
the noise level. For a convergence analysis, it is therefore essential to
put additional conditions on the noise or on the solution to obtain
convergence results. It turns out that under reasonable conditions
convergence, convergence rates and oracle type estimates for many
methods can be proven. Within this analysis we compare several dif-
ferent rules in view of theoretical convergence and convergence rates
with different regularizations.
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Design of Experiments for Ill-Posed Problems

With Application to Water Dam Monitoring

Tom Lahmer

The aim of this research is to perform an optimal experimental
design for the reliable estimation of damages for water dams. The
safe operation of dams, dikes or embankments requires continuous
monitoring in order to detect any changes concerning the statical
structure. Damages which may result from cyclic loadings, varia-
tions in temperature, ageing, chemical reactions and so on need to be
identified as fast and as reliable as possible. The basis for these inves-
tigations is a hydro-mechanically coupled model with heterogeneous
material distributions in which damages are described by a smeared
crack model. In the case of damages, the changes of the main param-
eters in a multifield model are strongly correlated. This correlation
is particularly considered during the inverse analysis, which is the
detection of the damages from combined hydro-mechanical data.

Iterative regularising methods are applied to solve the nonlinear
inverse problem.

For an efficient monitoring, an optimal experimental design frame-
work for nonlinear ill-posed problems is derived. The design problem
is formulated in that manner, that it proposes locations for the sen-
sors that guarantee a reliable identification of the damages (small
variances) keeping the bias introduced by the regularisation as low
as possible.

The methodology, solutions of the coupled forward and inverse
problem as well as numerical results of the design process will be
presented during the talk.
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A feasible direction method for the solution

of an inverse ill-posed problem

Elena Loli Piccolomini, G. Landi

Linear inverse ill-posed problems arising, for example, from the
discretization of Fredholm integral equations, are of the form:

Ax = z

where A ∈ R
n×n is the discretization of the integral kernel, z ∈ R

n

is the data vector usually affected by noise with variance σ2 and
x ∈ R

n is the solution vector.
For the problem solution we consider the following constrained

optimization formulation:

minimize f(x) subject to x ∈ Ω

where f(x) is a continuously differentiable regularization function
from R

n into R and the feasible set Ω is the sphere of radius σ and
center z ∈ R

n defined by

Ω = {x ∈ R
n|‖x− z‖2 ≤ σ2}.

We propose, for the solution of the problem, a method combining
ideas from feasible direction and trust region methods (we call it
FDTR method). It generates strictly feasible iterates having the
general form xk+1 = xk + λkdk, where dk is the search direction
and λk is the step-length. The direction dk is determined by inex-
actly solving a trust region subproblem consisting in minimizing the
classical second-order model of f(x) around the current iterate xk,
subject to a quadratic constraint ensuring the feasibility of the next
iterate. The step-length is computed by the Armijo rule in order to
guarantee a sufficient decrease of the objective function. We prove
that the method is globally convergent under standard assumptions.

Some numerical tests have been performed in image deblurring
(where A is the Point Spread Function) and denoising (whereA = I).
As a regularization function f we have considered both the Tikhonov
and the Total Variation functions. The numerical tests show the ef-
fectiveness of the method both for its accuracy and its computational
cost.
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Regularization under general

noise assumptions

Peter Mathé, Ulrich Tautenhahn

We explain how the major results which were obtained recently
in P P B Eggermont, V N LaRiccia, and M Z Nashed. On

weakly bounded noise in ill-posed problems, Inverse Problems,
25(11):115018 (14pp), 2009, can be derived from a more general
perspective of recent regularization theory. By pursuing this fur-
ther we provide a general view on regularization under general noise
assumptions, including weakly and strongly controlled noise.

This is joint work with Ulrich Tautenhahn, Zittau.
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Parameter identification in nonlinear

elasticity – theory, results, and problems

Marcus Meyer

We consider parameter identification problems arising in nonlin-
ear elasticity, whereas we assume that from measured deformation
data of a loaded elastic body the corresponding material properties in
terms of some material parameters need to be identified. While solv-
ing those inverse problems in a practical framework, several crucial
problems emerge, as e.g. questions concerning existence, uniqueness,
and regularity of solutions, or the implementation of efficient numer-
ical methods, which is due to the involved nonlinearities an essential
issue.

