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A B S T R A C T

When modeling the material properties of host rocks for thermo-hydro-mechanical simulations in barrier
integrity investigations for deep geological disposal of radioactive waste, numerous modeling aspects must
be considered. If complete information were available, the material properties would be functions of space,
with inhomogeneity and anisotropy expressed by spatially varying and tensor-valued coefficients. In practice,
uncertainty is present in particular related to spatial variability of physical properties. This variability can
be modeled by random fields, whose realizations are functions of space. A common choice is a Gaussian
random field, determined by its mean and two-point covariance function. Anisotropy can occur both in
the statistical covariance structure, resulting in different correlation lengths along principal axes, and in
the physical properties themselves, leading to tensor-valued random fields. In this study, we focus on both
cases, considering dominant material properties such as thermal conductivity, intrinsic permeability, and
Young’s modulus, and present numerical simulations illustrating the effects of inhomogeneity, randomness,
and anisotropy. Since spatial variability is a key feature in the analysis of in-situ data, this study quantifies
the individual contribution of each of the listed effects in a well-controlled synthetic case and discusses them
in the context of scale.
1. Introduction

Deep geological disposal of radioactive waste requires a comprehen-
sive understanding of the material properties of host rocks to ensure
barrier integrity and long-term safety [1–10]. However, modeling these
properties poses significant challenges due to the complex nature of
geological formations and the limited availability of comprehensive
data [11]. In practice, complete information about material properties
as functions of space is unattainable for several reasons including
depth and the limited accessibility by drilling [12]. Furthermore, in
certain applications not only the physical inaccessibility but also the
extreme conditions such as high pressures, temperatures, and corrosive
environment result in limited direct sampling [13,14]. Consequently,
the cost and time required for data acquisition is usually very high. In
geological disposal, extensive invasive exploration and the maintenance
of an intact barrier are to a certain degree conflicting objectives. In
any case, deep geological formations are complex and inhomogeneous,
exhibiting variations in rock types, structure, and properties [15–19].
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Inferring their structure from geotechnical and geophysical exploration
remains an interpretative task and predicting their behavior over long
periods is challenging due to inherent uncertainties [20–24]. Factors
such as the presence of fractures, fault zones, or natural pathways for
fluid migration can affect the safety and stability when it comes to
barrier integrity [25].

To account for part of the uncertainty, a common approach is to
model the rock medium as piecewise homogeneous, treating mate-
rial properties within each homogeneous sub-region as random vari-
ables [26]. This allows for the representation of spatial variability only
from one layer to another. Incorporating randomness with a more
general structure can be achieved through the use of random fields,
which are functions of space that are not necessarily constant [27,28].

Several studies have explored the application of random fields to
represent the spatial variability of subsurface properties. Follin et al.
[29] utilized random fields to model discrete fracture networks in
vailable online 24 February 2025
951-8320/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.ress.2025.110921
Received 7 October 2024; Received in revised form 30 January 2025; Accepted 14
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

 February 2025

https://www.elsevier.com/locate/ress
https://www.elsevier.com/locate/ress
https://orcid.org/0000-0003-1051-9335
https://orcid.org/0000-0003-4402-3696
https://orcid.org/0000-0002-0176-7321
https://orcid.org/0000-0001-8459-4616
mailto:aqeel.chaudhry@ifgt.tu-freiberg.de
mailto:chaz@dtu.dk
mailto:oernst@math.tu-chemnitz.de
mailto:thomas.nagel@ifgt.tu-freiberg.de
https://doi.org/10.1016/j.ress.2025.110921
https://doi.org/10.1016/j.ress.2025.110921
http://creativecommons.org/licenses/by/4.0/


Reliability Engineering and System Safety 260 (2025) 110921A.A. Chaudhry et al.

f
a

N
r
a

n

h
i
l
l
t
s

i
p

d
t
i

t

o
i
e

m

e
a
t
b
c

e
l
s
a

t
r

b

m
b
m

h
t

r

o

S

crystalline rocks, demonstrating their use in capturing heterogeneous
permeability distributions relevant to nuclear waste repositories. Joyce
et al. [30] extended these applications to multi-scale groundwater
low models, highlighting the impact of spatial variability on safety
ssessments at sites like Forsmark, Sweden. Ernst et al. [31] studied

the probability distribution of travel time of radioactive contaminants,
using data from the Waste Isolation Pilot Plant (WIPP) in Carlsbad,

M, USA. These studies underline the critical role of random fields in
epresenting the stochastic nature of geological properties, essential for
ccurate predictions of subsurface behavior.

Stochastic simulations using random fields have also been used to
model fault networks and geological structures, contributing signifi-
cantly to the understanding of fluid migration pathways in fractured
rock systems. Cherpeau et al. [32] applied these methods in fault
etwork modeling, while Wang et al. [33] developed a segmenta-

tion approach for three-dimensional geological modeling using hidden
Markov random fields. Cvetkovic and Frampton [34] used Gaussian
random fields to characterize the internal structure of faults and con-
cluded that more complex representations of inhomogeneity in fracture
networks might be required. These advancements underscore the im-
portance of inhomogeneity in enhancing the predictive capabilities of
models used in radioactive waste management.

Anisotropy, which refers to the direction-dependent behavior of
material properties, is another crucial aspect to consider. It can occur
both in the statistical covariance structure and in the local thermal,
ydraulic, or mechanical properties of the rock mass itself. Anisotropy
n the statistical covariance structure results in different correlation
engths along principal axes, while anisotropy in material properties
eads to tensor-valued random fields with anisotropic tensors as realiza-
ions. These tensor-valued random fields can exhibit both spatial and
tatistical anisotropy.

Norberg et al. [35] demonstrated the significance of modeling dis-
crete geological structures as anisotropic random fields, emphasizing
their role in capturing spatial dependencies. The work of Hadgu et al.
[36] on discrete fracture network models for crystalline rocks further
llustrated the impact of anisotropic behaviors on flow and trans-
ort predictions. Kim and Inoue [37] analyzed anisotropic permeabil-

ity through rock joints, showing how direction-dependent correlation
lengths influence flow predictions. Similarly, Tsang et al. [38] ex-
plored hydrologic issues in low-seismic activity regions, using direction-
ependent simulations to assess the performance of geological reposi-
ories under varying conditions. Shao et al. [39] provided insights into
n situ measurements of anisotropic permeability in clay, further illus-

trating the variability of geological formations. These studies highlight
he need for incorporating anisotropic models to accurately reflect the

direction-dependent behaviors of subsurface properties.
Thermo-hydro-mechanical (THM) simulations have become a widely

used approach for understanding the combined effects of thermal, hy-
draulic, and mechanical processes in geological media [40,41]. Study-
ing random fields through THM simulations will provide a comprehen-
sive understanding of their interactions and effects on related geolog-
ical processes. Salager et al. [42] studied the mechanical anisotropy
f Opalinus clay using THM models, illustrating the role of anisotropy
n predicting deformation behavior. Barton and Quadros [43] further
xplored methodologies for modeling anisotropy in geological me-

dia, emphasizing the importance of directional dependencies in rock
echanics.

Geomaterials display structure and texture at various scales and
how they are represented in models is a question of scale. Consider
the illustration in Fig. 1 where the spatial variability of a rock prop-
rty of interest is represented as a random field, usually statistically
nisotropic. At each point, the values of local physical properties are
hemselves the result of a complex microstructure (b). As it is usually
oth too expensive and not necessary to explicitly resolve these mi-
rostructures with the geometry, arrangement and properties of each
2

Fig. 1. Basic concept illustrating anisotropy in a random field. (a) shows a (realization
of (a) random field representing spatial variability in geological properties at the mod-
led scale. (b) shows a zoomed-in view of a representative elementary volume, revealing
ayered media with patches of varying properties, illustrating spatial variability at a
maller scale. After averaging over the REV, physical properties may be represented as
nisotropic point-wise quantities (c) in the model (a).

of its constituents, local averaging procedures on representative ele-
mentary volumes (REVs) are applied that result in a single anisotropic
ensorial value – indicated by the ellipse in (c) – for the REV (b)
epresenting the material points in the macroscale model (a).

In this study, we focus on both types of anisotropy mentioned above
y considering at least the dominant material property of each physical

process involved in THM simulations: thermal conductivity (λ) for the
thermal part, intrinsic permeability (𝐤) for the hydraulic part, and the
principal Young’s moduli (𝐸𝑖) for the mechanical part. These properties
play key roles in heat transfer, fluid flow, and mechanical behavior
within the host rocks. It is worth mentioning that the choice of the
parameters is also supported by previous studies where local and global
sensitivity analyses were performed [44] to observe the most significant

aterial parameters affecting the thermal, hydraulic and mechanical
ehavior of the host rock and a Design of Experiments based history-
atching workflow was adapted for uncertainty quantification [45].

The parameters chosen in the current work consistently ranked among
those most significant for coupled THM processes.

Thus, the objectives of the paper are to demonstrate how random
fields can be introduced in THM simulations on a sound mathematical
basis; to show how structure (material inhomogeneity) at different
scales can be represented in such simulations as either anisotropy in
pointwise properties resulting from an upscaling process that remains,
ere, implicit or as anisotropy in the random field statistics; and finally,
o discuss implications of considering random fields in comparison to

mere parameter variations in a spatially homogeneous setting on the
esults of THM analyses.

This study is organized as follows: Section 2 introduces the methods
with Section 2.1 giving the brief summary of the governing equations
and Section 2.2 giving a detailed explanation of the approximation of
Gaussian random fields. Section 3 outlines the model setup, providing
the framework for our simulations. In Section 4, we present a series
f study cases with Section 4.1 illustrating and discussing the study

cases with homogeneous, isotropic, and anisotropic conditions, and
Section 4.2 showing the inhomogeneous study cases under statistically
isotropic (Section 4.2.1) and anisotropic (Section 4.2.2) conditions. The
paper concludes with a discussion and synthesis of our findings in
ection 5, emphasizing the practical implications for the selection of

safe disposal sites for radioactive waste.

2. Methods

2.1. Governing equations

We employ the Thermo-Richards-Mechanics (TRM) process [46,47]
implemented in OpenGeoSys-6 (OGS-6) [48]. The process is representa-
tive of a non-isothermal porous medium with a solid phase and a liquid
phase, whereas the gas phase is considered isobaric following Richards’
assumption [49]. It should be noted here that this assumption simply
means that the gas phase is allowed to move freely, and thus there
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is no change in gas pressure [46,47]. Thus, the model is governed by
hree balance equations, i.e., energy balance, mass balance of the liquid

phase and linear momentum balance of the mixture which are thus
formulated based on three independent state variables i.e., temperature
𝑇 , liquid pressure 𝑝LR and solid displacement 𝐮S, respectively. To avoid
repetition, we will not mention all the terms appearing in the equations
in this section. Only the terms we consider significant enough for this
brief summary will be mentioned in this section, while the definitions
of all variables and mathematical symbols are listed in Table A.4. For a
etailed description of the TRM model summarized here as well as its
omparison to a non-isothermal two-phase two-component flow with
echanics model (TH2M) [50], the reader is referred to [47]. The
odel used in this study has been extensively verified and validated

y comparison to experimental data, see [47,51,52] and references
therein. The energy balance equation is written as

(𝜌𝑐𝑝)eff
d𝑇
d𝑡 + 𝐿0

d𝜃vap

d𝑡 − div
(

λeff grad 𝑇
)

+ div
(

𝐿0𝑱W
G

𝜌W
GR

)

+ grad 𝑇 ⋅
(

𝑐𝑝L𝑨L + 𝑐𝑝,vap 𝑱W
G
)

= 𝑄𝑇 , (1)

where (𝜌𝑐𝑝)eff is the effective volumetric heat capacity of the medium
nd 𝐿0 is the volumetric latent heat of vaporization.

