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Abstract: Influenced mixed moving average fields are a versatile model-
ing class for spatio-temporal data. However, their predictive distribution is
not generally known. Under this modeling assumption, we define a novel
spatio-temporal embedding and a theory-guided machine learning approach
that employs a generalized Bayesian algorithm to make ensemble forecasts.
We use Lipschitz predictors to determine fixed-time and any-time PAC
Bayesian bounds in the batch learning setting. Performing causal forecast
is a highlight of our methodology as its potential application to data with
temporal and spatial short and long-range dependence. We then test the
performance of our learning methodology by using linear predictors and
data sets simulated from a spatio-temporal Ornstein-Uhlenbeck process.
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1. Introduction

Analyzing spatio-temporal data introduces various methodological challenges.
These include determining models that can account for the serial correlation
observed along their temporal and spatial dimensions and that, at the same
time, can also enable forecasting tasks. Statistical models such as Gaussian pro-
cesses [6], [30], [66], and [78]; spatio-temporal kriging [26], and [58]; space-time
autoregressive moving average models [39]; point processes [40], and hierarchi-
cal models [26] are very versatile in modeling the spatio-temporal correlation
observed in the data and can deliver forecasts once the variogram or the data
distribution (up to a set of parameters) is carefully chosen in relation to the
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studied phenomenon and practitioners’ experience. In a nutshell, such choices
allow access to the models’ predictive distribution.

Suppose we want to avoid making any explicit choice regarding the data dis-
tribution. In this case, we can alternatively use deep learning methodologies
to perform forecasting tasks in a spatio-temporal framework, see [5], [68], [76],
[55] for a review, or a video frame prediction algorithm as in [57]. Deep learn-
ing techniques can successfully extract spatio-temporal features and learn the
inner law of an observed spatio-temporal system. However, these models lack
interpretability, i.e., it is not possible to infer the correlation and causal relation-
ship between variables in different space-time points that the models consider,
and typically, no proof of their generalization performances is available in a
spatio-temporal framework for dependent data. On the other hand, the video
prediction algorithm presented in [57] retains a causal interpretation of the re-
lationship between different space-time points. However, as in the case of deep
learning algorithms, there is no proof of their generalization performances.

This paper proposes a novel theory-guided machine learning methodology
for spatio-temporal data that enables one-time ahead ensemble forecasts based
on moment assumptions (no further assumptions on the data distribution are
needed), an opportune spatio-temporal embedding, and a generalized Bayesian
algorithm. A theory-guided machine learning methodology is a hybrid proce-
dure that employs a stochastic model in synergy with a learning algorithm. Such
methodologies have started to gain prominence in several scientific disciplines
such as earth science, quantum chemistry, bio-medical science, climate science,
and hydrology modeling as, for example, described in [18], [51], [64], [67], and
[68]. It is important to emphasize that in these works the data are typically
considered outputs of (deterministic) dynamical systems driven by partial dif-
ferential equations. We define a theory-guided machine learning methodologies
for data generated by a random field.

We call our methodology mixed moving average field guided learning or
MMAF-guided learning. In particular, we analyze raster data cubes [62], which
are described for dimension d = 2 in Section 3.1, and that are nowadays gener-
ated in environmental monitoring, from satellite observations, and climate and
weather numerical models’ outputs. Our methodology applies, in general, to
raster data having spatial dimension d ≥ 1, and we assume that such data are
generated by an influenced mixed moving average field (MMAF, in short), see
Definition 2.6. Such a class of random fields has been introduced in [28] and
allows modeling the correlation and the causal relationship in different space-
time points using ambit sets, see [8] [12] [59], and [60]. Such models have been
so far employed to model data in environmental monitoring [45, 59], imag-
ing analysis [50], and electricity networks [24]. They allow modeling Gaussian
and non-Gaussian distributed data; they can be non-Markovian and have non-
separable covariance functions. Moreover, they are stationary and θ-lex weakly
dependent, as proven in [28, Section 3.3], and allow modeling temporal and
spatial short and long-range dependence. A drawback of employing MMAF in
forecasting tasks is that their predictive distribution is not explicitly known. To
our knowledge, the only available results on the predictive distribution of an
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MMAF in a spatio-temporal framework can be found in [59, Theorem 13] for a
Gaussian spatio-temporal Ornstein-Uhlenbeck process.

