Indefinite linear matrix pencils and the multi-eigenvalue problem

Hasen Mekki ÖZTÜRK

University of Reading

Based on joint work with Michael Levitin

> August, 2017 IWOTA

3 [Multi-Parametric Eigenvalue Problem](#page-13-0)

[Pencils](#page-2-0)

[Pencils](#page-3-0)

Self-adjoint pencils

Let

$$
\mathcal{P} = \mathcal{P}(\lambda) := T_0 + \lambda T_1 + \lambda^2 T_2 + \ldots + \lambda^m T_m,
$$

be a family of (bounded) operators in a Hilbert space \mathcal{H} , which depends on a spectral parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients

$$
T_j = (T_j)^*, \qquad j = 1, \ldots, n.
$$

Such a family is called a self-adjoint (polynomial) operator pencil. I shall only deal with a linear self-adjoint operator pencil written as

 $\mathcal{P}(\lambda) = T - \lambda S$.

Spectrum of a linear pencil

 λ_0 is an *eigenvalue* of P if there exists $x \in \mathcal{H} \setminus \{0\}$ such that

 $\mathcal{P}(\lambda_0) x = 0$,

i.e., if 0 is an eigenvalue of $P(\lambda_0)$. The spectrum is the set of values λ_0 for which there is no bounded inverse $\mathcal{P}\left(\lambda_{0}\right)^{-1}$, i.e. if $0 \in \operatorname{Spec} \mathcal{P}\left(\lambda_{0}\right)$. For a linear pencil, the eigenvalue problem becomes

 $(T - \lambda S)x = 0$

and if S is invertible, then it reduces to the eigenvalue problem for a (non-self-adjoint) operator $S^{-1}T$;

 $S^{-1}Tx = \lambda x.$

• If either \overline{T} or \overline{S} is sign-definite, then the problem may be reduced to the one for a self-adjoint operator

 $S^{-1/2}$ TS $^{-1/2}$,

and the spectrum is real.

• If, however, both T , S are sign-indefinite, then the spectrum may be non-real.

[A matrix pencil example](#page-6-0)

Example - A matrix pencil [DaLe]

• Fix an integer $n \in \mathbb{N}$, $N = 2n$, and define the $N \times N$ classes of matrices $H_c^{(N)}$ and S , where

$$
H_c^{(N)} := \left(\begin{array}{cccc} c & 1 & & & \\ 1 & c & \ddots & & \\ & \ddots & \ddots & 1 & \\ & & 1 & c \end{array} \right), \qquad S := \left(\begin{array}{cc} I_n & & \\ & -I_n \end{array} \right)
$$

where $c \in \mathbb{R}$ is a parameter and I_n is the identity matrix.

The behavior of eigenvalues of the linear operator pencil

$$
\mathcal{P} := \mathcal{P}\left(\lambda\right) = H_c^{(N)} - \lambda S
$$

as $N \to \infty$ was studied by Davies & Levitin(2014).

Example - A matrix pencil [DaLe]

- If $|c| > 2$, then $Spec(\mathcal{P}) \subset \mathbb{R}$.
- Spec (P) is invariant under the symmetry $c \rightarrow -c$.
- Spec (P) is symmetric with respect to $\text{Re }\lambda = 0$ and $\text{Im }\lambda = 0$.
- \bullet Davies & Levitin studied the asymptotic behaviour of eigenvalues of ${\cal P}$ for large *n*;

• For
$$
c = 0
$$
,
\n
$$
|\text{Im }\lambda| \sim \frac{1}{n} Y_0 (|\text{Re }\lambda|).
$$

• For $0 < c < 2$, $|{\rm Im} \ \lambda | \lesssim \frac{1}{\tau}$ $\frac{1}{n}Y_c$ ([Re λ]).

Functions Y_0 and Y_c are explicit (though rather complicated), and have logarithmic singularities at $\text{Re }\lambda = 0$.

Example - A matrix pencil [DaLe]

Video time!

$\operatorname{Spec}\left(\mathcal{P}\right)$ for $\textsf{c}=% \begin{bmatrix} \omega_{11} & \omega_{12}\\ \omega_{21} & \omega_{22}\end{bmatrix}$ √ $5/2$ and $n = 500, 250,$ 99 .

$$
\cup_{m=100}^{250} \text{Spec}(\mathcal{P}) \text{ for } c = \sqrt{5}/2
$$

Conjecture

Asymptotic and numerical evidence suggest the following:

Let $c > 0$. If $\lambda \in \text{Spec}(\mathcal{P}(\lambda)) \setminus \mathbb{R}$, then $c < 2$ and $|\lambda \pm c| < 2$.

