Springe zum Hauptinhalt
Fakultät für Mathematik
Fakultät für Mathematik
Fakultät für Mathematik 
Albrecht Böttcher, Hermann Brunner, Arieh Iserles, Syvert P. Nørsett : On the Singular Values and Eigenvalues of the Fox-Li and Related Operators

Albrecht Böttcher, Hermann Brunner, Arieh Iserles, Syvert P. Nørsett : On the Singular Values and Eigenvalues of the Fox-Li and Related Operators


Author(s):
Albrecht Böttcher
Hermann Brunner
Arieh Iserles
Syvert P. Nørsett
Title:
On the Singular Values and Eigenvalues of the Fox-Li and Related Operators
Electronic source:
application/pdf
Preprint series:
Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 4, 2010
Mathematics Subject Classification:
47B35 [ Toeplitz operators, Hankel operators, Wiener-Hopf operators ]
45C05 [ Eigenvalue problems ]
47B06 [ Riesz operators; eigenvalue distributions; approximation numbers, $s$-numbers, Kolmogorov numbers, entropy numbers, etc. of operators ]
65R20 [ Integral equations ]
78A60 [ Lasers, masers, optical bistability, nonlinear optics ]
Abstract:
The Fox-Li operator is a convolution operator over a finite in- terval with a special highly oscillatory kernel. It plays an important role in laser engineering. However, the mathematical analysis of its spectrum is still rather incomplete. In the present paper we show how standard Wiener-Hopf theory can be used to obtain insight into the behaviour of the singular values of the Fox-Li operator. In addition, several approximations to the spectrum of the Fox-Li operator are discussed and results on the singular values and eigenvalues of certain related operators are derived.
Keywords:
Fox-Li operator, Wiener-Hopf operator, oscillatory kernel, eigenvalue, singular value
Language:
English
Publication time:
03/2010