In the first part of the talk we present a survey of elasticity theory
and the corresponding nonlinear PDE model and introduce solution
approaches for the inverse problem basing on nonlinear constrained
optimization methods. The second part of the presentation is de-
voted to a discussion of the interplay of several problems and open
questions concerning the analysis and the numerics of the inverse
problem.
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Total Variation Regularization in

3D PET Reconstruction

Jahn Müller

Due to the application of tracers with a short radioactive half-
life (e.g. radioactive water H2

15O) in positron emission tomography
(PET), one obtains images with bad Poisson statistics (low count
rates).

To achieve reasonable results from this data, one may be interested
in reconstructing at least major structures with sharp edges, which
can also be a prerequisite for further processing, e.g. segmentation
of objects.

The focus is set on reconstruction strategies combining expecta-
tion maximization (EM) (cf. [1]) and total variation (TV) (cf. [2])
based regularization. In particular a postprocessing TV denoising
algorithm as well as a nested EM-TV algorithm is presented (cf.
[3]). In order to guarantee sharp edges, the smoothing of approxi-
mate total variation is avoided by using dual (cf. [4]) or primal dual
approaches for the numerical solution.

The performance of these approaches is illustrated for data in
positron emission tomography, namely reconstructions of cardiac
structures with 18F-FDG and H2

15O tracers, respectively.
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The regularizing properties of the trapezoidal

method for weakly singular Volterra integral

equations of the first kind

Robert Plato

The repeated trapezoidal method was considered by P. Eggermont
for the numerical solution of weakly singular Volterra integral equa-
tions of the first kind with exactly given right-hand sides. In the
present talk we review this method and consider its regularizing
properties for perturbed right-hand sides. Some numerical results
are presented.
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Regularization methods for

inverse EEG problems

Narayan Puthanmadam Subramaniyam,

Outi Väisänen, Jaakko Malmivuo

Electroencephalography (EEG) is a non-invasive way of measuring
the electrical activity of the brain from the scalp using electrodes.
The EEG offers excellent temporal resolution, but suffers due to lim-
ited spatial resolution. This is due to the volume conduction effects
of the tissues present in the human head between the sources and
sensors. Estimation of cortical potential distribution from the scalp
EEG is an inverse problem which requires regularization techniques
which aim to fit data with additional penalization. We compared
penalizations based on both L1 and L2 norm. The results show
that, in order to get a sparse solution, which is desired in inverse
EEG problems, L1 norm is the best approach. The cortical poten-
tial distribution with L1-norm had more focal potential distribution
around the occipitotemporal and temporal parts of the cortex for
EEG data pertaining to face recognition/perception. The cortical
potential distribution obtained with L2 norm for the same data was
relatively blurred and smooth. With L1 norm, we have obtained ac-
curate and higher resolution cortical potential maps in comparison
to L2-norm.We also compared two methods to choose the regulariza-
tion parameter - the generalized cross validation (GCV) method and
L-curve method. Results show that GCV is a more robust method to
choose the regularization parameter compared to the L-curve method
in cases where the discrete Picard condition is not satisfied.
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Optimal convergence rates of

ℓ1-constrained Tikhonov regularization

under compressibility assumptions

Thorsten Raasch

We are concerned with the convergence properties of ℓ1-con-
strained Tikhonov regularization of linear ill-posed problems Ax = y
with noisy data yδ. Under the assumption that the ideal solution x†

is sparse, i.e, it has a finite expansion in some underlying ansatz sys-
tem, convergence and convergence rates of the regularized solutions
to x† have been addressed in a series of recent papers. However, spar-
sity assumptions constitute a strong link between the discretization
method and the unknown solution, and may therefore be hard to
realize in practical applications. In this talk, we adress the question
to which extent also compressible solutions x† with fast-decaying ex-
pansion coefficients give rise to convergent regularization schemes.
Moreover, an analysis from the viewpoint of nonlinear approxima-
tion theory seems missing. We investigate under which conditions
on the forward operator and on the data the regularized solutions
can be expected to constitute quasi-optimal approximations of the
ideal solution, when compared to the best N -term approximation.
The results are illustrated by several numerical experiments.
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Morozov principle for an augmented

Lagrangian method for solving

ill-posed problems

Elena Resmerita

The Bregman iteration method for image restoration as proposed
by Osher et al in 2005 has been proven to have several advantages
over classical imaging methods. Moreover, it has provided inspi-
ration for numerous research ideas related to different challenges,
including sparsity problems. It has been recently pointed out that
the method is equivalent to an augmented Lagrangian method. This
talk presents error estimates for the Morozov principle applied to the
iterative procedure for solving linear ill-posed problems, and empha-
sizes the convergence type and convergence rates for bounded varia-
tion and ℓ1 sparsity settings (joint work with Klaus Frick and Dirk
Lorenz).
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Studies on autoconvolution equations

