Springe zum Hauptinhalt
Fakultät für Mathematik
Fakultät für Mathematik
Fakultät für Mathematik 
D.Chu; V.Mehrmann : Disturbance Decoupling for Linear Time-Invariant Systems: A Matrix Pencil Approach

D.Chu; V.Mehrmann : Disturbance Decoupling for Linear Time-Invariant Systems: A Matrix Pencil Approach


Author(s) :
D.Chu; V.Mehrmann
Title :
Disturbance Decoupling for Linear Time-Invariant Systems: A Matrix Pencil Approach
Preprint series
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 98-18, 1998
Mathematics Subject Classification :
93B05 [ Controllability ]
93B40 [ Computational methods in systems theory ]
93B52 [ Feedback control ]
65F35 [ Matrix norms, etc. (numerical linear algebra) ]
Abstract :
In this paper we give a systematic new analysis of the disturbance decoupling problem for standard linear time-invariant systems based on the matrix pencil theory. We use a matrix pencil approach that is based on condensed forms under orthogonal equivalence trancformations. This leads to numerically verifiable conditions. The transformations as well as the construction of the feedbacks can be also directly implemented info nummerically stable algorithms.
Keywords :
Disturbance decoupling, orthogonal matrix transformation, condensed form, stability, pole placement
Language :
english
Publication time :
9/1998