Brian Lins, Patrick Meade, Christian Mehl, Leiba Rodman : Polar decompositions of indecomposable normal matrices in indefinite inner products: Explicit formulas and open problems
- Author(s) :
- Brian Lins, Patrick Meade, Christian Mehl, Leiba Rodman
- Title :
- Polar decompositions of indecomposable normal matrices in indefinite inner products: Explicit formulas and open problems
- Preprint series
- Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 2000-9, 2000
- Mathematics Subject Classification :
- 15A63 [ Bilinear forms, etc.
]
- 15A23 [ Factorization of matrices ]
- 15A23 [ Factorization of matrices ]
- Abstract :
- Polar decompositions of normal matrices with respect to indefinite
inner products are discussed. For the case of indecomposable normals with respect
to an indefinite inner product
defined by an invertible Hermitian matrix having at most two negative
eigenvalues, explicit
formulas for a polar decomposition with respect to this indefinite
product are provided. Several open problems are formulated.
- Keywords :
- Indefinite inner product, normal matrix, polar decomposition
- Language :
- english
- Publication time :
- 8/2000