We then select a generalized Bayesian algorithm, i.e., a so-called random-
ized estimator, which is a regular conditional probability on the class of the
Lipschitz functions H, see Definition 1.2. The latter is then employed to make
ensemble forecasts. We call a function h ∈ H a predictor. Linear models, neural
network architectures with feed-forward and convolutional modules [14, 74], and
Lipschitz modifications of the transformer architecture [52, 63] are between the
predictors belonging to H. The selection of a randomized estimator is guided
by the design of a spatio-temporal embedding of an observed raster data cube,
which gives us the training data set on which the estimator can be learned. The
precise construction of the spatio-temporal embedding is given in Section 3.1
and depends on several parameters that must be opportunely tuned. Therefore,
given a raster data cube, there exist different ways to pre-process them into
a training data set. Such a procedure ensures casual forecasts and good gen-
eralization performance, which, in the context of our paper, means obtaining
non-vacuous PAC Bayesian bounds. In the paper, we present how to guide the
design of a Dirac delta mass concentrated on the Empirical Risk Minimizer and
a randomized Gibbs estimator.

1.1. Setting

Let S := ((Xi,Y i)�)i∈Z be a random element defined on the canonical prob-
ability space (Ω,F ,P), see [16, Chapter 7] for more details on its definition.
Here, each (Xi,Y i) is identically distributed and has values in X × Y (Eu-
clidean Spaces). In particular, Ω is the space of all possible trajectories or re-
alizations of the process S. We further assume that S is a sample from an
MMAF with finite second moments as carefully described in Section 3.1. Sm

indicates a finite dimensional distribution of the process S of length m, and a
training data set is one of its realization which, for a given ω ∈ Ω, we indicate
with Sm := ((Xi, Yi)�)mi=1 where Xi = Xi(ω) and Yi = Y i(ω). We also call
S := ((Xi, Yi)�)i∈Z a realization from S.

Let H be the set of all Lipschitz functions h : X → Y , and L : X ×Y → [0,∞]
a loss function. We define the generalization error (out-of-sample risk) as

R(h) = E[L(h(X),Y )],

where (X,Y ) indicates a general example belonging to S, and the empirical
error (in-sample risk)

r(h, ω) = 1
m

m∑
i=1

L(h(Xi(ω)),Yi(ω)),

which is determined by a particular realization ω ∈ Ω of the finite dimensional
distribution Sm. The function L is used to measure the discrepancy between
a predicted output h(X) and the true output Y . Using the in-sample risk, we
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measure the performance of a given predictor h just over an observed training
data set Sm. In contrast, the out-of-sample risk gives us the performance of a
predictor depending on the unknown distribution of the data P. We then need
a guarantee that a selected predictor will perform well when used on a set of
out-of-sample observations, i.e., not belonging to Sm. We can also rephrase the
problem as finding a predictor h for which the difference between the out-of-
sample and in-sample risk R(h) − r(h, ω) is as small as possible. We call the
latter generalization gap. The classical PAC framework aims to find a bound on
the generalization gap that holds with high probability P; see, for example, [75]
and [81]. Such probability inequality is also called a generalization bound. The
acronym PAC stands for Probably Approximately Correct and may be traced
back to [80]. A PAC inequality states that with an arbitrarily high probability
(hence “probably”), the performance (as provided by the generalization gap) of
a learning algorithm is upper-bounded by a term decaying to an optimal value
as more data is collected (hence “approximately correct”). Note that we drop
the dependence on ω ∈ Ω in r(h) to ease the notations in the following.

In the paper, we use a PAC Bayesian approach, also known as generalized
Bayesian approach. First, we select a reference distribution π on the space
(H, T ), where T indicates a σ-algebra on the space H. The reference distri-
bution gives a structure on the space H, which we can interpret as our belief
that certain predictors will perform better than others. The choice of π, there-
fore, is an indirect way to make the size of H come into play; see [21, Section 3]
for a detailed discussion on the latter point. Therefore, π belongs to M1

+(H),
which denotes the set of all probability measures on the measurable set (H, T ).
We then aim to determine a randomized estimator. To introduce the latter, we
need first the following definition.

