Indefinite linear matrix pencils and the multi-eigenvalue problem

Hasen Mekki ÖZTÜRK

University of Reading

Based on joint work with Michael Levitin

> August, 2017 IWOTA

Multi-Parametric Eigenvalue Problem

Pencils

Pencils

Self-adjoint pencils

Let

$$\mathcal{P} = \mathcal{P}(\lambda) := T_0 + \lambda T_1 + \lambda^2 T_2 + \ldots + \lambda^m T_m,$$

be a family of (bounded) operators in a Hilbert space \mathcal{H} , which depends on a spectral parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients

$$T_j = (T_j)^*, \qquad j = 1, ..., n.$$

Such a family is called a self-adjoint (polynomial) operator pencil. I shall only deal with a linear self-adjoint operator pencil written as

 $\mathcal{P}\left(\lambda\right)=T-\lambda S.$

Spectrum of a linear pencil

 λ_0 is an *eigenvalue* of \mathcal{P} if there exists $x \in \mathcal{H} \setminus \{0\}$ such that

 $\mathcal{P}\left(\lambda_{0}\right)x=0,$

i.e., if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$. The spectrum is the set of values λ_0 for which there is no bounded inverse $\mathcal{P}(\lambda_0)^{-1}$, i.e. if $0 \in \operatorname{Spec}\mathcal{P}(\lambda_0)$. For a linear pencil, the eigenvalue problem becomes

 $(T-\lambda S)x=0,$

and if S is invertible, then it reduces to the eigenvalue problem for a (non-self-adjoint) operator $S^{-1}T$;

 $S^{-1}Tx = \lambda x.$

• If either *T* or *S* is sign-definite, then the problem may be reduced to the one for a self-adjoint operator

 $S^{-1/2}TS^{-1/2}$,

and the spectrum is real.

• If, however, both *T*, *S* are sign-indefinite, then the spectrum may be non-real.

A matrix pencil example

Example - A matrix pencil [DaLe]

Fix an integer n ∈ N, N = 2n, and define the N × N classes of matrices H_c^(N) and S, where

$$\mathcal{H}^{(N)}_c := egin{pmatrix} c & 1 & & \ 1 & c & \ddots & \ & \ddots & \ddots & 1 \ & & 1 & c \end{pmatrix}, \qquad S := egin{pmatrix} I_n & \ & -I_n \end{pmatrix}$$

where $c \in \mathbb{R}$ is a parameter and I_n is the identity matrix.

• The behavior of eigenvalues of the linear operator pencil

$$\mathcal{P} := \mathcal{P}\left(\lambda\right) = H_c^{(N)} - \lambda S$$

as $N \to \infty$ was studied by Davies & Levitin(2014).

Example - A matrix pencil [DaLe]

- If $|c| \geq 2$, then Spec $(\mathcal{P}) \subset \mathbb{R}$.
- Spec (\mathcal{P}) is invariant under the symmetry $c \rightarrow -c$.
- Spec (\mathcal{P}) is symmetric with respect to Re $\lambda = 0$ and Im $\lambda = 0$.
- Davies & Levitin studied the asymptotic behaviour of eigenvalues of *P* for large *n*;

For
$$c = 0$$
, $|\mathrm{Im}\,\lambda| \sim rac{1}{n}Y_0\left(|\mathrm{Re}\,\lambda|
ight).$

• For 0 < c < 2, $|{
m Im}\,\lambda| \lesssim rac{1}{n}Y_c\left(|{
m Re}\,\lambda|
ight).$

Functions Y_0 and Y_c are explicit (though rather complicated), and have logarithmic singularities at $\operatorname{Re} \lambda = 0$.

Example - A matrix pencil [DaLe]

• Video time!

Spec (P) for $c = \sqrt{5}/2$ and n = 500, 250, 99.

$$\cup_{m=100}^{250} \mathrm{Spec}\left(\mathcal{P}
ight)$$
 for $c=\sqrt{5}/2$

Conjecture

Asymptotic and numerical evidence suggest the following:

Let c > 0. If $\lambda \in \text{Spec}(\mathcal{P}(\lambda)) \setminus \mathbb{R}$, then c < 2 and $|\lambda \pm c| < 2$.

