Sebastian Richter, Israel Rocha: LAYOUT OF RANDOM CIRCULANT GRAPHS
- Author(s):
-
Sebastian Richter
Israel Rocha
- Title:
-
Sebastian Richter, Israel Rocha: LAYOUT OF RANDOM CIRCULANT GRAPHS
- Electronic source:
-
application/pdf
- Preprint series:
- Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 02, 2017
- Mathematics Subject Classification:
-
05C50
[]
05C85 []
15A52 []
15A18 []
- Abstract:
- A circulant graph $H$ is defined on the set of vertices $V=\left\{ 1,\ldots,n\right\} $ and edges $E=\left\{ \left(i,j\right):\left|i-j\right|\equiv s\left(\textrm{mod}n\right),s\in S\right\} ,$ where $S\subseteq\left\{ 1,\ldots,\lceil\frac{n-1}{2}\rceil\right\} .$ A random circulant graph results from deleting edges of $H$ with probability $1-p$. We provide a polynomial time algorithm that approximates the solution to the minimum linear arrangement problem for random circulant graphs. We then bound the error of the approximation with high probability
- Keywords:
-
Random graphs,
Geometric graphs,
Circulant Matrices,
Random Matrices,
Rank correlation coefficient
- Language:
- English
- Publication time:
- 7/2017