Definition 1.1. Let (Ω,F ,P) be a probability space, (H, T ) a measurable space,
ĥ : Ω → H a random element, and G a sub-σ-algebra of F . The function

Pĥ|G(·|G)(·) : Ω × T → [0, 1]

(ω,E) → Pĥ|G(E|G)(ω)

is a regular conditional distribution of ĥ given G if:

• for any E ∈ T , the function ω → Pĥ|G(E|G)(ω) is G-measurable and a
variant of the conditional probability P(ĥ ∈ E|G), i.e.,

Pĥ|G(E|G)(·) = P(ĥ ∈ E|G)(·) a.s.

• for any ω ∈ Ω, Pĥ|G(·|G)(ω) is a probability measure on (H, T ).

We assume throughout that the measurable space (H, T ) is a Borel space, i.e.
T is a countably generated σ-algebra. Then, the regular conditional distribution
of ĥ given G exists, see [77, Theorem 5, Chapter II.7]. We can now give a formal
definition of a randomized estimator that follows [22, Section 1].
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Definition 1.2. Let S = ((Xi,Y i)�)i∈Z be a random vector on the probability
space (Ω,F ,P), (H, T ) a Borel space, and Gm = σ{Sm}. We define a random-
ized estimator ρ̂ as the regular conditional distribution of ĥ given Gm, i.e., for
all ω ∈ Ω, and E ∈ T ,

ρ̂(E,ω) := Pĥ|Gm
(E|Gm)(ω).

From now on, we indicate with π[·] the expectation with respect to the refer-
ence distribution, and with ρ̂[·] the conditional expectation with respect to Gm.
Moreover, we call ρ̂[R(h)] and ρ̂[r(h)] the average generalization error and the
average empirical error, respectively. In particular, these notations indicate two
random elements, i.e., for all ω ∈ Ω

ρ̂[R(h)](ω) :=
∫
H
R(h) ρ̂(dh, ω)

and
ρ̂[r(h)](ω) :=

∫
H
r(h) ρ̂(dh, ω).

We remark that the use of the letter h in the notation ρ̂[R(h)] and ρ̂[r(h)]
plays the role of reminding the reader that we work on the hypothesis space
H. To evaluate the generalization performance of a randomized estimator ρ̂, we
determine a so-called PAC Bayesian bound, which is a bound on the (average)
generalization gap defined as ρ̂[R(h)] − ρ̂[r(h)] holding with high probability
P. Over the past two decades, PAC-Bayesian bounds have been successful in
addressing various learning problems such as classification, sequential or batch
learning, and deep learning [37, 42].

MMAF-guided learning applies to bounded loss functions, see Remark 3.20
for more details on this point. Throughout, for ε > 0 called the accuracy level,
we define the truncated absolute loss as

Lε(h(X),Y )) = L(h(X),Y )) ∧ ε. (1.1)

The generalization error is then indicated with Rε(h) = E[Lε(h(X),Y )] and
the empirical error with rε(h, ω) = 1

m

∑m
i=1 L

ε(h(Xi(ω)),Yi(ω)) for ω ∈ Ω. We
also drop in this case the dependence on ω ∈ Ω in the empirical error’s notation,
and indicate the average generalization gap with ρ̂[Rε(h)] − ρ̂[rε(h)]. We then
derive PAC Bayesian bound for the latter.

1.2. Contributions and outline

The PAC Bayesian bounds proven in the paper are the first results in the lit-
erature for θ-lex weakly dependent data, i.e., data generated by a stationary
θ-lex weakly dependent random field Z = (Zt(x))(t,x)∈R×Rd . The latter is a
novel notion of dependence introduced in [28]. When considering a random field
sampled on Z × Z

d such that E[|Z0(0)|p] < ∞ for p > 1, then θ-lex weak
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dependence is a more general notion than α∞,v and φ∞,v-mixing for random
fields being v ∈ N∪{∞}, and α and φ-mixing in the particular case of stochastic
processes, see [28, Section 2.3]. In particular, an MMAF is a θ-lex weakly depen-
dent random field, which can then be used to model very general frameworks;
see Remark 3.22 and Appendix A.