The mass balance equation for the liquid phase is given as

𝜌LR𝑆L(𝛼B − 𝜙)𝛽𝑝,SR
d𝑝LR
d𝑡 − 𝜌LR𝑆L(𝛼B − 𝜙) tr(𝜶𝑇 ,SR)

d𝑇
d𝑡

+ 𝜙

(

(1 − 𝑆L)
d𝜌W

GR
d𝑡 + 𝑆L

d𝜌LR
d𝑡

)

+ (𝜌LR − 𝜌W
GR)

[

𝜙 + 𝑝LR𝑆L(𝛼B − 𝜙)
] d𝑆L

d𝑡

+ 𝜌LR𝑆L𝛼Bdiv
(d𝒖S

d𝑡

)

+ div
(

𝑨W
L + 𝑱W

G
)

= 𝑄𝐻 ,

(2)

where 𝛼B, 𝛽𝑝,SR and 𝜶𝑇 ,SR represent the Biot–Willis coefficient, grain
ompressibility of the solid and linear expansion coefficient matrix of
he solid, respectively, whereas 𝑄𝐻 on the right hand side represents
he fluid source (or sink).

The linear momentum balance of the overall mixture is given as

div
(

𝝈eff − 𝛼B𝜒(𝑆L)𝑝LR 𝐈
)

+ 𝜌𝐠 = 𝟎, (3)

with

̇ eff =  ∶ (𝝐̇ − 𝝐̇pl − 𝝐̇th − 𝝐̇sw), (4)

where  is the fourth order elastic tensor while 𝝐, 𝝐pl, 𝝐th and 𝝐sw
epresent the total, plastic, thermal and swelling strains, respectively.
he present study is restricted to linear elastic solid behavior.

The fluid density is assumed to be temperature and pressure depen-
ent while fluid viscosity is assumed to be temperature dependent [53],

and are given as

𝜌LR =
𝜌0LR

𝑒𝛼L(𝑇−𝑇0)−𝑐L(𝑝LR−𝑝0LR)
, (5)

𝜇L =
(

4.2844 ⋅ 10−5 + (0.157( 𝑇
K

− 208.157)2 − 91.296)−1
)

Pa s. (6)

2.2. Random fields and their approximation

When uncertain quantities modeled as random variables are allowed
o vary in space, the resulting mathematical object is a stochastic process

indexed by the spatial coordinate, i.e., a family of random variables,
ne associated with each spatial point. A stochastic process indexed
y a spatial coordinate is commonly referred to as random field. In the

following, we model spatially varying uncertain physical quantities as
2

3

random fields on a bounded domain 𝐷 ⊂ R .
2.2.1. Random fields

We denote by 𝑍(𝐱, 𝜔) a random field indexed by 𝐱 ∈ 𝐷 on a
probability space (𝛺, , P). For each fixed 𝜔 ∈ 𝛺, 𝑍(𝐱, 𝜔) denotes
a realization or sample of the random process, i.e., a function of 𝐱
defined on 𝐷. The probability law of random fields can be chosen to
model different types of uncertainty and to account for known physical
properties of the uncertain quantities being modeled. In this study, we
consider Gaussian random fields. These are characterized by the fact that
the joint distribution of any collection {𝑍(𝐱1, 𝜔),… , 𝑍(𝐱𝑛, 𝜔)} of 𝑍 at a
finite number of locations is multivariate Gaussian. Lognormal random
fields are obtained as the composition exp(𝑍(𝐱, 𝜔)) of a Gaussian ran-
dom field 𝑍 with the exponential function, resulting in strictly positive
realizations. A Gaussian random field 𝑍 is completely characterized by
ts pointwise mean and covariance functions, which we assume to exist
nd are defined, respectively, as

𝑍(𝐱) ∶= E [𝑍(𝐱, ⋅)] , 𝐱 ∈ 𝐷 ,
and 𝑐(𝐱, 𝐲) ∶= Cov(𝑍(𝐱), 𝑍(𝐲)) = E

[

(𝑍(𝐱) −𝑍(𝐱))(𝑍(𝐲) −𝑍(𝐲))
]

, 𝐱, 𝐲 ∈ 𝐷 ,
(7)

where E [⋅] denotes mathematical expectation with respect to P. The
covariance function quantifies the strength of correlation of a random
ield at two distinct points 𝐱, 𝐲 ∈ 𝐷, whereas for 𝐱 = 𝐲 it gives

the variance 𝑐(𝐱, 𝐱) = Var𝑍(𝐱, ⋅). Covariance functions are said to be
(wide-sense) stationary if 𝑐(𝐱, 𝐲) = 𝑐(𝐱 + 𝐝, 𝐲 + 𝐝) for any shift vector
𝐝 and isotropic if 𝑐(𝐱, 𝐲) is a function of only the separation distance
𝐱 − 𝐲|, where | ⋅ | denotes the Euclidean norm on R2. For an overview
f commonly used covariance models see [54,55].

A particularly flexible family of isotropic covariance functions often
used in the geosciences is that of the Matérn kernels given by

𝑐(𝐱, 𝐲) = 𝜎2

2𝜈−1𝛤 (𝜈)

(

2
√

𝜈|𝐱 − 𝐲|
𝓁

)𝜈

𝐾𝜈

(

2
√

𝜈|𝐱 − 𝐲|
𝓁

)

, (8)

where 𝜎2 > 0 is the marginal variance, 𝛤 is the Gamma function, 𝓁 is
he characteristic length scale, 𝜈 > 0 is the smoothness parameter, and
𝜈 is the modified Bessel function of the second kind of order 𝜈. The

moothness parameter 𝜈 controls the smoothness of the kernel function
t the origin. Moreover, realizations of a Gaussian random field with
atérn kernel of smoothness parameter 𝜈 are 𝜈 − 1 times differentiable

cf. [56, Section 5.5]). Fig. 2 displays some commonly used Matérn
kernel functions with different values of the smoothness parameter 𝜈.
In this study, we fix 𝜈 = 1∕2, which corresponds to rough random fields
as typically encountered with geophysical quantities.

We note that the choice of a statistical model, reflecting our as-
sumptions about the uncertainty in the spatially varying properties, is
inherently a modeling decision. Our choice of Gaussian random fields is
motivated by their established use in subsurface geophysical modeling,
where their flexibility allows key field characteristics, e.g., smoothness,
periodicity, and stationarity, to be configured through appropriate
covariance functions. While Gaussian or lognormal distributions often
serve as suitable initial models, site-specific characterization requires
critical evaluation of the chosen statistical model. This includes careful
consideration of all available information and its limitations to ensure
the model adequately reflects the nature of the remaining uncertainty.
In this work, we assume stationarity and smoothness to balance model
complexity, though we acknowledge that these assumptions may not
always hold. The primary focus of this work is to demonstrate that
explicitly incorporating spatial uncertainty into THM simulations pro-
vides a valuable tool for realistically assessing its impact on model
outcomes and conclusions regarding structural integrity, rather than
comparing alternative statistical models. In addition, we have made
efforts to tailor the distributions, including considerations of positivity
and scaling, to align with the nominal values and observed variations
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Fig. 2. Matérn family of covariance functions with different smoothness parameter 𝜈 are plotted on the left panel, while eigenvalues of their associated covariance matrices for a
1D problem are also displayed with respect to their indices on the right panel. The correlation length 𝓁 is fixed at 15, and the scaling factor 𝜎 is set to 1 across all covariance
unctions. Note that in the case of 𝜈 = +∞, the eigenvalues decay rapidly towards zero as the index increases, and here only the largest 21 eigenvalues are plotted, as the accuracy
f the remaining near-zero eigenvalues is restricted by machine precision.
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of the physical quantities. However, non-Gaussian models may become
more appropriate when non-Gaussian characteristics are expected [57,
58].

2.2.2. Approximation of random fields
The conceptually simplest approach for approximating a Gaussian

random field 𝑍 defined on 𝐷 with given mean and covariance functions
(7) is to fix a grid of points {𝐱1,… , 𝐱𝑛} ⊂ 𝐷 and approximate the mul-
ivariate normal random vector 𝐙 = 𝐙(𝜔) = [𝑍(𝐱1, 𝜔),… , 𝑍(𝐱𝑛), (𝜔)]⊤

obtained by restricting the random field to the finite grid. The as-
ociated pointwise covariance matrix 𝐂 = [𝑐(𝐱𝑖, 𝐱𝑗 )]𝑛𝑖,𝑗=1 ∈ R𝑛×𝑛 is

necessarily symmetric and positive definite, and therefore possesses a
holesky factorization 𝐂 = 𝐋𝐋⊤, which can be used to generate samples
f 𝐙 as 𝐳 = 𝝁+𝐋𝝃 where 𝝁 = E [𝐙] and the 𝑛 components of 𝝃 are i.i.d.
tandard normal random values. Challenges arise both from the 𝑂(𝑛3)
omplexity of Cholesky factorization as well as the ill-conditioning of
he covariance matrix, and numerous approaches have been developed
o address these (cf. [56, Chapter 7], [59–61]).

An alternative approach which performs an approximation in func-
ion space prior to discretization is based on the Karhunen–Loève (KL)
xpansion, a modal expansion for random fields with finite second
oments similar to Fourier series [62], [63, §37]. It is given as

𝑍(𝐱, 𝜔) = 𝑍(𝐱) +
∞
∑

𝑚=1

√

𝜆𝑚 𝑓𝑚(𝐱) 𝜉𝑚(𝜔), 𝐱 ∈ 𝐷 , (9)

where (𝜉𝑚)𝑚∈N is a sequence of uncorrelated real-valued random vari-
ables with zero mean and unit variance and (𝜆𝑚, 𝑓𝑚) are the eigenpairs
of the second-kind Fredholm integral operator

∫𝐷
𝑐(𝐱, 𝐲)𝑓𝑚(𝐲)d𝐲 = 𝜆𝑚𝑓𝑚(𝐱), 𝑚 ∈ N, 𝐱 ∈ 𝐷 , (10)

which is the covariance operator 𝐶 ∶ 𝐿2(𝐷) → 𝐿2(𝐷) associated with
the covariance function 𝑐 of 𝑍. Note that for a Gaussian random
field 𝑍 the random coefficients 𝜉𝑚 are also Gaussian, hence 𝜉𝑚 ∼
𝖭(0, 1). In this scaling, the eigenfunctions have unit norm in 𝐿2(𝐷). By
the Hilbert–Schmidt theorem for compact self-adjoint linear operators
(cf. [56, Section 1.3]), the eigenvalues are non-negative and, ordered
decreasing, form a null sequence which is square summable. The KL
expansion represents 𝑍 as a superposition of its covariance eigenmodes
𝑓𝑚, each of which is weighted by a random coefficient. Due to the decay
of the eigenvalues, terms of higher index have a smaller influence on
the value of 𝑍. Moreover, a convergent approximation to 𝑍 can be
obtained by truncating the KL expansion after a finite number 𝑀 of
terms, giving

𝑍(𝐱) ≈ 𝑍𝑀 (𝐱) ∶= 𝑍(𝐱) +
𝑀
∑

𝑚=1

√

𝜆𝑚 𝑓𝑚(𝐱) 𝜉𝑚(𝜔), 𝐱 ∈ 𝐷 . (11)
4

The approximation error is given by

‖𝑍 −𝑍𝑀‖

2
𝐿2(𝛺;𝐿2(𝐷))

= 𝜎2|𝐷| −
𝑀
∑

𝑚=1
𝜆𝑚, (12)

where |𝐷| denotes the volume of 𝐷 (a derivation is given in
Appendix B.2.1), hence the 𝐿2-error due to truncation can be ascer-
tained given an approximation of the first 𝑀 covariance eigenvalues.
Truncation of the KL expansion after the 𝑀 largest terms retains the
dominant spatial patterns of a random field and yields a parametriza-
tion of 𝑍 in terms of 𝑀 uncorrelated random variables. The truncation
index can be chosen independently of the discretization of the physical
model as long as all eigenfunctions are sufficiently resolved. The KL
expansion has become an established tool for computational model-
ing of spatial variability for uncertainty quantification in engineering
applications [64–67].