This can also be translated in terms of Chebyshev polynomials via explicit expression for det $(H_c^{(N)} - \lambda S)$:

Let $\sigma, \tau \in \mathbb{C}$, $\operatorname{Im}(\sigma) = \operatorname{Im}(\tau) > 0$. If, for some $n \in \mathbb{N}$,

 $U_{n+1}(\sigma) U_{n+1}(\tau) + U_n(\sigma) U_n(\tau) = 0,$

then $|\sigma| < 1$ and $|\tau| < 1$.

Multi-Parametric Eigenvalue Problem

Pencil to Parametric problem

• Recall the pencil \mathcal{P} ;

$$\mathcal{H}_c^{(N)}-\lambda S=egin{pmatrix} c-\lambda & 1 & & & \ 1 & \ddots & \ddots & & \ & \ddots & c-\lambda & 1 & & \ & & 1 & c+\lambda & \ddots & \ & & & \ddots & \ddots & 1 \ & & & & 1 & c+\lambda \end{pmatrix}.$$

Denote

$$\alpha = \lambda - c, \qquad \beta = -\lambda - c.$$

Pencil to Parametric problem

We will act by \mathcal{P} on vectors which we will write as

 $(u_1,\ldots,u_n,v_n,\ldots,v_1)^T$.

Then

$$\begin{pmatrix} H_0^{(n)} - \alpha I_n & B \\ B & H_0^{(n)} - \beta I_n \end{pmatrix} \begin{pmatrix} \overrightarrow{u} \\ \overrightarrow{v} \end{pmatrix} = \overrightarrow{0},$$

where $B = B^*$ with $B_{nn} = 1$ and all other entries of B are zeros.

Pencil to Parametric problem

We first generalize to the following: for any $\kappa > 0$, let $B = \kappa P$, $P = P^*$, ||P|| = 1,

$$\begin{pmatrix} H_0^{(n)} - \alpha I_n & \kappa P \\ \kappa P & H_0^{(n)} - \beta I_n \end{pmatrix} \begin{pmatrix} \overrightarrow{u} \\ \overrightarrow{v} \end{pmatrix} = \overrightarrow{0}.$$
 (1)

which is a special case of

$$\begin{pmatrix} A - \alpha I_1 & C \\ C^* & D - \beta I_2 \end{pmatrix} \begin{pmatrix} \vec{u} \\ \vec{v} \end{pmatrix} = \vec{0}, \qquad (2)$$

where, in general, $\overrightarrow{u} \in \mathcal{H}_1$ and $\overrightarrow{v} \in \mathcal{H}_2$,

- A, D are self-adjoint operators in \mathcal{H}_1 , \mathcal{H}_2 , respectively,
- C is a linear operator from \mathcal{H}_2 to \mathcal{H}_1 ,
- $\alpha, \beta \in \mathbb{C}$ are spectral parameters.

Two-parameter Matrix Eigenvalue problem

Denote

$$M = \left(\begin{array}{cc} A & C \\ C^* & D \end{array}\right),$$

so that the problem

$$\begin{pmatrix} M - \begin{pmatrix} \alpha I_1 \\ \beta I_2 \end{pmatrix} \begin{pmatrix} \overrightarrow{u} \\ \overrightarrow{v} \end{pmatrix} = \overrightarrow{0},$$
(3)

where $\overrightarrow{u} \in \mathcal{H}_1$ and $\overrightarrow{v} \in \mathcal{H}_2$.

- $(\alpha, \beta) \in \mathbb{C}^2$ a *multi-eigenvalue* (or a *pair-eigenvalue*) of M if there exists a non-trivial solution $\begin{pmatrix} \overrightarrow{u} \\ \overrightarrow{v} \end{pmatrix} \in \mathcal{H}$ of (3).
- We denote by $\operatorname{Spec}_p(M)$ the *spectrum* of pair-eigenvalues of M.
- If α, β ∈ ℝ, then (α, β) is called as a *real pair-eigenvalue*, and otherwise it is a *non-real pair-eigenvalue* of (3).

