Springe zum Hauptinhalt
Nachwuchsgruppe SALE
Publikationen
Nachwuchsgruppe SALE 

Publikationen

Projekt-Publikationen

  • Theresa Wagner, Franziska Nestler und Martin Stoll. Fast Evaluation of Additive Kernels: Feature Arrangement, Fourier Methods, and Kernel Derivatives. , 2024.
    [ bib | arXiv ]
  • Kseniya Akhalaya, Franziska Nestler und Daniel Potts. Fast and interpretable Support Vector Classification based on the truncated ANOVA decomposition. GAMM-Mitteilungen (accepted), 2024.
    [ bib | arXiv ]
  • Theresa Wagner, John W. Pearson und Martin Stoll. A Preconditioned Interior Point Method for Support Vector Machines Using an ANOVA-Decomposition and NFFT-Based Matrix-Vector Products. arXiv: 2312.00538, 2023.
    [ bib | arXiv ]
  • Felix Bartel, Lutz Kämmerer, Daniel Potts und Tino Ullrich. On the reconstruction of functions from values at subsampled quadrature points. arXiv: 2208.13597, 2022.
    [ bib | arXiv ]
  • Fatima Antarou Ba und Michael Quellmalz. Accelerating the Sinkhorn algorithm for sparse multi-marginal optimal transport by fast Fourier transforms. arXiv: 2208.03120, 2022.
    [ bib | arXiv ]
  • Laura Lippert und Daniel Potts. Variable Transformations in combination with Wavelets and ANOVA for high-dimensional approximation. arXiv: 2207.12826, 2022.
    [ bib | arXiv ]
  • Fatima Antarou Ba. Learning Sparse Mixture Models. arXiv: 2203.15615, 2022.
    [ bib | arXiv ]
  • Franziska Nestler, Martin Stoll und Theresa Wagner. Learning in high-dimensional feature spaces using ANOVA-based fast matrix-vector multiplication. Foundations of Data Science, 4, 423-440, 2022.
    [ bib | doi ]
  • Daniel Potts und Michael Schmischke. Interpretable transformed ANOVA approximation on the example of the prevention of forest fires. arXiv: 2110.07353, 2021.
    [ bib | arXiv ]
  • Johannes Hertrich, Fatima Antarou Ba und Gabriele Steidl. Sparse Mixture Models Inspired by ANOVA Decompositions. Electron. Trans. Numer. Anal., 55, 142-168, 2022.
    [ bib ]
  • Kai Bergermann und Martin Stoll. Matrix function-based centrality measures for layer-coupled mulitplex networks. ArXiv e-prints, 2021.
    [ bib | arXiv ]
  • Dominik Alfke, Miriam Gondos, Lucile Peroche und Martin Stoll. A Study of Graph-Based Approaches for Semi-Supervised Time Series Classification. ArXiv e-prints, 2021.
    [ bib | arXiv ]
  • Potts, D. und Schmischke, M.. Interpretable Approximation of High-Dimensional Data. SIAM J. Math. Data Sci., 2021, accepted.
    [ bib ]

Abschlussarbeiten

  • Michael Schmischke. Dissertation: Interpretable Approximation of High-Dimensional Data based on the ANOVA Decomposition. Universitätsverlag Chemnitz, 2022.
    [ bib ]
  • Jeremias Piljug. Bachelorarbeit: Hoch-Dimensionale ANOVA Approximation in Anwendungen. TU Chemnitz, Fakultät für Mathematik, Professur für Angewandte Funktionalanalyis (Prof. D. Potts, M. Schmischke), 2021.
    [ bib ]

Frühere Arbeiten mit Projektbezug (Vorarbeiten)

  • Laura Lippert, Daniel Potts und Tino Ullrich. Fast Hyperbolic Wavelet Regression meets ANOVA. ArXiv e-prints, 2021.
    [ bib | arXiv ]
  • Felix Bartel, Michael Schmischke und Daniel Potts. Grouped Transformations and Regularization in High-Dimensional Explainable ANOVA Approximation. SIAM Journal on Scientific Computing, 2021 (accepted).
    [ bib | arXiv ]
  • Theresa Wagner. Fast Matrix-Vector Multiplication for the ANOVA Kernel. Chemnitz University of Technology, 2020.
    [ bib | pdf ]
  • Potts, D. und Schmischke, M.. Learning multivariate functions with low-dimensional structures using polynomial bases. J. Comput. App. Math., 2021, accepted.
    [ bib ]
  • Potts, D. und Schmischke, M.. Approximations of high-dimensional periodic functions with Fourier-based methods. SIAM J. Numer. Anal. 59, 2393-2429, 2021.
    [ bib | pdf ]
  • Michael Schmischke. A Fourier approach to learning sparse additive models. Chemnitz University of Technology, 2019.
    [ bib | pdf ]