This can also be translated in terms of Chebyshev polynomials via explicit expression for det $\left(H_c^{(N)} - \lambda S \right)$:

Let $\sigma, \tau \in \mathbb{C}$, $\text{Im}(\sigma) = \text{Im}(\tau) > 0$. If, for some $n \in \mathbb{N}$,

 $U_{n+1}(\sigma) U_{n+1}(\tau) + U_n(\sigma) U_n(\tau) = 0.$

then $|\sigma| < 1$ and $|\tau| < 1$.

[Multi-Parametric Eigenvalue Problem](#page-13-0)

Pencil to Parametric problem

• Recall the pencil P ;

$$
H_c^{(N)} - \lambda S = \begin{pmatrix} c - \lambda & 1 & & & & \\ & 1 & \ddots & \ddots & & & \\ & & \ddots & c - \lambda & 1 & & \\ & & & 1 & c + \lambda & \ddots & \\ & & & & & \ddots & \ddots & 1 \\ & & & & & 1 & c + \lambda \end{pmatrix}.
$$

• Denote

$$
\alpha = \lambda - c, \qquad \beta = -\lambda - c.
$$

Pencil to Parametric problem

We will act by $\mathcal P$ on vectors which we will write as

 $(u_1, \ldots, u_n, v_n, \ldots, v_1)^T$.

Then

$$
\left(\begin{array}{cc}H_0^{(n)}-\alpha I_n & B \\ B & H_0^{(n)}-\beta I_n\end{array}\right)\left(\begin{array}{c}\overrightarrow{u} \\ \overrightarrow{v}\end{array}\right)=\overrightarrow{0},
$$

where $B = B^*$ with $B_{nn} = 1$ and all other entries of B are zeros.

Pencil to Parametric problem

We first generalize to the following: for any $\kappa > 0$, let $B = \kappa P$, $P = P^*$, $||P|| = 1,$

$$
\left(\begin{array}{cc}H_0^{(n)}-\alpha I_n & \kappa P\\ \kappa P & H_0^{(n)}-\beta I_n\end{array}\right)\left(\begin{array}{c}\overrightarrow{u}\\ \overrightarrow{v}\end{array}\right)=\overrightarrow{0}.
$$
 (1)

which is a special case of

$$
\begin{pmatrix}\nA - \alpha I_1 & C \\
C^* & D - \beta I_2\n\end{pmatrix}\n\begin{pmatrix}\n\overrightarrow{u} \\
\overrightarrow{v}\n\end{pmatrix} = \overrightarrow{0},
$$
\n(2)

where, in general, $\overrightarrow{u} \in \mathcal{H}_1$ and $\overrightarrow{v} \in \mathcal{H}_2$,

- \bullet A, D are self-adjoint operators in \mathcal{H}_1 , \mathcal{H}_2 , respectively,
- \bullet C is a linear operator from \mathcal{H}_2 to \mathcal{H}_1 ,
- $\bullet \ \alpha, \beta \in \mathbb{C}$ are spectral parameters.

Two-parameter Matrix Eigenvalue problem

Denote

$$
M=\left(\begin{array}{cc}A&C\\C^*&D\end{array}\right),\,
$$

so that the problem

$$
\left(M - \left(\begin{array}{cc}\alpha I_1 & \\ & \beta I_2\end{array}\right)\right)\left(\begin{array}{c}\n\overrightarrow{u} \\ \overrightarrow{v}\end{array}\right) = \overrightarrow{0},\tag{3}
$$

where $\overrightarrow{u} \in \mathcal{H}_1$ and $\overrightarrow{v} \in \mathcal{H}_2$.

- $(\alpha, \beta) \in \mathbb{C}^2$ a *multi-eigenvalue* (or a *pair-eigenvalue*) of M if there exists a non-trivial solution $\begin{pmatrix} \frac{1}{U} & \frac{1}{U} &$ $\Big) \in \mathcal{H}$ of [\(3\)](#page-17-1).
- We denote by $\operatorname{Spec}_\rho\left(M\right)$ the $spectrum$ of pair-eigenvalues of $M.$
- If α , $\beta \in \mathbb{R}$, then (α, β) is called as a *real pair-eigenvalue*, and otherwise it is a *non-real pair-eigenvalue* of [\(3\)](#page-17-1).