Diana Roch

Criteria for choosing regularization parameter are well investigated
in the literature for linear ill-posed problems. The problem of au-
toconvolution is a nonlinear ill-posed problem, but rather closed to
the linear case. In our numerical studies we try to investigate the
chances and limitations of empirical criteria like L-Curve-Method for
such problems.
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Some studies on regularization of

Poisson distributed data

Nadja Rückert

In some applications, e.g. astronomy, medical applications, im-
ages are only available as numbers of photons detected at each pixel.
These photon counts are modeled as a Poisson process and there-
fore imply the generalized Kullback-Leibler divergence as the fitting
functional. The aim is to recover the original image from the Poisson
distributed data. Some first numerical studies will be presented.

40



Analysis and regularization in

diffuse optical tomography

Matthias Schlottbom, Herbert Egger

In this talk we will investigate the problem of diffuse optical to-
mography. This is the reconstruction of optical parameters related to
absorption and scattering from optical measurements at the bound-
ary. As a transport model for the propagation of light we utilize
a second order elliptic equation, i.e. the diffusion approximation
which can be derived by a first order approximation to the linear
Boltzmann equation. Based on this forward model we will define
an appropriate forward operator F which maps optical parameters
to boundary measurements. The resulting nonlinear inverse prob-
lem is severly-illposed and hence regularization is needed. The main
objective of the talk is to analyze properties of F in order to make
standard results from regularization theory applicable. Based on
W 1,p regularity results for solutions of elliptic equations, properties
like weak sequential closedness or certain differentiability properties
are shown. The talk concludes with application of these results to
Tikhonov regularization and a numerical example.
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Generalized discrepancy principle for

ill-posed problems with noisy data

Yuanyuan Shao

The goal of this talk is to present recent results for solving linear ill-
posed problems A0x = y0 where A0 : X → Y is a bounded operator
between Hilbert spaces X and Y . We are interested in problems
where

(i) instead of y0 ∈ R(A0) we have noisy data yδ ∈ Y with ‖y0 −
yδ‖ ≤ δ,

(ii) instead of A0 we have a noisy operator Ah ∈ L(X,Y ) with
‖A0 −Ah‖ ≤ h.

Since R(A0) is assumed to be non-closed, the solution x† of the op-
erator equation A0x = y0 does not depend continuously on the data.
Hence, for solving A0x = y0 with noisy data (yδ, Ah) some regu-
larization methods are required. In the present talk we study the
method of Tikhonov regularization with differential operators where
the regularization parameter is chosen a posteriori by the general-
ized discrepancy principle (GDP, see [1]). Under certain smoothness
assumptions for x† we provide order optimal error bounds that char-
acterize the accuracy of the regularized solution. In addition we
discuss computational aspects and provide fast algorithms for the
computation of the regularization parameter. These algorithms are
globally and monotonically convergent. The results extend earlier
results where the operator is exactly given. Some of our theoretical
results are illustrated by numerical experiments. This talk is a joint
work with Shuai Lu, Sergei Pereverzyev and Ulrich Tautenhahn.
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On the interpolation method for

deriving conditional stability estimates

in ill-posed problems

Ulrich Tautenhahn

In this talk we consider ill-posed problems Ax = y where A is
a linear operator between Hilbert spaces X and Y with non-closed
range R(A) and ask for conditional stability estimates on a given set
M ⊂ X. An operator A is called to satisfy a conditional stability
estimate on M if there exists a continuous, monotonically increasing
function β : R

+ → R
+ with limt→0 β(t) = 0 (index function) that

obeys

‖x1 − x2‖ ≤ β (‖Ax1 −Ax2‖) for all x1, x2 ∈M. (∗)

Conditional stability estimates (∗) are, e. g., important for the study
of following questions: (i) Which best possible error bounds can
be obtained for identifying the solution x† of the operator equa-
tion Ax = y from noisy data yδ ∈ Y under the assumptions
‖y − yδ‖ ≤ δ and x† ∈ M? (ii) How to regularize such that
the best possible error bounds can be guaranteed? For deriv-
ing conditional stability estimates on general source sets Mϕ,E =
{

x ∈ X |x = [ϕ(A∗A)]1/2v, ‖v‖ ≤ E
}

with some index function ϕ we
use interpolation techniques in variable Hilbert scales that allow to
derive the formula

β(δ) = E
√

̺−1(δ2/E2) with ̺(t) = tϕ−1(t) (∗∗)

in case ̺ is convex. Due to this formula, our interpolation method

for deriving conditional stability estimates on sets M consists in ex-
ecuting following three steps:

(i) Derive the index function ϕ such that the set M coincides with
the set Mϕ,E.
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(ii) Compute the function ̺(t) = tϕ−1(t) and prove its convexity.