We then analyze fixed-time and any-time PAC Bayesian bounds for data
generated by an MMAF. In particular, our fixed-time bounds are explicitly
stated in the function of one single θ-lex coefficient of the underlying field.
In the literature, two comparable bounds exist for time series data, which are
explicitly stated in the function of α-mixing and θ1,∞-coefficient. The former is
presented in [2, Section 3.2], and is a bound where it appears a series of α-mixing
coefficients, which cannot be estimated from observed data and may diverge for
power decaying coefficients. The latter is analyzed in [4, Section 3] for bounded
θ1,∞-coefficient, which also cannot be estimated from observed data. Instead, we
can estimate the decay rate of the θ-lex-coefficients for specific MMAF models as
the spatio-temporal Ornstein Uhlenbeck (STOU, in short) process and its mixed
version called MSTOU process defined in [59, 60], respectively. In the paper, we
also discuss the range of applicability of such estimation methodology to other
types of MMAFs. The knowledge of the decay rate of the θ-lex coefficient of an
MMAF is fundamental in our methodology and allows us to guide the choice of a
randomized estimator, as detailed in Section 3.2, and to assess its generalization
performance.

We start by proving a fixed-time PAC Bayesian bound that holds for all
Sm with m ≥ 2 and employs a novel exponential inequality for sums of weakly
dependent processes. θ-lex weak dependence is a notion of projective type related
to an L1-norm, see [28] and Remark 2.15, and A.3. In regards to projective
type dependence notions for Lp-norm and p ∈ [1,∞], there have been proven
moment inequalities for partial sums of weakly dependent random fields in [17]
for p ∈ [2,∞] and for stochastic processes and p = 1 in [36]. To the best of
our knowledge, another exponential inequality for a projective type dependence
notion was obtained just for p = ∞ in [4].

To give a complete overview of the range of applicability of MMAF-guided
learning in the function of different choices of the spatio-temporal embedding,
it is necessary to introduce a second fixed-time PAC Bayesian bound. The proof
of such a result involves using an any-time PAC Bayesian bound. The latter is
proven using Ville’s maximal inequality for non-negative supermartingales [82],
and it holds for all countable sequences of examples; this means simultaneously
for each Sm and m ≥ 1. Several any-time PAC Bayesian bounds exist in the
literature for general dependent data frameworks as discussed in [43]. However,
they do not hold in the so-called batch learning case for dependent data, which
our proof covers for bounded losses.

We then combine the any-time bound with the results proven in [2] applied to
a particular residual process. Hence, we obtain a fixed-time PAC Bayesian bound
where a moment inequality is involved in its proof instead of an exponential
one. In our examples and simulation results, the latter bound allows us to define
randomized estimators using realistic spatio-temporal embeddings, which means
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training data sets that can best preserve the serial correlation observed in a given
raster data cube.

The paper is structured as follows. First, we review the MMAF framework in
Section 2 and describe its causal interpretation. In this section, we also introduce
the STOU and MSTOU processes. These are isotropic random fields for which
we compute novel bounds for their θ-lex coefficients. The paper uses the latter
to show feasible examples of MMAF-guided learning in the case of temporal
and spatial short and long-range dependence. Section 3 introduces the spatio-
temporal embedding applied to raster data cubes and the PAC Bayesian bounds.
In Section 4, we give a step-by-step description on how to apply in the practice
MMAF-guided learning and discuss the causal interpretation of the ensemble
forecasts. We conclude by analyzing the performance of our methodology for a
randomized Gibbs estimator on six simulated data sets from an STOU process
with a Gaussian and a normal-inverse-Gaussian distributed Lévy seed. Appendix
A contains further details on the dependence notions discussed in the paper and
a review of the estimation methodologies for STOU and MSTOU processes.
Appendix B contains detailed proofs of the theoretical results presented in the
paper.

2. Mixed moving average fields

2.1. Notations

Throughout the paper, we indicate with N the set of positive integers, N0 the set
of non-negative integers, and R

+ the set of non-negative real numbers. As usual,
we write Lp(Ω) for the space of (equivalence classes of) measurable functions
f : Ω → R with finite Lp-norm ‖f‖p. When Ω = R

n and x ∈ Ω, ‖x‖1 and
‖x‖ denote the L1-norm and the Euclidean norm, respectively, and we define
‖x‖∞ = maxj=1,...,n |x(j)|, where x(j) represents the component j of the vector
x.