$\beta(\alpha)$ problem

• The equation [\(3\)](#page-17-1) can be re-written as

$$
\begin{cases}\n(A - \alpha I_1) \overrightarrow{u} &= -C \overrightarrow{v}, \\
(D - \beta I_2) \overrightarrow{v} &= -C^* \overrightarrow{u}.\n\end{cases}
$$

If $\alpha \notin \mathrm{Spec}\,(A)$ and β is an eigenvalue of $\left(D - C^* \left(A - \alpha I_1 \right)^{-1} \mathcal{C} \right)$, then $(\alpha, \beta) \in \mathrm{Spec}_p(M)$.

Note: α and β are interchangeable.

Restrictions

- Now, suppose that $\mathcal{H}_1, \mathcal{H}_2$ are finite dimensional, and therefore we are dealing with matrices.
- Additionally dim $\mathcal{H}_1 = \dim \mathcal{H}_2$.
- • C has rank 1, or $C = \kappa P$, where $\kappa > 0$ and P is a projection on a one-dimensional subspace $\text{span}\{\overrightarrow{\varphi}\}$ of \mathcal{H} ,

Notations

- The restriction of X on the space of vectors orthogonal to $\overrightarrow{\varphi}$ will be denoted by X_{\perp} .
- Eigenvalues of \overline{A} and \overline{D} will be denoted by

 $\begin{array}{rcl}\n\widetilde{\alpha}_1 & \geq & \widetilde{\alpha}_2 \geq \ldots \geq \widetilde{\alpha}_n, \\
\widetilde{\alpha} & \geq & \widetilde{\alpha}\n\end{array}$ $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_n,$

respectively.

 \bullet Eigenvalues of $A_{\perp,\perp}$ and $D_{\perp,\perp}$ will be denoted by

$$
\begin{array}{ll}\n\widehat{\alpha}_1 & \geq \widehat{\alpha}_2 \geq \ldots \geq \widehat{\alpha}_{n-1}, \\
\widehat{\beta}_1 & \geq \widehat{\beta}_2 \geq \ldots \geq \widehat{\beta}_{n-1},\n\end{array}
$$

respectively.

Remark

All numerical examples will be related to

$$
\left(\begin{array}{cc}H_0^{(n)}-\alpha I & \kappa P\\ \kappa P & H_0^{(n)}-\beta I\end{array}\right)\left(\begin{array}{c}\overrightarrow{u}\\ \overrightarrow{v}\end{array}\right)=\overrightarrow{0}.
$$

• All theoretical results will be related to

$$
\begin{pmatrix}\nA-\alpha I & \kappa P \\
\kappa P & D-\beta I\n\end{pmatrix}\n\begin{pmatrix}\n\overrightarrow{u} \\
\overrightarrow{v}\n\end{pmatrix} = \overrightarrow{0}.
$$

Spectral picture for $n = 7$

Spectral picture for $n = 7$

- Blue curves are all real eigencurves $\beta(\alpha)$, $\alpha \in \mathbb{R}$.
- Red curves are graphs of $\text{Re}\beta$ ($\text{Re}\alpha$) for eigenpairs such that

 $\text{Im}(\alpha + \beta) = 0,$

which keeps all $(\alpha,\beta)\in\mathbb{R}^2$ in the picture and some complex pair-eigenvalues.

Lemma

Blue and red lines intersect iff

$$
\frac{d}{d\alpha}\beta\left(\alpha\right) =-1.
$$

Characteristic equation

Theorem

If $\alpha \notin \text{Spec}(A)$ and $\beta \notin \text{Spec}(D)$, then the characteristic equation for $(\alpha,\beta)\in \operatorname{Spec}_{\bm\rho}(M)$ is

$$
\kappa^2 \left\langle (A - \alpha I_n)^{-1} \overrightarrow{\varphi}, \overrightarrow{\varphi} \right\rangle \left\langle (D - \beta I_n)^{-1} \overrightarrow{\varphi}, \overrightarrow{\varphi} \right\rangle = 1, \tag{4}
$$

which implies

$$
\beta'=-\kappa^2\frac{\left\langle (A-\alpha I_n)^{-2}\overrightarrow{\varphi},\overrightarrow{\varphi}\right\rangle\left(\left\langle (D-\beta I_n)^{-1}\overrightarrow{\varphi},\overrightarrow{\varphi}\right\rangle\right)^2}{\left\langle (D-\beta I_n)^{-2}\overrightarrow{\varphi},\overrightarrow{\varphi}\right\rangle},
$$

and therefore $\frac{d\beta}{d\alpha}< 0$ on each real branch of $\beta\left(\alpha\right)$, $\alpha\in\mathbb{R}.$

Mesh

Spectral picture for $n = 7$

$n = 4$ and particular values of κ

Chess Board Structure for $n = 6$

Figure : Superimposing the values of κ from 0.001 to 10 with the step-size of 0.1.