2.2.3. Computational realization of the Karhunen–Loève expansion
Closed-form expressions for the covariance eigenpairs (𝜆𝑚, 𝑓𝑚) are

nown only for special one-dimensional cases (cf. [68, Section 2.3], [69,
Section 3.4.1]), and extending these analytical solutions to multi-
dimensional settings is only possible by assuming a separable covari-
ance structure, which leads to questionable statistical models in most
engineering problems [55, Section 2.11]. A numerical approach to
solving the covariance eigenproblem (10) requires first discretizing
the covariance operator 𝐶 and solving the resulting finite-dimensional
eigenproblem. For the former, we employ a Galerkin approximation
sing piecewise constant functions on a triangulation of the domain 𝐷.

This has the advantage of flexibility with regard to the domain shape,
and can easily accommodate higher order basis functions. Conforming
Galerkin discretizations in 𝐿2(𝐷) require no continuity across element
boundaries.

Assuming 𝐷 ⊂ R2 has a polygonal boundary, a finite-dimensional
subspace of 𝐿2(𝐷) is obtained as the span of a set of piecewise constant
basis functions {𝜙1,… , 𝜙𝑁}. Expanding the 𝑚th eigenfunction in this
basis

𝑓𝑚(𝐱) =
𝑁
∑

𝑖=1
𝑓 𝑖
𝑚𝜙𝑖(𝐱), (13)

with coefficients 𝑓 𝑖
𝑚; substituting the representation (13) into (10),

uccessively multiplying by each test function 𝜙𝑖 and integrating over
𝐷, we arrive at the discrete generalized eigenvalue problem

𝐂𝐟𝑚 = 𝜆𝑚𝐌𝐟𝑚, 𝐟𝑚 = [𝑓 1
𝑚,… , 𝑓𝑁

𝑚 ]⊤, (14)

where the Galerkin matrix 𝐂 ∈ R𝑁×𝑁 is symmetric positive definite
with entries

[𝐂] = 𝜙 (𝐱) 𝑐(𝐱, 𝐲)𝜙 (𝐲)d𝐲 d𝐱, (15)
𝑖,𝑗 ∫𝐷 𝑗 ∫𝐷 𝑖
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Fig. 3. Eigenfunctions 1, 2, 5, 11, 13, 25, 43, and 64 of the domain of interest, using a Matérn covariance function with smoothness parameter 𝜈 = 0.5 and characteristic length
𝓁 = 15 m. The outer diameter of the domain is set to 100 m; see Section 3 for more details. Orange hues indicate higher values and a colorbar is omitted as the relative magnitudes
of the eigenfunctions are not of primary interest in this context.
and the Gram matrix 𝐌 ∈ R𝑁×𝑁 is also symmetric positive definite
with entries

[𝐌]𝑖,𝑗 = ∫𝐷
𝜙𝑗 (𝐱)𝜙𝑖(𝐱)d𝐱. (16)

𝐌 is diagonal due to the disjoint supports of the piecewise constant
basis functions.

Computational challenges arise from the fact that the Galerkin
matrix 𝐂 is dense due to the nonlocal nature of the covariance operator
and the entries (15) consisting of double multivariate integrals can
require expensive quadrature, in particular near the diagonal where
the covariance function has lower regularity. We address issues of
quadrature accuracy by applying techniques from boundary element
methods [70]. Solving the dense generalized eigenvalue problem (14)
with the symmetric QR algorithm would incur 𝑂(𝑁3) computational
complexity. Besides being intractable for all but the smallest problems,
computing the full spectral decomposition of 𝐂 would be wasteful
insofar as the KL requires only a sufficient number of dominant eigen-
pairs. We therefore employ a Krylov subspace iteration based the
thick-restart Lanczos method of Simon and Wu, which allows specifying
a priori the number of desired eigenpairs and iteratively refines the
associated target invariant subspace [71,72]. In addition, the algorithm
requires only matrix–vector products and, in contrast to QR iteration,
no dense linear algebra modifications of the matrices 𝐂 and 𝐌. The
final crucial ingredient of our computational approach to KL expansion
is a data-sparse representation of the dense Galerkin matrix 𝐂 using
the hierarchical matrix (-matrix) format [73,74], which reduces the
complexity of constructing the Galerkin matrix as well as matrix–vector
multiplication to 𝑂(𝑁 log𝑁), and is especially effective for matrices
resulting from the discretization of compact integral operators such
as the covariance operator 𝐶. The -matrix approximation first di-
vides a matrix into sub-blocks according to a geometric admissibility
condition and then approximates those sub-blocks that are far away
from the diagonal by low-rank approximations, e.g., the adaptive cross-
approximation algorithm. Besides computational savings, our approach
combining -matrix representation and thick-restart Lanczos iteration
also results in substantially reduced storage complexity.

The KL computations were carried out with in-house code utilizing
the HLIBpro hierarchical matrix package developed at the Max–Planck
Institute for Mathematics in the Sciences, Leipzig [75] as well as the
thick-restart Lanczos implementation in the SLEPc package [76]. Fig. 3
shows the first few eigenfunctions that are computed on the domain
under study in this work.

2.2.4. Further modeling issues
In the study cases investigated in Section 4, we model the uncertain

material host rock properties thermal conductivity λ, intrinsic hydraulic
5

permeability 𝐤 and the principal Young’s moduli 𝐸𝑖 as random fields.
In doing so, we consider both isotropic and anisotropic models. For the
latter, we distinguish statistical and material anisotropy.

Statistical anisotropy is modeled by modifying the geometry in the
pointwise covariance functions

𝑐𝐀(𝐱, 𝐲) = Cov𝐀(𝑍(𝐱), 𝑍(𝐲)) ∶= 𝑐
(
√

(𝐱 − 𝐲)⊤𝐀(𝐱 − 𝐲)
)

(17)

with 𝑐 an isotropic stationary covariance function and 𝐀 ∈ R2×2

a symmetric positive definite matrix defining the modified distance
(Euclidean distance is recovered when 𝐀 is the identity matrix). In the
statistically anisotropic cases considered below, the principal axes of 𝐀
are aligned with the bedding plane (𝑥 axis) and normal to the bedding

plane (𝑦-axis), so that 𝐀 simplifies to the diagonal matrix 𝐀 =
[

1 0
0 𝛾2

]

,

where 𝛾 > 0 is a scaling parameter known as the anisotropy ratio (cf. [77,
Section 2.5.2]).

For material anisotropies, the realizations of the random fields are
symmetric positive definite 2 × 2 matrices, which we again assume
to be aligned and orthogonal, respectively, with the bedding plane,
resulting in diagonal realizations

𝐙(𝐱, 𝜔) =
[

𝑍∥(𝐱, 𝜔) 0
0 𝑍⟂(𝐱, 𝜔)

]

. (18)

Our models assume the diagonal entries to be fully correlated,
i.e., 𝑍⟂ = 𝑠𝑍∥, with 𝑠 > 0 used to vary the strength of (material)
anisotropy (we will come to this in Section 3). Computational models
for pairs of Gaussian random fields with less than full correlation can
be found in [78,79], but simulating finite correlation effects is beyond
the scope of the present study.

Finally, we note that we consider random material properties with
both normal and lognormal probability distributions (cf. Table 2). For
each uncertain property, we have an interval in which it is believed
to range as well as a nominal (Best/Mean) value inside this interval.
Rather than truncating the normal and lognormal distributions, the
support of which are unbounded, we have scaled the distributions in
the statistically homogeneous (constant but random) in such a way that
95% of realizations lie in the given intervals (cf. Appendix B). For the
random field models we used a rough scaling based on the constant
mean and the global variance parameter 𝜎2 of the random field.

3. Model setup

We consider a benchmark-type setup used in several previous stud-
ies [44,45,47]. The domain consists of a circular two-dimensional
region of diameter 100 m having a circular hole in the center with
a diameter of 2.48 m. The inner hole mimics a disposal drift with an
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Fig. 4. Graphical representation of the study layout illustrating the steps from input parameter selection to post-processing. The diagram differentiates between homogeneous and
inhomogeneous study cases, highlighting materially and statistically isotropic and anisotropic scenarios.
Table 1
Input parameters for Opalinus clay used in the analysis (excluding those used to
generate random fields) [80–82]. The parameters include solid and liquid phase
properties, along with mechanical properties characterized for parallel (index ∥) and
normal (index ⟂) directions relative to the bedding plane.

Parameter Symbol/Unit Value

Solid density 𝜌/k g m−3 2689.65
Porosity 𝜙/− 0.13
Biot–Willis coefficient 𝛼B/− 1
Specific heat capacity of solid 𝑐𝑝,S/J k g−1 K−1 995
Specific heat capacity of liquid 𝑐𝑝,L/J k g−1 K−1 4181.3
Thermal expansivity of solid 𝛼S/K−1 1.5 ⋅ 10−5

Thermal expansivity of liquid 𝛼L/K−1 4 ⋅ 10−4

Poisson’s ratio (parallel, parallel) 𝜈
‖‖

/− 0.35
Poisson’s ratio (parallel, normal) 𝜈∥⊥/− 0.25
Shear modulus (parallel, normal) 𝐺∥⊥/MPa 1200

emplaced waste cell emitting heat, while the exterior annular domain
represents the host rock. The 𝑥-axis is assumed to be the axis parallel to
the bedding plane, while the 𝑦-axis is chosen to be perpendicular to the
bedding plane. The initial temperature is 𝑇0(𝐱) = 15 ◦C ∀𝐱 ∈ 𝐷 while the
initial pore pressure is 𝑝0(𝐱) = 2 MPa ∀𝐱 ∈ 𝐷. At the tunnel boundary,
a heat source is applied by increasing heater power from 0 W to 500 W
in 30 d, to 1000 W in next 34 d and then kept constant at 1350 W for a
total period of 5 years which is also the time at which all the results
in this study are shown. The heater length is considered to be 4.6 m.
On the tunnel boundary, pore pressure is set to be 0 thus mimicking a
drained boundary. The displacement is fixed along the outer boundary.
It is noteworthy that the choice of a circular geometry in our study is
intentional based on the observation that using a rectangular region
and constraining the normal displacement on the outer boundary in-
troduces additional anisotropic effects which are difficult to segregate
from the anisotropic effects under observation in this study. Indeed, an
alternative approach could have been to increase the domain size, but it
will consequently result in higher computational cost. To streamline the
workflow, we used Jupyter-Notebooks. The linear triangular mesh is
generated using Gmsh [83] and contains 4096 nodes and 8046 elements.
The model employs a backward Euler scheme for time discretization,
ensuring stability for implicit solutions of coupled processes. Time
stepping is governed by an iteration-number-based adaptive strategy.
6

The initial time step is set to 4.32 × 105 s (5 days), with a minimum of
8.64 × 102 s (0.01 days) and a maximum of 1.728 × 106 s (20 days). The
time step size evolves based on the number of iterations per time step,
with a multiplier factor ranging from 1.225 (for fewer iterations) to
0.625 (for higher iteration counts), enabling computational efficiency
while maintaining accuracy during periods of rapid changes. A basic
Newton–Raphson solver is employed to handle non-linearities in the
system, with convergence criteria defined per component. The 𝐿2-norm
is used, with absolute tolerances set to 10−4 K for temperature, 10−2 Pa
for pressure, and 10−6 m for the displacement components. The mesh
resolution is selected to accurately capture the spatial variability of the
random field, ensuring that the highest spatial frequencies are well-
resolved relative to the mesh size. The input parameters which are
not changed throughout this study are given in Table 1 while the
properties of the input parameters used as random variables are given
in Table 2. For the sake of simplicity, we will denote the varying
input parameters i.e. 𝜆, 𝑘 and 𝐸 shown in Table 2 as 𝑓 (𝐟 in the
anisotropic case) wherever no distinction is necessary. Furthermore,
it is worth mentioning that throughout this work, in study cases with
randomness involved, the value of an anisotropic quantity along the 𝑦-
axis is kept strictly dependent on the quantity’s value along the 𝑥-axis
with a constant ratio 𝑠. This ratio 𝑠 is computed from the best values
of the available data for the input parameters in Table 2 such that
𝑠 = Best(𝑓⊥)∕Best(𝑓∥). This ensures that the transverse (𝑓⟂) and parallel
(𝑓∥) components of the anisotropic quantity remain fully correlated and
consistent with the data. Further details of the study cases will follow
in the respective section while a brief summary of these study cases is
given in Table 3 as well as a workflow chart is shown in Fig. 4.