To ease the notations in the following sections, we sometimes indicate the
index set R×R

d by R
1+d. E ⊂ E′ denotes a not necessarily proper subset E of

a set E′, |E′| denotes the cardinality of E′ and dist(E,E′) = infi∈E,j∈E′‖i−j‖∞
indicates the distance of two sets E,E′ ⊂ R

1+d. Let n, k ≥ 1, and F : Rn → R
k,

we define ‖F‖∞ = supt∈Rn‖F (t)‖. We indicate with Γ = {i1, . . . , iu} ∈ R
1+d

for u ∈ N, a sequence of elements in R
1+d. We then define the random vector

ZΓ = (Zi1 , . . . ,Ziu). In general, we use bold notations when referring to random
elements.

In the following, Lipschitz continuous is understood to mean globally Lips-
chitz. For u ∈ N, G∗

u is the class of bounded functions from R
u to R and Gu is

the class of bounded, Lipschitz continuous functions from R
u to R with respect

to the distance ‖ · ‖1 and define the Lipschitz constant as

Lip(h) = sup
x�=y

|h(x) − h(y)|
‖x− y‖1

. (2.1)
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Hereafter, we often use the lexicographic order on R
1+d. Let t and s be indicating

a temporal and spatial coordinate. For distinct elements y=(y1,t, y1,s, . . . , yd,s)
and z = (z1,t, z1,s, . . . , zd,s) ∈ R

1+dwe say y <lex z if and only if y1,t < z1,t
or yp,s < zp,s for some p ∈ {1, . . . , d} and y1,t = z1,t and yq,s = zq,s for q =
1, . . . , p− 1. Moreover, y ≤lex z if y <lex z or y = z holds. Finally, let z ∈ R

1+d,
we define the set Vz = {y ∈ R

1+d : y ≤lex z} and V r
z = Vz ∩ {y ∈ R

1+d :
‖z−y‖∞ ≥ r} for r > 0. The definition of the set V r

z is also used when referring
to the lexicographic order on Z

1+d.

2.2. Definition and properties of MMAF

Let I = H × R× R
d, where H ⊂ R

q for q ≥ 1, and the Borel σ-algebra of I be
denoted by B(I) and let Bb(I) contain all its Lebesgue bounded sets.

Definition 2.1. A family of R-valued random variables Λ = {Λ(B) : B ∈
Bb(I)} is called a Lévy basis on (I,Bb(I)) if it is an independently scattered and
infinitely divisible random measure. This means that:

(i) For a sequence of pairwise disjoint elements of Bb(I), say {Bi, i ∈ N} :
– Λ(

⋃
i∈N

Bi) =
∑

i∈N
Λ(Bi) almost surely when

⋃
i∈N

Bi ∈ Bb(I)
– and Λ(Bi) and Λ(Bj) are independent for i �= j.

(ii) Let B ∈ Bb(I). Then, the random variable Λ(B) is infinitely divisible,
i.e., for any i ∈ N, there exists a law μi such that the law μΛ(B) can be
expressed as μΛ(B) = μ∗i

i , the i-fold convolution of μi with itself.

We refer the reader to [73] for more details on infinitely divisible distributions.
In the following, we will restrict ourselves to Lévy bases which are homogeneous
in space and time and factorizable, i.e., Lévy bases with characteristic function

E

[
eiuΛ(B)

]
= eΦ(u)Π(B) (2.2)

for all u ∈ R and B ∈ Bb(I), where Π = π× λ1+d is the product measure of the
probability measure π on H and the Lebesgue measure λ1+d on R × R

d. Note
that when using a Lévy basis defined on I = R× R

d, Π = λ1+d. Furthermore,

Φ(u) = iγ u− 1
2σ

2u2 +
∫
R

(
eiux − 1 − iux1[0,1](|x|)

)
ν(dx) (2.3)

is the cumulant transform of an infinitely divisible distribution with character-
istic triplet (γ, σ2, ν), where γ ∈ R, σ2 ≥ 0 and ν is a Lévy-measure on R,
i.e.,

ν({0}) = 0 and
∫
R

(
1 ∧ x2) ν(dx) < ∞.

The quadruplet (γ, σ2, ν, π) determines the distribution of the Lévy basis,
and therefore, it is called its characteristic quadruplet. An important random
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variable associated with the Lévy basis, is the so-called Lévy seed, which we
define as the random variable Λ′ having as cumulant transform (2.3), that is

E

[
eiuΛ′

]
= eΦ(u). (2.4)

By selecting different Lévy seeds, it is easy to compute the distribution of
Λ(B) for B ∈ Bb(I), for example, when I = R×R

d. In the following two exam-
ples, we compute the Lévy bases used in generating the data sets in Section 4.2.