β (α) problem

• The equation (3) can be re-written as

$$\begin{cases} (A - \alpha I_1) \overrightarrow{u} &= -C \overrightarrow{v}, \\ (D - \beta I_2) \overrightarrow{v} &= -C^* \overrightarrow{u}. \end{cases}$$

• If $\alpha \notin \operatorname{Spec}(A)$ and β is an eigenvalue of $\left(D - C^* (A - \alpha I_1)^{-1} C\right)$, then $(\alpha, \beta) \in \operatorname{Spec}_p(M)$.

Note: α and β are interchangeable.

Restrictions

- Now, suppose that $\mathcal{H}_1, \mathcal{H}_2$ are finite dimensional, and therefore we are dealing with matrices.
- Additionally dim $\mathcal{H}_1 = \dim \mathcal{H}_2$.
- C has rank 1, or C = κP, where κ > 0 and P is a projection on a one-dimensional subspace span {φ} of H,

Notations

- The restriction of X on the space of vectors orthogonal to [→] will be denoted by X_{⊥,⊥}.
- Eigenvalues of A and D will be denoted by

\widetilde{lpha}_1	\geq	$\widetilde{\alpha}_2 \geq \ldots$	$. \geq \widetilde{\alpha}_n,$
$\widetilde{\beta}_1$	\geq	$\widetilde{\beta}_2 \geq \ldots$	$. \geq \widetilde{\beta}_n,$

respectively.

• Eigenvalues of $A_{\perp,\perp}$ and $D_{\perp,\perp}$ will be denoted by

$$\begin{array}{rcl} \widehat{\alpha}_1 & \geq & \widehat{\alpha}_2 \geq \ldots \geq \widehat{\alpha}_{n-1}, \\ \widehat{\beta}_1 & \geq & \widehat{\beta}_2 \geq \ldots \geq \widehat{\beta}_{n-1}, \end{array}$$

respectively.

Remark

• All numerical examples will be related to

$$\begin{pmatrix} H_0^{(n)} - \alpha I & \kappa P \\ \kappa P & H_0^{(n)} - \beta I \end{pmatrix} \begin{pmatrix} \overrightarrow{u} \\ \overrightarrow{v} \end{pmatrix} = \overrightarrow{0}.$$

• All theoretical results will be related to

$$\begin{pmatrix} A - \alpha I & \kappa P \\ \kappa P & D - \beta I \end{pmatrix} \begin{pmatrix} \overrightarrow{u} \\ \overrightarrow{v} \end{pmatrix} = \overrightarrow{0}.$$

Spectral picture for n = 7

Spectral picture for n = 7

- Blue curves are all real eigencurves $\beta(\alpha)$, $\alpha \in \mathbb{R}$.
- Red curves are graphs of $\operatorname{Re}\beta(\operatorname{Re}\alpha)$ for eigenpairs such that

 $\operatorname{Im}\left(\alpha+\beta\right)=\mathsf{0},$

which keeps all $(\alpha, \beta) \in \mathbb{R}^2$ in the picture and some complex pair-eigenvalues.

Lemma

Blue and red lines intersect iff

$$\frac{d}{d\alpha}\beta\left(\alpha\right)=-1.$$

Characteristic equation

Theorem

If $\alpha \notin \text{Spec}(A)$ and $\beta \notin \text{Spec}(D)$, then the characteristic equation for $(\alpha, \beta) \in \text{Spec}_p(M)$ is

$$\kappa^{2}\left\langle (A - \alpha I_{n})^{-1} \overrightarrow{\varphi}, \overrightarrow{\varphi} \right\rangle \left\langle (D - \beta I_{n})^{-1} \overrightarrow{\varphi}, \overrightarrow{\varphi} \right\rangle = 1, \qquad (4)$$

which implies

$$\beta' = -\kappa^2 \frac{\left\langle (A - \alpha I_n)^{-2} \overrightarrow{\varphi}, \overrightarrow{\varphi} \right\rangle \left(\left\langle (D - \beta I_n)^{-1} \overrightarrow{\varphi}, \overrightarrow{\varphi} \right\rangle \right)^2}{\left\langle (D - \beta I_n)^{-2} \overrightarrow{\varphi}, \overrightarrow{\varphi} \right\rangle},$$

and therefore $\frac{d\beta}{d\alpha} < 0$ on each real branch of $\beta(\alpha)$, $\alpha \in \mathbb{R}$.