4. Study cases

As in this work, we account for both inhomogeneity and anisotropy,
several different study cases were designed to isolate effects of certain
modeling choices. In order to keep the discussion easy to understand,
we consider it appropriate to describe the details of each study case
and the corresponding results in parallel. Furthermore, due to the large
volume of data and the corresponding plots generated, only selected
results will be shown here. The primary variables temperature 𝑇 ,
pore fluid pressure 𝑝 and radial solid displacement 𝑢 as well as the
𝑟
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Table 2
Uncertain input parameters for Opalinus clay, including their best estimates, minimal and maximal values, and distributions used to construct
random variables and random fields [25,81,82]. The parameters are characterized for isotropic (iso), parallel (∥), and normal (⟂) orientations
relative to the bedding plane. ‘‘Isotropic’’ represents averaged behavior over all orientations, ‘‘parallel’’ indicates measurements along the bedding
plane, and ‘‘normal’’ refers to measurements perpendicular to it.

Parameter Symbol/Unit Min Best/Mean Max Distribution

Thermal conductivity (isotropic) 𝜆iso/W m−1 K−1 1.31 1.85 2.39 Normal
Thermal conductivity (parallel) 𝜆∥/W m−1 K−1 1.7 2.4 3.1 Normal
Thermal conductivity (normal) 𝜆⊥/W m−1 K−1 0.92 1.3 1.68 Normal
Intrinsic permeability (isotropic) 𝑘iso/m2 0.6 ⋅ 10−20 2.25 ⋅ 10−20 6 ⋅ 10−20 Lognormal
Intrinsic permeability (parallel) 𝑘∥/m2 1 ⋅ 10−20 3.75 ⋅ 10−20 10 ⋅ 10−20 Lognormal
Intrinsic permeability (normal) 𝑘⊥/m2 0.2 ⋅ 10−20 0.75 ⋅ 10−20 2 ⋅ 10−20 Lognormal
Young’s modulus (isotropic) 𝐸iso/MPa 3000 4500 6000 Normal
Young’s modulus (parallel) 𝐸∥/MPa 4000 6000 8000 Normal
Young’s modulus (normal) 𝐸⊥/MPa 2000 3000 4000 Normal
Table 3
Summary of the study cases: in the first six homogeneous cases spatially constant values were used for the three uncertain inputs. In the two
cases labeled Extreme, all eight combinations of the three extreme values Ext ∈ {Min,Max} were simulated. In the cases labeled Random, the
spatially constant values of the three inputs were randomly sampled from their probability distributions. The last four cases employed (spatially
varying) random fields for the three input quantities.

Study case Runs Material property Correlation length

𝐱 𝐲

Homogeneous, isotropic (reference) 1 𝑓 = Best(𝑓iso)
Homogeneous, anisotropic (reference) 1 𝐟 = diag

[

Best(𝑓∥),Best(𝑓⊥)
]

Homogeneous, isotropic (Extreme) 8 𝑓 = Ext(𝑓iso)
Homogeneous, anisotropic (Extreme) 8 𝐟 = diag

[

Ext(𝑓∥),Ext(𝑓⊥)
]

Homogeneous, isotropic (Random) 10 000 𝑓 = Rand(𝑓iso)
Homogeneous, anisotropic (Random) 10 000 𝐟 = diag

[

Rand(𝑓∥), 𝑠Rand(𝑓∥)
]

Inhomogeneous, statistically and materially isotropic 10 000 𝑓 = RF(𝑓iso) 15 m 15 m
Inhomogeneous, statistically isotropic, materially anisotropic 10 000 𝐟 = diag

[

RF(𝑓∥), 𝑠RF(𝑓∥)
]

15 m 15 m
Inhomogeneous, statistically anisotropic, materially isotropic 10 000 𝑓 = RF(𝑓iso) 50 m 5 m
Inhomogeneous, statistically and materially anisotropic 10 000 𝐟 = diag

[

RF(𝑓∥), 𝑠RF(𝑓∥)
]

50 m 5 m
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secondary variables radial Darcy velocity 𝑣𝑟, von Mises stress 𝛥𝑞 =
√

3
2𝝈

′
dev ∶ 𝝈′

dev and effective hydrostatic stress 𝛥𝑝′ = − 1
3 tr𝝈′ are chosen

as output variables, i.e., quantities of interest. The choice of considering
these secondary variables as model outputs is justified due to their
relevance in the context of the integrity criteria for evaluating geolog-
ical barriers. The Darcy velocity provides information on potentially
localized flow paths and consequently the direction of advective mass
transport through the host rock. In addition, the relative magnitude of
the von Mises stresses and the effective hydrostatic stresses can provide
information about the possibility of integrity-threatening stress states
that may indicate shear-induced failure. Furthermore, the negative
values of effective hydrostatic stresses can provide useful insight into
he possibility of tensile failure modes.

4.1. Homogeneous, isotropic and anisotropic cases

4.1.1. Reference cases
To properly delineate the effects of inhomogeneity, it is bene-

icial to establish a baseline based on homogeneous-isotropic and
omogeneous-anisotropic cases. It is worth mentioning that these are
sually the only cases that are considered within most studies. For the
sotropic case, constant values 𝑓 ≡ Best(𝑓iso) are used for the three
ncertain parameters, and in the anisotropic case the constant diagonal
ensors 𝐟 = diag

[

Best(𝑓∥),Best(𝑓⊥)
]

. Fig. 5 shows the contour plot of
the output variables for the homogeneous-isotropic case. We note that
he computational domain used in the simulation was larger and the

plots show the relevant portion of the domain extending to radius
𝑟 = 40 m. As we remain in the heating phase, 𝑇 remains at its peak
at the tunnel (heater) boundary and decreases with increasing distance
from the heat source. The thermal expansion caused by the heat source
and the zero pressure boundary condition at the center both affect fluid
flow and pressure distribution, causing pressure to peak outward from
the center. The radial displacement shows convergence close to the
7

q

unsupported cavity and divergence farther away, while decaying at
greater distances from the center. The radial Darcy velocity 𝑣𝑟 being
elated to the fluid pressure gradient can be interpreted accordingly,
howing both drainage into the drift and outward fluid displacement
n the far side of the pressure peak.

Slightly negative values of 𝛥𝑝′ can be observed in the regions
ith high pressures. Other regions experience strong effective pressure

ncreases. Also, 𝛥𝑞 reaches several MPa in some regions indicating
hanges in the amount of shear. The mechanical significance of these
tress changes is dependent on the initial stress field and thus both site
nd depth dependent as well as affected by the excavation, ventilation
nd backfill processes which all affect the near-field stresses around
he cavity. We discuss here the relative changes in these stress indica-
ors from one study case to the next without drawing such situation-
pecific conclusions. In general, as the study case is homogeneous
nd isotropic, the results show the expected behavior, i.e., the output
ariables are uniform in all directions and no artificial anisotropic
ffects, e.g., arising from irregular boundary conditions, are present.

Fig. 6 shows the contour plots of the output variables for the
omogeneous and (materially) anisotropic case for the domain trimmed
t 𝑟 = 40 m. The effect of transverse anisotropy of the input parameters
an be observed in the observed quantities, as the contour lines are
ostly of elliptical shape in contrast to the radially symmetric contours

n the isotropic case. A closer look at the plots for 𝑝 and 𝑢𝑟 for the
nisotropic case indicates that the principal axes reverse with radial
istance, as the major axis of the elliptic contour lines shifts from
orizontal to vertical with increasing distance from the heat source.

This behavior is a result of the complex THM coupling and was also
observed in our previous work [44].

Although Figs. 5 and 6 already convey significant information about
the differences caused by the material anisotropy for the domain of
interest, we provide the comparison plots shown in Fig. 7 for a more
uantitative visualization which we will refer to as polar plots in the
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Fig. 5. Contour plot for homogeneous and isotropic case for mean values of input parameters shown up to a radius of 𝑟 = 40 m.
Fig. 6. Contour plot for homogeneous and (materially) anisotropic case for mean values of input parameters chosen for the corresponding case shown up to a radius of 𝑟 = 40 m.
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following. To generate these polar plots, we fix a distance 𝑟 from the
heat source and plot the output variables at (𝑟 cos 𝜃 , 𝑟 sin 𝜃) with 𝜃 ∈
[0◦, 360◦) in Cartesian coordinates first and then project the plot along
the polar axis. In the isotropic case circular profiles are obtained in
polar coordinates. It should be noted that the radius of this circle in
polar coordinates does not represent the distance from the heat source,
ut rather the magnitude of the output variables. Consequently, the

circular shape is lost in the presence of any anisotropy, which makes
uch a polar plot a suitable candidate to quantitatively analyze the
ffects of anisotropy. Fig. 7 thus shows such a polar plot for chosen
utput variables at distances 𝑟 = 3 m, 8 m, 15 m for the isotropic (solid
ines) and anisotropic cases (dashed lines). In case of 𝑇 , the anisotropic

effects are present but far less pronounced than for the other quantities.
Near the heat source, 𝑝 and strongly linked quantities such as 𝑣𝑟 and
𝑝′ show strong anisotropic effects and even though 𝑝 increases as we

move away from the heat source, the anisotropic effects become less
ronounced. This does not appear to be the case with 𝑢𝑟, though, as
lastic mechanical signals propagate far instantaneously.
8

In the case of 𝛥𝑞, the difference of magnitude between isotropic
and anisotropic cases is significant while the effect of anisotropy can
hardly be seen near the heat source. Mechanical anisotropy causes
higher anisotropy in the stress states and thus stronger shear responses.

his is known also from excavations in anisotropically stressed rock
asses. We observe a strong influence of anisotropy in both stress-

ndicators with relevance for barrier integrity, confirming that mechan-
cal anisotropy (properties and in-situ stresses) are important consider-
tions.