Example 2.2 (Gaussian Lévy basis). Let Λ′ ∼ N (γ, σ2), then its characteristic
function is equal to exp(iγu− 1

2σ
2u2). Because of (2.2), we have, in turn, that the

characteristic function of Λ(B) is equal to exp(iγuλ1+d(B) − 1
2σ

2λ1+d(B)u2).
In conclusion, Λ(B) ∼ N (γλ1+d(B), σ2λ1+d(B)) for any B ∈ Bb(I).

Example 2.3 (Normal Inverse Gaussian Lévy basis). Let K1 denote the mod-
ified Bessel function of the third order and index 1. Then, for x ∈ R, the NIG
distribution is defined as

f(x : α, β, μ, δ)

= αδ(π2(δ2+(x−μ)2))− 1
2 exp(δ

√
α2−β2+β(x−μ))K1(α

√
δ2+(x−μ)2),

where α, β, μ and δ are parameters such that μ ∈ R, δ > 0 and 0 ≤ |β| < α. Let
Λ′ ∼ NIG(α, β, μ, δ), then by (2.2) we have that Λ(B)∼NIG(α, β, μλ1+d(B),
δλ1+d(B))
for all B ∈ Bb(I).

We now follow [8] and [11] to formally define ambit sets.

Definition 2.4. A family of ambit sets (At(x))(t,x)∈R×Rd is a collection of sub-
sets of R × R

d, i.e. At(x) ⊂ R × R
d for every (t, x) ∈ R × R

d, which satisfies
the following properties:⎧⎪⎨⎪⎩

At(x) = A0(0) + (t, x), (Translation invariant)
As(x) ⊂ At(x), for s < t

At(x) ∩ (t,∞) × R
d = ∅ (Non-anticipative).

(2.5)

We further assume that the random fields Z := (Zt(x))(t,x)∈R×Rd in the
paper are influenced. By this name, we mean random fields defined on a given
complete probability space (Ω,F ′, P ), equipped with the filtration of influence
(in the sense of Definition 3.8 in [28]) F = (F(t,x))(t,x)∈R×Rd generated by Λ and
the family of ambit sets (At(x))(t,x)∈R×Rd ⊂ R × R

d, i.e., each F(t,x) is the σ-
algebra generated by the set of random variables {Λ(B) : B ∈ Bb(H ×At(x))},
which are adapted to F. We call our field adapted to the filtration of influence
F if it is measurable with respect to the σ-algebra F for each (t, x) ∈ R× R

d.
Moreover, we work with spatio-temporal stationary random fields in the fol-

lowing.
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Definition 2.5 (Spatio-temporal stationarity).We say that Z is spatio-temporal
stationary if for every n ∈ N, τ ∈ R, u ∈ R

d, t1, . . . , tn ∈ R and x1, . . . , xn ∈ R
d,

the joint distribution of (Zt1(x1), . . . ,Ztn(xn)) is the same as that of (Zt1+τ (x1+
u), . . . ,Ztn+τ (xn + u)).

We simply use the term stationary throughout when referring to processes
satisfying Definition 2.5. We can now formally define the stochastic model un-
derlying our learning methodology.

Definition 2.6 (MMAF). Let Λ = {Λ(B), B ∈ Bb(I)} a Lévy basis, f : H ×
R × R

d → R a B(I)-measurable function and At(x) an ambit set. Then, the
stochastic integral

Zt(x) =
∫
H

∫
At(x)

f(A, x− ξ, t− s) Λ(dA, dξ, ds), (t, x) ∈ R× R
d, (2.6)

is adapted to the filtration F, stationary, and its distribution is infinitely divisi-
ble. We call the R-valued random field Z an (influenced) mixed moving average
field and f its kernel function.

Remark 2.7. On a technical level, we assume all stochastic integrals in this
paper to be well defined in the sense of Rajput and Rosinski [65]. For more
details, including sufficient conditions on the existence of the integral as well as
the explicit representation of the characteristic triplet of the MMAF’s infinitely
divisible distribution (which can be directly determined from the characteristic
quadruplet of Λ), we refer to [28, Section 3.1]. In the latter, there can also be
found a multivariate definition of a Lévy basis and an MMAF.

