E. M.Borba, U. Schwerdtfeger, S. Richter: Non-linear Generalizations of eigenvalues of Graph Laplacians and Algebraic Connectivity
- Author(s):
-
E. M.Borba
U. Schwerdtfeger
S. Richter
- Title:
-
E. M.Borba, U. Schwerdtfeger, S. Richter: Non-linear Generalizations of eigenvalues of Graph Laplacians and Algebraic Connectivity
- Electronic source:
-
application/pdf
- Preprint series:
- Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 06, 2017
- Mathematics Subject Classification:
-
05C50
[]
05C40 []
15A18 []
47J10 []
- Abstract:
- We generalize the notion of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian matrix, by varying the norms in the Rayleigh-Ritz characterization. The so obtained parameters are shown to be well-defined and to be the least non-zero eigenvalues of the corresponding non-linear eigenvalue problem whenever the graph is connected. We provide combinatorial interpretations of several non-smooth cases.
- Keywords:
-
(signless) p-Laplacian,
algebraic connectivity,
isoperimetric number,
Rayleigh quotient,
graph partition,
nonlinear eigenvalue problem
- Language:
- English
- Publication time:
- 12/2017