4.1.2. Extreme and random cases
As the input parameters under study are uncertain, using their

best values may provide an initial indication of the magnitude of the
utput variables but does not capture the extent of uncertainty in

the input parameters themselves. To assess the ranges obtained by
ifferent approaches, we test here two commonly used strategies and

refer to them as the Extreme and Random cases. In the Extreme case,
we extend the isotropic and anisotropic study cases by using selected
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Fig. 7. Polar plots showing the output variables at different distances from the heat source for the homogeneous isotropic and homogeneous anisotropic cases.
Fig. 8. Plot showing the variation of output variables along the radial distance (𝑥-axis) from the heat source for all combinations of minimum and maximum values of input
arameters in homogeneous and (materially) anisotropic cases. The 𝑥-axis represents the distance in meters on a logarithmic scale. The line plots depict the extreme cases, while

the shaded regions indicate the 95% and 100% percentiles of the random cases.
b
n
w

combinations of extreme values (Min and Max values in Table 2) of the
nput parameters. For the three input parameters, this results in eight
imulations each for the isotropic and anisotropic cases and is thus com-
utationally inexpensive. For the isotropic cases the values 𝑓 ≡ Ext(𝑓iso)
ere used and in the anisotropic cases 𝐟 ≡ diag

[

Ext(𝑓∥),Ext(𝑓⊥)
]

with
xt ∈ {Min,Max}. In the Random cases, as the name indicates, we treat
he input parameters as random variables and sample their values from
he distributions given in Table 2. We performed 10 000 simulations

for each for the isotropic and anisotropic cases, respectively. Thus,
in the isotropic cases, 𝑓 ≡ Rand(𝑓iso) while in the anisotropic cases,
9

𝐟 ≡ diag
[

Rand(𝑓∥), 𝑠Rand(𝑓∥)
]

. The designator ‘‘Random’’ should not
e confused with the ‘‘random field’’ as the former refers to homoge-
eous cases with (constant) values chosen randomly for each simulation
hile the latter only refers to the inhomogeneous cases, where each

realization displays spatial variation.

Fig. 8 displays the six output variables along the 𝑥-axis for all
combinations of minimum and maximum values of the three input
parameters for the homogeneous and (materially) anisotropic cases.
As most of the model outputs vary most strongly in the proximity of
the heat source, a logarithmic scale was adopted for the spatial axis to
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𝑟

Fig. 9. One realization of statistically and materially isotropic inhomogeneous random field for input parameters.
Fig. 10. Contour plot for the statistically and materially isotropic case using the random realization of the random field shown in Fig. 9 for input parameters up to a radius of
= 40 m.
Fig. 11. Contour plot for statistically isotropic and materially anisotropic case using one random realization of a random field (not shown) for input parameters up to a radius of
𝑟 = 40 m.
c

p

enhance visibility. The solid and dashed lines show the results for the
Extreme cases, while the shaded regions indicate the 95% and 100%
percentiles of the range of the six output quantities for the Random
case.

We first discuss the Extreme cases and then compare with the
Random cases. Considering primarily direct effects (no couplings), the
input parameters under consideration are known to be inversely related
10
to the corresponding primary process variables. For example, an in-
rease in 𝑘 should result in lower resistance to fluid flow and thus lower

fluid pressure. In the case of 𝑇 , we observe that all eight combinations
of extremal input parameter values produce only two distinct sets of
curves. A closer look at the data indicates that 𝜆 is the only significant
arameter that causes a change in 𝑇 . This is expected due to the fact

that temperature in the THM model is mainly unilaterally coupled to
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the other processes. Thus, the changes in 𝑘 and 𝐸 have no significant
ffect on 𝑇 , which was also observed in our previous work [44]. As
ar as the nature of the relationship between 𝑇 and 𝜆 is concerned, it

is evident that up until around 15 m, they are inversely proportional
but at greater distances faster propagation of heat becomes evident,
although the magnitude of 𝑇 is very small in this region. In case of 𝑝,
we observe a more complex input–output relation, with 𝑘 appearing to
be controlling the coupling strength. For the cases with the higher value
of 𝑘 (orange lines), the coupling effects seem to be negligible especially
n the area near the heat source, while for the cases with the lower
alue of 𝑘 (blue lines), the coupling effects can be clearly observed,
ith increases in 𝐸 resulting in higher values of 𝑝 due to mechanical
pposition to fluid expansion. An increase in 𝜆 lowers pressure peaks
ue to lower peak temperatures. Consequently, the highest peak value
f 𝑝 is observed for the case with the lowest value of 𝜆 and 𝑘 and
ighest value of 𝐸, but notably this does not give the outer bounds for
ll distances from the heat source and the behavior shifts after around
= 10 m. In case of 𝑢𝑟, 𝜆 appears to be the dominating parameter due to

hermal strain effects. Overall the input–output parameter dependence
n case of independent variables mostly matches the observations made
n our previous work [44] whereas the dependent variables were not
tudied before in this context and thus further improve our understand-
ng of their behavior in terms of barrier integrity. It is, however, clear

that no single combination of input parameters covers the bounds of all
output variables. Furthermore, even for an individual output variable,
the input parameter combination which spans the extreme values of
he output quantity can be radius dependent. This simply means that
ll min–max perturbations should be simulated.

In the Random cases also depicted in Fig. 8, the input parameters
were sampled from (non-truncated) normal and lognormal distribu-
tions, respectively, scaled in such a way that 95% of the realizations
emain between the extremal values given in Table 2. This sampling

approach was adopted to correspond more closely to the subsequent
inhomogeneous study cases. Since this will invariably result in some
hysically unlikely outliers, we show the 95% percentile in addition
o the total range of the output quantities as a rough indication of
he physically meaningful variation. Overall, it can be observed that
he bounds produced by the 95% percentiles in the Random cases are
ighter than the outer bounds produced by the Extreme case for all
utput variables except 𝑇 . In case of temperature 𝑇 , which depends
ssentially linearly on the input quantities (cf. discussion above), the
5% quantile corresponds exactly to the extreme input cases for 𝜆min

and 𝜆max.
The extreme cases of all output variables except 𝑇 are controlled

by coupling. Thus, the sampling strategy has to select extreme-value
combinations, i.e., simultaneously sample extreme values of each distri-
bution. We generated a set of 100 000 samples and checked the extreme
200 samples for all three input parameters. None of the set of samples
was close enough to the extreme set of desired values. Thus, for a
oupled problem with multiple input parameters, the likelihood of
ampling all combinations of extreme values naturally is low due to the
xtent of the parameter space and the probabilistic sampling strategy.
eliberately including Extreme cases ensures that the boundaries of

he parameter space are adequately explored, a common practice in
ngineering studies to evaluate the system’s robustness under limiting
cenarios.

While we discussed these effects using plots along the 𝑥-axis for
implicity, it is evident that in anisotropic cases peak values are likely
o occur along other directions, as shown previously. Thus, full-field
valuations or, at least, orthogonal axes should be studied (data not
hown here).

4.2. Inhomogeneous cases

To generate inhomogeneous input variables as RFs, the covariance
eigenpairs of the KL expansion are computed for the same mesh as used
11

s

in the physical simulation using the approach discussed in Section 2.2.
It bears mentioning that more terms in the truncated KL expansion
lead to higher accuracy in the approximation of the random field,
but this leads to higher resolution demands as successively higher
eigenmodes become more oscillatory. Thus, a suitable compromise
needs to be found between accuracy and computational cost. Based
on several preliminary tests using different numbers of eigenmodes
and mesh resolutions, we determined 64 eigenmodes to be a suitable
choice for the mesh used in this study. In both the statistically isotropic
and anisotropic cases, the retained eigenmodes were computed for a
Gaussian random field with mean zero, marginal variance one and
correlation length 15 m (isotropic) and 50 m and 5 m (anisotropic),
respectively. The resulting KL expansions were then shifted and scaled
for each input parameter according to the values given in Table 2
(cf. also Appendix B for the scaling employed). In the generation of
realizations of each of the three input fields, the scalar random KL
coefficients are sampled independently, resulting in statistically inde-
pendent input fields. In the materially anisotropic cases, we employ
ndependent fields for the three input variables, but the parallel and
ransverse components of each diagonal tensor are fully correlated and
caled according to the anisotropy ratio. The mean values are given
n Table 2 while to compute the variance, we use the methodology in

Appendix B in such a way that 95 % of the values remain within the
ntervals mentioned in Table 2. Along with the number of eigenmodes,

we also specify the correlation lengths along the 𝑥- and 𝑦-axes. Here,
we will refer to the cases with equal correlation lengths along both axes
as the statistically isotropic cases, while to differing correlation lengths
as the statistically anisotropic cases.

4.2.1. Statistically isotropic cases
In case of statistical isotropy (SI), we use an equal correlation

length of 15 m along both axes. In the first case of SI, we keep the
input parameters materially isotropic (MI) i.e., 𝑓 = RF(𝑓iso) while in
the second case, the material anisotropy (MA) is also considered such
that 𝐟 = diag

[

RF(𝑓∥), 𝑠RF(𝑓∥)
]

. We performed simulations of 10 000
samples each for SI-MI as well as SI-MA case. Fig. 9 shows a single
realization of the RFs used for the input parameters for the SI-MI case.

he lognormal nature of distribution in case of 𝑘 is visible in its RF
s it tends more towards lower values as compared to 𝜆 and 𝐸, both
f which are normally distributed. Fig. 10 shows the contour plots up

to 𝑟 = 40 m for the output variables for the inhomogeneous SI-MI case.
hese results correspond to the realization for which the RFs are shown

n Fig. 9. In case of 𝑇 , the effects of inhomogeneity are not visible
in the case shown, as well as other random cases analyzed but not
hown here. This is likely related to the ratio of the correlation length
o the thermal diffusion length. For other output variables, the effects

of inhomogeneity are more clearly visible. For example, in case of 𝑝, the
rea of peak value seems to be the area where the value of 𝑘 (Fig. 9)

is lower. Among the stress measures shown, 𝛥𝑞 shows more irregular
ehavior as compared to 𝛥𝑝′. Furthermore, the strong dependence of

𝑢𝑟 and 𝛥𝑝′ on 𝑘 as in case of 𝑝 can also be seen, consistent with the
physical insights gained in the simpler cases above. As far as the overall
peak values of the outputs are concerned, one may be interested to
compare this inhomogeneous case with the homogeneous and isotropic
(reference) case (Fig. 5) where mean values of the input parameters
were considered. Thus, when comparing the peak values in Fig. 10
and Fig. 5, it appears as if there is not much difference in peak values
in both cases. This can be due, again, to the chosen length scales but
also an artifact of looking at a single realization. Thus, metrics of the
ensemble should be analyzed as well.

Fig. 11 shows the contour plots of all outputs up to 𝑟 = 40 m for
he statistically isotropic and materially anisotropic (SI-MA) case for a
elected RF realization. In case of 𝑇 , although the effect of inhomogene-
ty is still not visible, the effect of material anisotropy can be observed
s clearly as in the homogeneous cases. For other output variables we
ee the effects of both inhomogeneity and material anisotropy, although
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Fig. 12. Plot showing the comparison of various inter-percentile ranges (IPR) of output variables along the radial distance (𝑥-axis) from the heat source for 10 000 realizations of
random fields of input parameters. The comparison includes homogeneous-isotropic (Random) and inhomogeneous-isotropic (SI-MI) cases. The 𝑥-axis represents the radial distance
in meters on a logarithmic scale.
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material anisotropy seems to dominate here as we see somewhat similar
ellipsoidal contours as observed for the homogeneous and anisotropic
case shown in Fig. 6. This may, in addition to the previously discussed
causes, be due to the fact that the tensor component along the 𝑦-axis
is completely dependent on the component along the 𝑥-axis by the
constant scaling factor 𝑠. Thus, it would be interesting to analyze the
anisotropic effects by considering a softer or more flexible approach
while generating correlated RFs along both axes.

To gain further insights into the overall extent to which the out-
ut variables vary, we adapt a common statistical measure known as
nter-percentile range (IPR) which we already used partially for the

homogeneous Random cases in the previous section. The IPR provides
the range of data that lies between any two chosen percentiles. For
example, the 50 % IPR gives the central region of data, which is the data
etween P25 and P75. The IPR can not only help filter out the desired

data by eliminating the outliers of one’s choice, but is also a useful tool
to compare different data sets, which is also what we require. Thus,
to compare the homogeneous and inhomogeneous study cases or the
subcases within the inhomogeneous cases, we choose 50 % IPR which
will give us the central range of output parameter variability, 95 % IPR
which corresponds to the input data range in Table 2 as well as 99 %
IPR solely for the sake of comparison.