Mesh

Spectral picture for n = 7

n=4 and particular values of κ

Chess Board Structure for n = 6

Figure : Superimposing the values of κ from 0.001 to 10 with the step-size of 0.1.

Chess Board Structure

Chess Board Theorem: Suppose that $\operatorname{Spec}(A) \cap \operatorname{Spec}(A_{\perp,\perp}) = \emptyset$ and $\operatorname{Spec}(D) \cap \operatorname{Spec}(D_{\perp,\perp}) = \emptyset$. Then all real pair-eigenvalues (α, β) of *M* lies in the region $R_{p,q}$ where p + q is even, i.e.

$$(\alpha,\beta) \subset \mathbb{R}^2 \qquad \Rightarrow \qquad (\alpha,\beta) \in R_{p,q}.$$

When $\alpha \in \operatorname{Spec}(A)$

Lemma

Suppose $\alpha = \widetilde{\alpha}_i \in \text{Spec}(A)$, i = 1, ..., n, and let $\overrightarrow{\psi}_i$ be an eigenfunction corresponding to the eigenvalue $\widetilde{\alpha}_i$ of A. Assume that $\langle \overrightarrow{\varphi}, \overrightarrow{\psi}_i \rangle \neq 0$. Then, for any $\kappa \in \mathbb{R} \setminus \{0\}$,

and additionally for $\alpha \approx \tilde{\alpha}_i$, there exists one $(\alpha, \beta(\alpha)) \in \operatorname{Spec}_p(M)$ such that $\beta(\alpha) \to \pm \infty$ as $\alpha \to \tilde{\alpha}_i^{\pm}$.

As $\kappa \to 0$

As $\kappa \to 0$

Theorem

Let $\kappa \to 0$. Then for every $i \in \{1, ..., n\}$ and every $\beta \in \mathbb{R}$, there exists a sequence $\{(\alpha_k, \beta_k) \in \operatorname{Spec}_p(M)\}_k$ such that

 $\alpha_k \to \widetilde{\alpha}_i, \quad \beta_k \to \beta,$

similarly for every $i \in \{1, ..., n\}$ and every $\alpha \in \mathbb{R}$, there exists a sequence $\{(\alpha_k, \beta_k) \in \operatorname{Spec}_p(M)\}_k$ such that

 $\alpha_k \to \alpha, \quad \beta_k \to \widetilde{\beta}_i.$

As $\kappa \to +\infty$

As $\kappa \to +\infty$

Theorem

Let $\kappa \to \infty$. Then for every $j \in \{1, ..., n-1\}$ and every $\beta \in \mathbb{R}$, there exists a sequence $\{(\alpha_k, \beta_k) \in \operatorname{Spec}_p(M)\}_k$ such that

 $\alpha_k \to \widehat{\alpha}_j, \quad \beta_k \to \beta,$

similarly for every $j \in \{1, ..., n-1\}$ and every $\alpha \in \mathbb{R}$, there exists a sequence $\{(\alpha_k, \beta_k) \in \operatorname{Spec}_p(M)\}_k$ such that

 $\alpha_k \to \alpha, \quad \beta_k \to \widehat{\beta}_j.$

In addition, there exists one non-real family of pair-eigenvalue (α, β) of M such that

 $\alpha = \overline{\beta}.$

Modified problem: Non-real collisions

- E. Brian Davies and Michael Levitin, Spectra of a class of non-self-adjoint matrices, Linear Algebra and its Applications 448, 55-84 (2014).
- C. Tretter, *Spectral Theory of Block Operator Matrices and Applications*, Imperial Collefe Press, London, UK, 2008.
- Atkinson, F. V., 1968. Multiparameter spectral theory. Bulletin of the American Mathematical Society, 74(1), 1-27.
- Atkinson, F. V., 1972. Multiparameters eigenvalue problems. Academic Press.
- E.B. Davies, *Linear Operators and their Spectra*, Cambridge University Press, Cambridge, UK, 2007.