(iii) Derive a formula for β given by (∗∗).

We apply this method to different inverse PDE problems and show
that, depending on different subsets M ⊂ X, the conditional stabil-
ity estimates (∗) may be of Hölder type, of logarithmic type or of
some other type.
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An inverse problem for

laser-induced thermotherapy arising in

tumor tissue imaging

Nataliya Togobytska

Laser-induced thermotherapy (LITT) is an advanced technique
for cancer treatments, which is of minimally invasion and especially
applicable for patients with liver metastases. In this method laser
light is diffused in tumorous tissue leading to an increase in tem-
perature and subsequent coagulation (i.e destruction) of the tumour
tissue.The treatment is guided using magnetic resonance imaging
(MRI). Unfortunately, MRI is known to have either a good spatial
or a good temporal resolution, making it difficult to predict the final
size of the coagulated zone. Hence, there is a strong demand for com-
puter simulations of LITT to support therapy planning and finding
an optimal dosage. The mathematical model for the LITT consists
of a bio-heat equation for the temperature distribution in the tissue
and an ordinary differential equation to describe the evolution of the
coagulated zone. In this talk i will briefly introduce LITT and the
mathematical model and finally discuss the problem of identification
of the temperature dependent growth parameter of the coagulated
tissue from the temperature measurement data.
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Regularization results for inverse problems

with sparsity functional

Gerd Wachsmuth, Daniel Wachsmuth

We consider an optimization problem of the type







Minimize F (u) =
1

2
‖Su− zδ‖

2
H + α ‖u‖2

L2(Ω) + β ‖u‖L1(Ω)

such that u ∈ Uad ⊂ L2(Ω).
(Pα,δ)

Here, Ω ⊂ R
n is a bounded domain, H is some Hilbert space, S ∈

L(L2(Ω),H) compact (e.g. the solution operator of an elliptic partial
differential equation), α > 0, and δ, β ≥ 0. The problem (Pα,δ) can
be interpreted as an inverse problem as well as an optimal control
problem. Let us denote the solution with uα,δ.

The estimate ‖uα,0 − uα,δ‖L2(Ω) ≤ δ α−1/2 for the error due to the
noise level δ is well known for β = 0 and the proof can be extended
to the case β > 0.

A typical way to estimate the regularization error as α ց 0 is
via a source condition, e.g. u0,0 = S⋆w with some w ∈ H. This
yields ‖uα,0 − u0,0‖L2(Ω) ≤ C α1/2. But if pointwise constraints are
present (Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}), u0,0 often is bang-
bang, i.e. u0,0(x) ∈ {ua, 0, ub} a.e. in Ω. Hence, u0,0 /∈ H1(Ω) and
by range(S⋆) ⊂ H1(Ω) a source condition with S⋆ can not hold.

In this talk we present a new technique for deriving rates of the
regularization error using a combination of a source condition and a
regularity assumption on the adjoint variable p0,0 = S⋆(z0 − Su0,0).
If the measure of

{
∣

∣|p0,0| − β
∣

∣ ≤ ε
}

≤ C ε for all ε ≥ 0 it is possible

to show ‖uα,0 − u0,0‖L2(Ω) ≤ C α1/2 without a source condition.
We present examples showing that the error rates are sharp.
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Inverse problems for Navier-Stokes equations

Masahiro Yamamoto

We consider an inverse problem of determining a spatially varying
factor in a source term in a nonstationary linearized Navier-Stokes
equations by observation data in an arbitrarily fixed sub-domain over
some time interval. We prove the Lipschitz stability provided that
the t-dependent factor satisfies a non-degeneracy condition. For the
proof, we show a Carleman estimate for the Navier-Stokes equations.

This is a joint work with Mourad Choulli (University of Metz,
France), Oleg Yu. Imanuvilov (Colorado State University, USA)
and Jean-Pierre Puel (The University of Tokyo).
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