Fig. 12 shows the comparison between homogeneous-isotropic (Ran-
dom) (Ho-I-R) and inhomogeneous-isotropic (In-SI-MI) case using above
mentioned IPR values for all output variables for 10 000 realizations
plotted along the 𝑥-axis. Apart from some negligible differences, both
Ho-I-R and In-SI-MI give almost the same central range (50 %) for all
output variables. In case of 95 % and 99 % IPR, the In-SI-MI case gives
a somewhat lower range of variability for all output variables except
in drift convergence. In case of 𝑇 , 95 %, which corresponds to our data
range, where the Ho-I-R case already shows peak values below 100 °C,
the In-SI-MI case shows even lower values which might be significant
when it comes to thermal repository design considerations. In case of
𝑢𝑟, in the regions with higher values and at relatively larger distance
from the heat source, we see the similar pattern mentioned earlier but
the Ho-I-R case gives a very narrow band of variability next to the heat
source in contrast to the inhomogeneous case.

We also took a look at the comparison between the anisotropic
ases (Ho-A-R and In-SI-MA) provided overall similar results (data
12
not shown). To make it clearer, the results in homogeneous Random
(isotropic and anisotropic) cases show differences mainly in case of
𝑢𝑟 near the heat source. Furthermore, in case of 𝑇 in Ho-A-R case,
we observed the peak temperatures of 100 °C (Fig. 8) but in In-SI-MA
ase, we observe lower peak values of 𝑇 (not shown here). This overall

behavior of inhomogeneous cases giving narrower range of variability
than the homogeneous Random cases might be significant in context of
the site selection or repository design.

4.2.2. Statistically anisotropic cases
Due to the layered and anisotropic nature of the Opalinus clay and

other sedimentary rocks, correlation lengths parallel to the bedding
plane are typically much longer than perpendicular to the bedding
plane. The ratio values of correlation lengths between perpendicular
and parallel bedding planes for 𝐸 typically vary between 0.1–0.01
and can be even smaller for 𝑘 [84–86]. We refer to the cases with
 non-unit correlation length ratio as statistically anisotropic cases.
or this study, a ratio of 𝛾 = 0.1, specifically a correlation length
f 50 m along the 𝑥-axis and 5 m along the 𝑦-axis is chosen for all

input parameters. Again, we consider two study cases in this context;
a statistically anisotropic and materially isotropic (SA-MI) case with
= RF(𝑓iso) and a statistically and materially anisotropic (SA-MA) case
ith 𝐟 = diag

[

RF(𝑓∥), 𝑠RF(𝑓∥)
]

. Similar to the other study cases, we
used 10 000 realizations of RFs for each study case.

Fig. 13 shows a single realization of a statistically anisotropic (and
materially isotropic) random field for all three input parameters. The
effectiveness of the method used to generate the RFs with different cor-
relation lengths can be observed here by the layered structure typical
or sedimentary formations. Similarly, the lognormal behavior in case
f 𝑘 is also reproduced, showing the lower values of 𝑘 dominating the
ajority of the RF values, yet maintaining the layered nature resulting

rom different correlation lengths. Fig. 14 shows the contour plots up
to 𝑟 = 40 m for the output variables for the inhomogeneous SA-MI
case for which the RFs shown in Fig. 13 are used as input parameters.
The effects of inhomogeneity or statistical anisotropy are again not
noticeable, or in other words difficult to see in case of 𝑇 . What is
interesting is that not only the effects of random inhomogeneity are
visible for 𝑝, 𝑢𝑟 as well as the stress measures, but also the effects
caused by statistical anisotropy can also be observed. To be specific, for
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Fig. 13. One realization of statistically anisotropic inhomogeneous random field for input parameters.
Fig. 14. Contour plot for the statistically anisotropic and materially isotropic case using the random realization of the random field shown in Fig. 13 for input parameters up to
a radius of 𝑟 = 40 m.
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example, in case of 𝑝 and 𝑢𝑟, the peak values tend to be along or very
ear to the vertical axis as was observed in case of material anisotropy
or the homogeneous (Fig. 6) and inhomogeneous case (Fig. 11). The
tatistical anisotropy effects seen in Fig. 14 were also observed in
everal other realizations analyzed but not shown here. As far as the

magnitude of the output variables is concerned, it is not of much benefit
to discuss for the single realization shown here, as it varies significantly
among the 10 000 simulations performed.

Fig. 15 shows the contour plots for all output variables for sta-
tistically and materially anisotropic (SA-MA) case using one random
realization of random field (not shown) up to a radius of 𝑟 = 40 m.
The contours of output variables are qualitatively very similar to the
homogeneous and anisotropic case (Fig. 6) for most of the domain,
although the random inhomogeneity effects are still visible in some
regions. As far as the magnitudes of the output variables are concerned,
although most of the output variables show higher peak values than
the single SA-MI case, but, as mentioned earlier, individual random
realizations are not suitable for comparing peak values.

Thus, we require some additional statistical analysis similar to that
shown in Fig. 12 but such a spatial plot showing IPR’s along a single
line is not suitable when the anisotropy comes into play. A suitable
alternative is to integrate the IPR’s as shown in Fig. 12 into the
polar plot already introduced for the homogeneous and anisotropic
(reference) case (Fig. 7) for any chosen constant distance from the heat
source.

Fig. 16 shows the polar plot for all output variables showing 50 %,
5 % and 99 % inter-percentile range (IPR) for the statistically isotropic
nd anisotropic cases in the absence of material anisotropy at a distance
f 3 m from the heat source. As a reminder, the radius of lines in such a
olar plot does not represent the distance from the heat source, rather
13
the magnitude of the output variables (IPR’s in this case). In case of 𝑇 ,
both SI-MI and SA-MI cases give the same central range (50 % IPR) but
in case of 95 % and 99 % IPR, SA-MI case gives a slightly lower range of
variability. A similar but even less pronounced difference is observed
in the case of 𝛥𝑞. The effect of statistical anisotropy (elliptical shape
of curves) on the other hand is hardly visible in case of 𝑇 but can be
slightly observed in case of 𝛥𝑞. The most prominent differences are
observed in case of 𝑢𝑟 where we not only observe the effects of SA,
but also the switch in previously discussed major axes of the ellipsoids
due to the physical couplings involved. In case of 𝑝, 𝑣𝑟 and 𝛥𝑝′, we do
not observe any differences neither in magnitude of variability for the
SI-MI and SA-MI cases, nor any effects of statistical anisotropy. This
observation is in contrast with the one made in a single random case
of SA (Fig. 14). In our opinion, there can be several possible reasons
for this. Firstly, the inherent nature of the type of plot i.e., percentiles
r inter-percentile range across 10 000 simulations results in somewhat
moother contours than the single case, thus losing the variability or
andomness if the scale of randomness is small. Secondly, although the
lot gives significant information about the anisotropy and magnitude
f variability across several thousand simulations it is restricted to a
ertain distance of the heat source.

Fig. 17 shows the polar plot for all output variables showing 50 %,
95 % and 99 % inter-percentile range (IPR) for the statistically isotropic
and anisotropic cases in the absence of material anisotropy at a distance
of 10 m from the heat source. It can be observed that as we move
away from the heat source, the effects of statistical anisotropy can
be observed even for 𝑇 and the SA-MI case gives higher variability
in contrast to the case nearer to the heat source. Furthermore, the
switch in major axes of ellipsoids for the upper and lower bounds is
also observed. Although these differences may be not play a significant
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Fig. 15. Contour plot for statistically and materially anisotropic case using one random realization of a random field (not shown) for all output variables up to a radius of 𝑟 = 40 m.
Fig. 16. Polar plot showing 50 %, 95 % and 99 % IPR for the statistically isotropic and anisotropic cases in the absence of material anisotropy for all output variables at a distance
of 3 m from the heat source.
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role due to the very low magnitudes of 𝑇 , they illustrate the interaction
etween physical and statistical length scales. Furthermore, the output
ariables like 𝑝, 𝑣𝑟 and 𝛥𝑝′ also show some influence of statistical
nisotropy in contrast to the case nearer to the heat source. It is worth
oting here that irrespective of whether the statistical anisotropy is
nvolved or not, not only 𝛥𝑞 shows higher upper bounds than 𝛥𝑝′

ut also the values of 𝛥𝑝′ themselves are negative for most of the
ealizations at this distance. From the integrity criteria perspective, as
entioned earlier, the latter can be indicative of tensile failure. One

an argue that the IPR shows the data from all 10 000 realizations in a
ingle plot and thus does not give a direct measure of ratio of 𝛥𝑞 and
𝑝′. Again, conclusive interpretation requires information on the in-situ
tress field and is not attempted here.

So far, we have only compared the effects of statistical anisotropy
n the absence of material anisotropy in this section. As the material
nisotropy is relatively strongly embedded in the numerical model by
14
tensor-valued random fields, it would be interesting to see if SA has any
nfluence in the MA cases and to what extent. Fig. 18 thus shows the

polar plot for all output variables showing 50 %, 95 % and 99 % inter-
percentile range (IPR) for the statistically isotropic and anisotropic
cases in the presence of material anisotropy at a distance of 3 m from
the heat source. Except for the case of 𝑢𝑟, all other output variables
show remarkable consistency in the overall variability in the IPR’s.
The 𝑢𝑟 again shows significant differences in the presence of statistical
anisotropy. What can further be observed is that the outer bounds of
IPR’s appear to be much smoother than in the absence of MA which
was also observed and discussed earlier in the single random realization
of SA-MA case (Fig. 15). As we move away from the heat source (not
shown here), the strong effects of SA in case of 𝑢𝑟 start to diminish,
imilar to the case observed in the absence of MA. Furthermore, other
utput variables does not show any distinguishable differences arising
rom SA as we move away from the heat source.
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Fig. 17. Polar plot showing 50 %, 95 % and 99 % IPR for the statistically isotropic and anisotropic cases in the absence of material anisotropy for all output variables at a distance
of 10 m from the heat source.
Fig. 18. Polar plot showing 50 %, 95 % and 99 % IPR for the statistically isotropic and anisotropic cases in the presence of material anisotropy for all output variables at a distance
of 3 m from the heat source.
b

4.3. Percentiles over whole domain

To effectively analyze and interpret the results when the data comes
rom tens of thousands of simulation runs and from several different
tudy cases, is a challenge. The difficulty further increases due to other
actors like the presence of anisotropy or a large number of output
ariables each of which varies at different length and/or time scales
nd when for some the lowest values are of interest and the highest for
thers. Here we extend the contour plots used for single cases like Fig. 5

to show the percentiles for the whole domain. It is worth mentioning
that computing the percentiles across the whole domain is a memory
ntensive process as at each node (4096 in our case), a large number
f values (10000 in our case) need to be stored at the same time
15
for all output variables. The post-processing for this purpose is done
using the tool VTUFileHandler [87] written in the Julia programming
language. Fig. 19 shows the 2.5 percentiles of all output variables for
the statistically and materially anisotropic inhomogeneous case for the
whole domain, whereas Fig. 20 shows 97.5 percentiles of all output
variables for the same case for the whole domain. As mentioned earlier
as well, these two percentiles are chosen based on the fact that these
correspond to input data range used in this study. From the interpreta-
tion perspective, Fig. 19 can thus be said to show the lowest possible
values of output variables, while Fig. 20 represents the majority of
values among 10000 realizations. Such a percentile contour plot can
e helpful when it comes to design decisions based on temperature

or integrity criteria, for example. As can be observed in Fig. 20, one
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Fig. 19. 2.5 percentile plot for all output variables for the statistically and materially anisotropic inhomogeneous case for the whole domain.
Fig. 20. 97.5 percentile plot for all output variables for the statistically and materially anisotropic inhomogeneous case for the whole domain.
h

can say that the peak value of 𝑇 anywhere in the whole domain in
ny of the 10000 random scenarios analyzed, does not exceed 95 °C.
t should be understood though, this is a representative benchmark
tudy in which many structural elements were not considered and
any simplifying assumptions were made. Furthermore, in this section
e only show the results for the SA-MA case taking into account the

argest feature set. The percentile contour plots can indeed be modified
nd extended to show other significant statistical measures like mean,
edian, standard deviation and so on. Some the statistical measures

lthough may require prior knowledge or assumptions on the type of
istribution of the output variables.