Important examples of MMAFs are the spatio-temporal Ornstein-Uhlenbeck
field (STOU) and the mixed spatio-temporal Ornstein-Uhlenbeck field (MSTOU),
whose properties have been thoroughly analyzed in [59] and [60]. There are also
interesting time series models in the MMAF framework, which we present in
section A.5.

Example 2.8 (STOU process). Let Λ = {Λ(B), B ∈ Bb(I)} be a Lévy basis,
f : R × R

d → R a B(I)-measurable function defined as f(s, ξ) = exp(−As) for
A > 0, and At(x) be defined as in (2.9). Then, the STOU is defined as

Zt(x) :=
∫
At(x)

exp(−A(t− s))Λ(ds, dξ). (2.7)

The STOU is a stationary and Markovian random field. Moreover, an STOU
exhibits exponential temporal autocorrelation (just like the temporal Ornstein-
Uhlenbeck process) and has a spatial autocorrelation structure determined by
the shape of the ambit set. In addition, this class of fields admits non-separable
autocovariances, which are desirable in practice, see Example A.7.

Example 2.9 (MSTOU process). An MSTOU process is defined by mixing
the parameter A in the definition of an STOU process; that is, we assume that
π has support in H = (0,∞). This modification allows the determination of
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random fields with power-decaying autocovariance functions, see example A.9.
Let Λ = {Λ(B), B ∈ Bb(I)} be a Lévy basis, f : (0,∞) × R × R

d → R a B(I)-
measurable function defined as f(A, s, ξ) = exp(−As), and At(x) be defined as
in (2.9). Moreover, let l(A) be the density of π with respect to the Lebesgue
measure such that ∫ ∞

0

1
Ad+1 l(A)dA < ∞.

Then, the MSTOU is defined as

Zt(x) :=
∫ ∞

0

∫
At(x)

exp(−A(t− s))Λ(dA, ds, dξ). (2.8)

The MMAF framework has a causal interpretation under the following as-
sumption.

Assumption 2.10. For a c > 0, we consider

At(x) :=
{
(s, ξ) ∈ R× R

d : s ≤ t and ‖x− ξ‖ ≤ c|t− s|
}
. (2.9)

To explain why using cone-shaped ambit sets allows to have such an inter-
pretation, we borrow the concept of lightcone from special relativity.

A lightcone describes the possible paths that the light can make in space-
time leading to a space-time point (t, x) and the ones that lie in its future.
In the context of our paper, we use their geometry to identify the space-time
points having a causal relationship. For a point (t, x), c > 0 and by using the
Euclidean norm to assess the distance between different space-time points, we
define a lightcone as the set

Alight
t (x) =

{
(s, ξ) ∈ R× R

d : ‖x− ξ‖ ≤ c|t− s|
}
.

The set Alight
t (x) can be split into two disjoint sets, namely, At(x) and At(x)+.

The set At(x) is called past lightcone, and its definition corresponds to the one
of a cone-shaped ambit set (2.9).

The set

At(x)+ = {(s, ξ) ∈ R× R
d : s > t and ‖x− ξ‖ ≤ c|t− s|}, (2.10)

is called instead the future lightcone. By using an influenced MMAF on a cone-
shaped ambit set as the underlying model, we implicitly assume that the fol-
lowing sets

l−(t, x)={Zs(ξ) : (s, ξ) ∈ At(x) \ (t, x)} and l+(t, x)={Zs(ξ) : (s, ξ) ∈ At(x)+}
(2.11)

are respectively describing the values of the field that have a direct influence on
the determination of Zt(x) and the future field values influenced by Zt(x). We
can then uncover the causal relationship between space-time points described
above by estimating the constant c from observed data, which we call the speed
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of information propagation in the physical system under analysis. A similar ap-
proach to modeling causal relationships can be found in several machine learning
frameworks, as in [57] and [72]. The sets (2.11) are employed in the former to
perform video frame prediction and in the latter to discover coherent structures,
as defined in [48], in spatio-temporal physical systems. Hence, the concept of
lightcones enters into play in the definition of their algorithm. In statistical mod-
eling, we typically have two equivalent approaches towards causality: structural
causal models, which rely on the use of directed acyclical graphs (DAG) [61],
and Rubin causal models, which rely upon the potential outcomes framework
[71]. The concept of causality employed in this paper can be inscribed into the
latter. In fact, by using MMAFs on cone-shaped ambit sets, the set l+(t, x)
describes the possible future outcomes that can be observed starting from the
spatial position (t, x). Finally, we consider the following definitions of temporal
and spatial short and long-range dependence in the paper.