Chess Board Structure

Chess Board Theorem: Suppose that $\mathrm{Spec}\,(A)\bigcap \mathrm{Spec}\,(A_{\perp,\perp})=\emptyset$ and ${\rm Spec}\, (D) \bigcap {\rm Spec}\, (D_{\perp,\perp}) = \emptyset.$ Then all real pair-eigenvalues (α,β) of M lies in the region $R_{p,q}$ where $p + q$ is even, i.e.

$$
(\alpha,\beta)\subset\mathbb{R}^2\qquad\Rightarrow\qquad (\alpha,\beta)\in R_{p,q}.
$$

When $\alpha \in \mathrm{Spec}(A)$

Lemma

Suppose $\alpha = \widetilde{\alpha}_i \in \text{Spec}(A)$, $i = 1, \ldots, n$, and let $\overrightarrow{\psi}_i$ be an eigenfunction corresponding to the eigenvalue $\tilde{\alpha}_i$ of A. Assume that $\langle \vec{\varphi}, \vec{\psi}_i \rangle \neq 0$. Then, for any $\kappa \in \mathbb{R} \setminus \{0\}$,

$$
(\alpha, \beta(\alpha)) \in \text{Spec}_{p}(M)
$$

\$\updownarrow\$
\$\beta(\alpha)\$ $\in \text{Spec}(D_{\perp\perp}),$

and additionally for $\alpha \approx \widetilde{\alpha}_i$, there exists one $(\alpha, \beta(\alpha)) \in \text{Spec}_p(M)$ such
that $\beta(a) \rightarrow \text{Rec} \otimes \alpha \rightarrow \widetilde{\alpha}^{\pm}$ that $\beta(\alpha) \to \pm \infty$ as $\alpha \to \widetilde{\alpha}_i^{\pm}$ $\frac{\pm}{i}$.

As $\kappa \to 0$

As $\kappa \to 0$

Theorem

Let $\kappa \to 0$. Then for every $i \in \{1, \ldots, n\}$ and every $\beta \in \mathbb{R}$, there exists a sequence $\big\{(\alpha_k,\beta_k)\in \mathrm{Spec}_\rho\,(M)\big\}_{k}$ such that

 $\alpha_k \to \tilde{\alpha}_i, \quad \beta_k \to \beta,$

similarly for every $i \in \{1, \ldots, n\}$ and every $\alpha \in \mathbb{R}$, there exists a sequence $\{(\alpha_k, \beta_k) \in \mathrm{Spec}_p(M)\}_k$ such that

 $\alpha_k \to \alpha$, $\beta_k \to \beta_i$.

As $\kappa \to +\infty$

As $\kappa \to +\infty$

Theorem

Let $\kappa \to \infty$. Then for every $j \in \{1, \ldots, n-1\}$ and every $\beta \in \mathbb{R}$, there exists a sequence $\big\{(\alpha_k,\beta_k)\in \operatorname{Spec}_p\left(M\right)\big\}_k$ such that

 $\alpha_k \to \widehat{\alpha}_j, \quad \beta_k \to \beta,$

similarly for every $j \in \{1, \ldots, n-1\}$ and every $\alpha \in \mathbb{R}$, there exists a sequence $\big\{(\alpha_k,\beta_k)\in \mathrm{Spec}_\rho\,(M)\big\}_k$ such that

 $\alpha_k \to \alpha$, $\beta_k \to \beta_j$.

In addition, there exists one non-real family of pair-eigenvalue (α, β) of M such that

 $\alpha = \overline{\beta}$.

Modified problem: Non-real collisions

- E. Brian Davies and Michael Levitin, Spectra of a class of non-self-adjoint matrices, Linear Algebra and its Applications 448, 55-84 (2014).
- C. Tretter, *Spectral Theory of Block Operator Matrices and* Applications, Imperial Collefe Press, London, UK, 2008.
	- Atkinson, F. V., 1968. Multiparameter spectral theory. Bulletin of the American Mathematical Society, 74(1), 1-27.
	- Atkinson, F. V., 1972. Multiparameters eigenvalue problems. Academic Press.
- E.B. Davies, Linear Operators and their Spectra, Cambridge University Press, Cambridge, UK, 2007.