5. Conclusions

This study provides an in-depth analysis of the effects of inho-
mogeneity and anisotropy on THM simulations, particularly in the
context of assessing the integrity of geological barriers for the deep
geological disposal of radioactive waste. Through a series of numerical
simulations, we analyzed the behavior of host rocks under varying
onditions of key material properties, namely thermal conductivity,
16
intrinsic permeability, and Young’s modulus. The results from the
omogeneous and isotropic case provided a baseline understanding

of the system’s behavior under uniform conditions, showing expected
patterns of heat transfer, fluid flow, and mechanical deformation in
such an ideal scenario. By contrast, the introduction of anisotropy
revealed more complex interactions, leading to pronounced variations
in the output variables. Our analysis further explored the Extreme
and Random cases, highlighting the variability in outcomes due to the
probabilistic uncertainty of the input parameters. The analysis showed
that, although the Extreme cases are computationally inexpensive and
can be effective in indicating extreme output bounds as well as bet-
ter understanding of the effects of couplings, they are not associated
with likelihood measures in contrast to the bounds in the Random
case. The comparison between homogeneous and inhomogeneous cases
revealed that the latter provides a more realistic and comprehensive
understanding of the potential variability in system responses and can
indicate local concentrations in flow or stress fields. The homogeneous
random cases, while avoiding the need to generate random fields,
might overestimate variability observed in inhomogeneous simulations.
Statistically anisotropic cases, which incorporated realistic correlation
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lengths based on geological formations like Opalinus clay, provided a
loser approximation of real-world scenarios. These cases demonstrated

that the statistical anisotropy of the material properties plays a crucial
ole in the accuracy of THM simulations. To be specific, the effects of
tatistical anisotropy were observed for different variables at different
istances from the heat source and were less prominent in case of
ressure than temperature and displacement. The effects of material

anisotropy were understandably observed to be stronger than that of
statistical anisotropy. This observation points again to the relevance of
length scales, specifically the ratio between those of spatial property
fluctuation, physical process and geometry/domain. In fact, as alluded
to in the introduction, material anisotropy can often be interpreted as
a manifestation of structural inhomogeneity/heterogeneity, upscaled to
the representative elementary volume (REV) level, transitioning from
the micro to meso-scale of the current model’s length scale.

One of the key findings of this study is the impact of anisotropy
nd inhomogeneity on stress measures, i.e., the von Mises stresses and
ffective hydrostatic stresses. The results showed that in the presence
f anisotropy, there was a notable increase in stress-based indicators,
ointing to a higher likelihood of failure, especially near the heat
ource. This is particularly relevant for site selection and repository
esign.

Furthermore, this study underscores the importance of extending
HM analyzes to capture the long-term impacts of anisotropy and

nhomogeneity on geological barrier integrity. While the current work
rovides critical insights into material variability at a fixed instance
n time linked to the chosen scale, future studies should focus on
xploring the effects of inhomogeneity and anisotropy over larger scales
nd extended time frames. Building on previous work [44,88], such

advancements would significantly enhance understanding of safety
analyses for deep geological repositories.

While generating the random fields, the study adapted a moderately
onservative approach. A more conservative approach for the future
tudy can be to use the same random field realizations, i.e., fully corre-
ated random fields, for all input parameters, while a less conservative

approach can be to make the random fields along 𝑥 and 𝑦-axis com-
pletely independent. Future work could also explore the implications
f varying correlation lengths or ratios to reflect different geological
ettings, as well as the effects of incorporating additional uncertain
arameters. Investigating the behavior under unsaturated conditions or
ncluding structural components such as bentonite in the model could

also provide deeper insights into the coupled processes affecting barrier
ntegrity. Another valuable direction would be the integration of field-
cale data into simulations, allowing for the calibration and validation
f models against real-world conditions. Given the computationally
ntensive nature of the experiments in this work, it would also be of
nterest to consider first building a surrogate to emulate the mapping
rom random fields to quantities of interest, as demonstrated in [31],

and then perform analysis based on the surrogate in place of the costly
THM modeling.
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Table A.4
Summary of physical variables and mathematical symbols used in Section 2.1. Dimen-
sions are denoted as follows: L (length), t (time), T (temperature), and M (mass). Units
re provided for a consistent system of units.
Description Symbol Dimension Unit

Density of the medium 𝜌 ML−3 k g m−3

Specific heat capacity 𝑐𝑝 L2t−2T−1 J k g−1 K−1

Density of gas phase 𝜌GR ML−3 k g m−3

Density of liquid phase 𝜌LR ML−3 k g m−3

Specific heat capacity of liquid 𝑐pL L2t−2T−1 J k g−1 K−1

Temperature 𝑇 T K
Porosity 𝜙 – –
Liquid saturation 𝑆L – –
Capillary pressure 𝑝cap ML−1t−2 Pa
Gas-phase pressure 𝑝GR ML−1t−2 Pa
Liquid-phase pressure 𝑝LR ML−1t−2 Pa
Volumetric latent heat of water vaporization 𝐿0 ML2t−2 J m−3

Volumetric vapor content 𝜃vap – –
Effective thermal conductivity 𝜆eff MLt−3T−1 W m−1 K−1

Advective mass flux of liquid 𝐴L ML−2t−1 k g s−1 m−2

Diffusive mass flux of water in gas phase 𝐽W
G ML−2t−1 k g s−1 m−2

Density of water in gas phase 𝜌W
GR ML−3 k g m−3

Biot coefficient 𝛼B – –
Solid compressibility 𝛽𝑝,SR L1M−1t2 Pa−1

Solid displacement vector 𝐮S L m
Solid thermal expansion coefficient 𝛼𝑇 ,SR T−1 K−1

Heat source term 𝑄𝑇 ML−1t−3 W m−3

Source/sink term for liquid 𝑄𝐻 ML−3t−1 k g m−3 s−1

Dynamic viscosity of liquid 𝜇LR ML−1t−1 Pa s
Specific heat capacity of water vapor 𝑐𝑝,vap L2t−2T−1 J k g−1 K−1

Material time derivative d
d𝑡 t−1 s−1

Divergence operator div – –
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Appendix A. Nomenclature

The variables and symbols used in Section 2.1 are summarized
n Table A.4. This table serves as a quick reference to facilitate the
nderstanding of the equations and analyses presented. Each entry
rovides the symbol, its corresponding physical dimension, and the unit
f measurement in a consistent system of units.

Appendix B. Rescaling of random fields

A Gaussian or lognormal random field {𝑎(𝑥) ∶ 𝑥 ∈ 𝐷} on a bounded
omain 𝐷 will take on all values in R or R+, respectively, with positive,

if small, probability. If the uncertain quantity modeled by the random
ield 𝑎 is known to lie in an interval [𝑎min, 𝑎max], strictly enforcing this
ange requires applying a mapping to 𝑎 with range in this interval. An
pproximate alternative would be to at least rescale the random field
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Fig. 21. Density of standard normal distribution with centered (red) portion containing
𝛼 = 0.9 probability mass, density of scaled RV 𝑌 = 𝑐 𝑍 with 𝑐 chosen so that same
shaded (blue) probability mass lies in interval [−1, 1].

in such a way that a given, sufficiently large fraction 𝛼 ∈ [0, 1] of its
probability mass lies in the desired interval.

B.1. Affine rescaling of scalar random variables

We begin with some scaling considerations for scalar random vari-
ables.

B.1.1. Gaussian random variables
For a scalar standard normal random variable (RV) 𝑍 ∼ 𝖭(0, 1), the

probability mass contained in an interval symmetric about the origin
[−𝑏, 𝑏] for some 𝑏 > 0, i.e., the probability that 𝑍 lies in this interval,
is given by

P(−𝑏 ≤ 𝑍 ≤ 𝑏) = ∫

𝑏

−𝑏
𝜑(𝑧) d𝑧

= ∫

𝑏

−∞
𝜑(𝑧) d𝑧 − ∫

−𝑏

−∞
𝜑(𝑧) d𝑧 = 𝛷(𝑏) −𝛷(−𝑏) = 2𝛷(𝑏) − 1,

(19)

where 𝜑 denotes the standard normal pdf, 𝛷 the standard normal cdf
and we have used the symmetry property 𝛷(−𝑏) = 1 − 𝛷(𝑏). Thus,
requiring P(𝑍 ∈ [−𝑏, 𝑏]) = 𝛼 for some 𝛼 ∈ [0, 1] is equivalent with 𝛷(𝑏) =
(𝛼+ 1)∕2. The red shading in Fig. 21 indicates the area under the pdf of
the standard normal distribution centered at the origin containing the
probability mass 𝛼 = 0.9.

Suppose now that 𝑏 is given and we wish to rescale the RV 𝑍 ∼
𝖭(0, 1) with a positive scaling factor 𝑐 in such a way that a given
probability mass 𝛼 of 𝑌 = 𝑐 𝑍 is contained in [−𝑏, 𝑏]. Since Var(𝑐 𝑋) =
𝑐2Var𝑋 for any RV 𝑋 with finite variance, we have 𝑌 = 𝑐 𝑍 ∼ 𝖭(0, 𝑐2).
Moreover, the cdf 𝐹𝑌 of 𝑌 may be expressed in terms of 𝛷 as

𝐹𝑌 (𝑦) = P(𝑌 ≤ 𝑦) = P(𝑐 𝑍 ≤ 𝑦) = P
(

𝑍 ≤ 𝑦
𝑐

)

= 𝛷
( 𝑦
𝑐

)

, (20)

hence 𝐹𝑌 (𝑦) = 𝛷(𝑦∕𝑐). The requirement P(−𝑏 ≤ 𝑌 ≤ 𝑏) = 𝛼 is thus
equivalent with

𝛼 = P(−𝑏 ≤ 𝑌 ≤ 𝑏) = 𝐹𝑌 (𝑏) − 𝐹𝑌 (−𝑏) = 𝛷
( 𝑏
𝑐

)

−𝛷
(−𝑏

𝑐

)

= 2𝛷
( 𝑏
𝑐

)

− 1,

(21)

from which we obtain the desired scaling factor as

𝑐 = 𝑏

𝛷−1
(

𝛼+1
2

) , (22)

in which 𝛷−1 denotes the inverse of the (strictly monotone) The
blue shaded region in Fig. 21 shows the area under the pdf of a
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rescaled Gaussian RV for which the interval [−1, 1] centered at the
origin contains the probability mass 𝛼 = 0.9. By adding an offset 𝜇 ∈ R a
given probability mass may be assigned to any bounded interval in this
way. Specifically, for a not necessarily centered interval [𝑎min, 𝑎max] ⊂
R, we shift the standard normal 𝑍 by 𝜇 ∶= (𝑎min + 𝑎max)∕2, rescale by
𝑐 > 0 and require that for 𝑌 ∶= 𝜇 + 𝑐 𝑍 we have

𝛼 = P(𝑎min ≤ 𝑌 ≤ 𝑎max) = P(𝑎min ≤ 𝜇 + 𝑐 𝑍 ≤ 𝑎max) = P
( 𝑎min − 𝜇

𝑐
≤ 𝑍 ≤

𝑎max − 𝜇
𝑐

)

= 𝛷
( 𝑎max − 𝜇

𝑐

)

−𝛷
( 𝑎min − 𝜇

𝑐

)

= 𝛷
( 𝑎max − 𝑎min

2𝑐

)

−𝛷
(

−
𝑎max − 𝑎min

2𝑐

)

= 𝛷
( 𝑎max − 𝑎min

2𝑐

)

−
[

1 −𝛷
( 𝑎max − 𝑎min

2𝑐

)]

= 2𝛷
( 𝑎max − 𝑎min

2𝑐

)

− 1.
(23)

Solving for the scaling factor 𝑐 then yields, analogous to the cen-
tered interval,

𝑐 =
𝑎max − 𝑎min

2𝛷−1
(

𝛼+1
2

) . (24)

B.1.2. Lognormal random variables
A lognormal RV has the form 𝑋 = exp(𝜇 + 𝜎 𝑍) with 𝑍 ∼ 𝖭(0, 1),

hence log𝑋 ∼ 𝖭(𝜇 , 𝜎2). Since the range of 𝑋 is the positive real line, we
can rescale 𝑋 such that for suitable 𝑐 ≥ 0 there holds P(𝑐 𝑋 ∈ [0, 𝑏]) = 𝛼
for given 𝛼 ∈ [0, 1] (see Fig. 22).

Since log(𝑐 𝑋) = log 𝑐 + 𝜇 + 𝜎 𝑍 , we have

𝑐 𝑋 ∈ [0, 𝑏] ⇔ 𝑍 ≤
−𝜇 + log 𝑏 − log 𝑐

𝜎
(25)

and thus requiring P(𝑐 𝑋 ∈ [0, 𝑏]) = 𝛼 leads to
𝛷
(

−𝜇 + log 𝑏 − log 𝑐
𝜎

)

!
= 𝛼 , or 𝑐 = 𝑏 exp

(

−𝜇 − 𝜎 𝛷−1(𝛼)
)

. (26)

To determine the pdf of the rescaled density 𝑌 = 𝑐 𝑋 = 𝑐 exp(𝜇+𝜎 𝑍),
we first note that the cdf is given by

𝐹𝑌 (𝑦) = P(𝑌 ≤ 𝑦) = P (𝑐 exp(𝜇 + 𝜎 𝑍) ≤ 𝑦) = 𝛷
(

−𝜇 + log(𝑦∕𝑐)
𝜎

)

(27)

and obtain the associated pdf as

𝑓𝑌 (𝑦) = d
d𝑦

𝛷
(

−𝜇 + log(𝑦∕𝑐)
𝜎

)

= 𝜑
(

−𝜇 + log(𝑦∕𝑐)
𝜎

)

1
𝜎 𝑦

= 1
2𝜋 𝜎 𝑦 exp

(

−
(𝜇 + log(𝑦∕𝑐))2

2𝜎2

)

. (28)

If a more symmetric scaling is desired, i.e., given an interval
[𝑎min, 𝑎max] with 0 ≤ 𝑎min < 𝑎max which we would like to contain a
probability mass 𝛼 ∈ [0, 1] with equal tail probabilities

P(0 ≤ 𝑋 ≤ 𝑎min) = 1 − 𝛼
2

and P(𝑋 ≥ 𝑎max) = 1 − 𝛼
2

(29)

then the left inequality is equivalent with
1 − 𝛼
2

= P(exp(𝜇 + 𝜎 𝑍) ≤ 𝑎min) = P
(

𝜇 + 𝜎 𝑍 ≤ log 𝑎min
)

= P
(

𝑍 ≤
−𝜇 + log 𝑎min

𝜎

)

= 𝛷
(

−𝜇 + log 𝑎min
𝜎

)

,
(30)

which yields the relation
−𝜇 + log 𝑎min

𝜎
= 𝛷−1

( 1 − 𝛼
2

)

. (31)

In the same way, the right inequality gives

P(𝑋 > 𝑎max) = 1 − P(𝑋 ≤ 𝑎𝑚𝑎𝑥) = 1 − 𝛼
2

⇔ P(𝑋 ≤ 𝑎max) = 1 + 𝛼
2

(32)

and thus
1 + 𝛼 = P

(

exp(𝜇 + 𝜎 𝑍) ≤ 𝑎max
)

= P
(

𝑍 ≤
−𝜇 + log 𝑎max

)

2 𝜎
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Fig. 22. Density of lognormal distribution 𝑋 = exp(𝑍) for 𝑍 ∼ 𝖭(0, 1) (red) with
probability mass 𝛼 = 0.9 shaded and density of rescaled RV 𝑌 = 𝑐 𝑋 such that same
probability mass is contained in [0, 1].

= 𝛷
(

−𝜇 + log 𝑎max
𝜎

)

(33)

and hence a second relation
−𝜇 + log 𝑎max

𝜎
= 𝛷−1

( 1 + 𝛼
2

)

. (34)

Solving these for the shift and rescaling parameters 𝜇 and 𝜎 gives

𝜎 =
log 𝑎max − log 𝑎min

𝑞+ − 𝑞−
, 𝜇 = 1

𝑞+ − 𝑞−

(

𝑞+ log 𝑎min − 𝑞− log 𝑎max
)

(35)

with

𝑞+ ∶= 𝛷−1
( 1 + 𝛼

2

)

, 𝑞− ∶= 𝛷−1
( 1 − 𝛼

2

)

. (36)

B.2. Random fields

Now assume we are given a random field 𝑎 = 𝑎(𝑥) = 𝑎(𝑥, 𝜔) on a
bounded domain 𝐷 and underlying probability space (𝛺 ,A,P) by its
KL expansion

𝑎(𝑥) = 𝑎0(𝑥) +
∞
∑

𝑚=1

√

𝜆𝑚𝑎𝑚(𝑥) 𝜉𝑚, 𝑥 ∈ 𝐷 , (37)

with uncorrelated RV 𝜉𝑚 = 𝜉𝑚(𝜔) having zero mean and unit
variance as well as eigenfunctions 𝑎𝑚 of the associated covariance
operator normalized so that ‖𝑎𝑚‖𝐿2(𝐷) = 1, and we would like to rescale
𝑎 in such a way that its fluctuation 𝑎̃ = 𝑎 − 𝑎0 has a given probability
mass in an interval centered about the origin, i.e., P(|𝑎̃| ≤ 𝑏) = 𝛼.

Denoting by 𝑐 = 𝑐(𝑥, 𝑦) the two-point covariance function of 𝑎, we
have by definition

𝑐(𝑥, 𝑦) = Cov(𝑎(𝑥), 𝑎(𝑦)) = E
[(

𝑎(𝑥) − 𝑎0(𝑥)
) (

𝑎(𝑦) − 𝑎0(𝑦)
)]

, 𝑥, 𝑦 ∈ 𝐷 .
(38)

It is a consequence of Mercer’s theorem (or follows directly once the
KL expansion (37) is given) that

𝑐(𝑥, 𝑦) =
∞
∑

𝑚=1
𝜆𝑚𝑎𝑚(𝑥)𝑎𝑚(𝑦). (39)

In particular, at any point 𝑥 ∈ 𝐷, the variance of the random field
𝑎 is given by

Var 𝑎(𝑥) = 𝑐(𝑥, 𝑥) =
∞
∑

𝑚=1
𝜆𝑚𝑎𝑚(𝑥)2. (40)

We will restrict our considerations to covariance functions from
the Matérn family of stationary covariance kernels normalized so that
𝑐(𝑥, 𝑥) = 1.
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B.2.1. Truncation
The covariance eigenvalues form a square summable sequence of

nonnegative numbers converging to zero at a rate determined by the
smoothness of the covariance kernel. For computational purposes it is
therefore natural to truncate the KL expansion after a finite number
𝑀 ∈ N of terms to

𝑎(𝑥) ≈ 𝑎𝑀 (𝑥) ∶= 𝑎0(𝑥) +
𝑀
∑

𝑚=1

√

𝜆𝑚𝑎𝑚(𝑥) 𝜉𝑚, 𝑥 ∈ 𝐷 . (41)

At a single point 𝑥 ∈ 𝐷, (40) becomes

Var 𝑎𝑀 (𝑥) =
𝑀
∑

𝑚=1
𝜆𝑚𝑎𝑚(𝑥)2 (42)

and so by

Var 𝑎(𝑥) − Var 𝑎𝑀 (𝑥) =
∞
∑

𝑚=𝑀+1
𝜆𝑚𝑎𝑚(𝑥)2 = E

[

(𝑎(𝑥) − 𝑎𝑀 (𝑥))2
]

≥ 0 (43)

the variance of 𝑎𝑀 always underestimates that of 𝑎.
Viewing the random fields as square integrable random variables

with values in 𝐿2(𝐷), the approximation error is naturally measured in
the norm of 𝐿2(𝛺;𝐿2(𝐷)), which is given by

‖𝑎 − 𝑎𝑀‖

2
𝐿2(𝛺;𝐿2(𝐷))

= E
[

‖𝑎 − 𝑎𝑀‖

2
𝐿2(𝐷)

]

= E

[

‖

‖

‖

‖

‖

∑

𝑚>𝑀

√

𝜆𝑚𝑎𝑚(𝑥) 𝜉𝑚
‖

‖

‖

‖

‖

2

𝐿2(𝐷)

]

= E
⎡

⎢

⎢

⎣

∫𝐷

(

∑

𝑚>𝑀

√

𝜆𝑚𝑎𝑚(𝑥) 𝜉𝑚

)2

d𝑥
⎤

⎥

⎥

⎦

= E

[

∫𝐷

∑

𝑚>𝑀
𝜆𝑚𝑎𝑚(𝑥)2 𝜉2𝑚 d𝑥

]

=
∑

𝑚>𝑀
𝜆𝑚,

(44)

where we have used the fact that the eigenfunctions are orthonormal
in 𝐿2(𝐷) and the RVs 𝜉𝑚 are pairwise uncorrelated with unit variance.

Exchanging the order of integration results in
‖𝑎 − 𝑎𝑀‖

2
𝐿2(𝛺;𝐿2(𝐷))

= E
[

‖𝑎 − 𝑎0‖
2
𝐿2(𝐷)

− ‖𝑎𝑀 − 𝑎0‖
2
𝐿2(𝐷)

]

= ∫𝐷
Var 𝑎(𝑥) d𝑥 −

𝑀
∑

𝑚=1
𝜆𝑚 = |𝐷| −

𝑀
∑

𝑚=1
𝜆𝑚,

(45)

where |𝐷| denotes the Lebesgue measure of the domain 𝐷 and we have
assumed the field to be stationary with normalized covariance. Thus
an approximation of the 𝑀 dominant covariance eigenvalues yields an
estimate of the error due to truncation of the KL expansion.

B.2.2. Scaling of random fields
If the random field 𝑎 is Gaussian, then the random coefficients 𝜉𝑚 in

the KL expansion are each standard normal and pairwise independent
and the same holds for the random coefficients in the KL expansion of
𝑎𝑀 . Thus, the variation of the random field at a given location 𝑥 ∈ 𝐷 is
a random superposition of all included eigenmodes 𝑎𝑚, and the scaling
approach outlined above for scalar random variables does not apply,
and a rough global scaling based on the local mean and global total
variance can be applied.

Data availability

A significant portion of the code utilized in this work is open-source
and has been appropriately referenced. The remaining code can be
made available upon request, subject to feasibility.
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