Definition 2.11 (Short and long range dependence). A random field
(Zt(x))(t,x)∈R×Rd

is said to have temporal short-range dependence if∫ ∞

0
Cov(Zt(x),Zt+τ (x)) dτ < ∞,

and temporal long-range dependence if the integral above is infinite. Similarly,
an isotropic random field, see Definition A.10, has spatial short-range depen-
dence if ∫ ∞

0
C(r) dr < ∞,

where Cov(Zt(x),Zt(x + u)) = C(|u|) and r = |u|. It is said to have spatial
long-range dependence if the integral is infinite.

Under Assumption 2.10, an STOU process admits temporal and spatial short-
range dependence, whereas an MSTOU process can admit temporal and spatial
short and long-range dependence by carefully modeling the parameter A.

Example 2.12. Let Z be an MSTOU process as defined in Example 2.9 for d =
1, Assumption 2.10 hold, and l(A) = βα

Γ(α)A
α−1 exp(−βA) be the Gamma density

with shape and rate parameters α > d + 1 and β > 0. From the calculations in
Example A.9 and by setting u = 0, then Z has temporal short-range dependence
because for α > 3, the integral∫ ∞

0
Cov(Zt(x),Zt+τ (x)) dτ = cβαV ar(Λ′)

2(α− 2)(α− 1)

∫ ∞

0
(β + τ)−(α−2) dτ

= cβ3V ar(Λ′)
2(α− 1)(α− 2)(α− 3)

is finite. This integral is infinite for 2 < α ≤ 3, and we then say that the
MSTOU process has temporal long-range dependence. We obtain spatial short
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or long-range dependence for the same choice of parameters. In fact, for r = |u|
and τ = 0, and α > 3, the integral∫ ∞

0
C(r) dr = cβαV ar(Λ′)

2(α− 2)(α− 1)

∫ ∞

0
(β + r/c)−(α−2) dr

= cβ3V ar(Λ′)
2(α− 1)(α− 2)(α− 3)

converges, whereas it diverges for 2 < α ≤ 3.

2.3. Weak dependence coefficients in MMAF-guided learning

We start by giving the definitions of the dependence notions involved in our
learning methodology.

Definition 2.13. Let Z be an R-valued random field. Then, Z is called θ-lex-
weakly dependent if

θlex(r) = sup
u,v∈N

θu,v(r) −→
r→∞

0,

where

θu,v(r)= sup
{
|Cov(F (ZΓ), G(ZΓ′))|

‖F‖∞vLip(G) , F ∈ G∗
u, G ∈ Gv, Γ, Γ′, |Γ| = u, |Γ′|=v

}
for Γ = {ti1 , . . . , tiu} ∈ R

1+d, Γ′ = {tj1 , . . . , tjv} ∈ R
1+d such that Γ ∈ V r

Γ′ =⋂v
l=1 V

r
tjl

for tjl ∈ Γ′. We call (θlex(r))r∈R+ the θ-lex-coefficients.

MMAFs are θ-lex weakly dependent random fields, as proven in Proposi-
tion B.1. Moreover, Definition 2.13 is an extension to the random field case of
a dependence notion developed for causal processes called θ-weak dependence.

Definition 2.14. Let Z be an R-valued stochastic process. Then, Z is called
θ-weakly dependent if

θ(k) = sup
u∈N

θu(k) −→
k→∞

0,

where

θu(k) = sup
{
|Cov(F (ZΓ), G(Zj1))|

‖F‖∞Lip(G) , F ∈ G∗
u, G ∈ G1, Γ, |Γ| = u

}
.

for Γ = {ti1 , . . . , tiu} ∈ R such that i1 ≤ i2 ≤ . . . ≤ iu ≤ iu + k ≤ j1. We call
(θ(k))k∈R+ the θ-coefficients.

We use the following result extensively in Section 3 proofs.
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Remark 2.15 (Projective-type representation of θ-weak dependence).
Let (Xt)t∈Zbe a real-valued θ-lex weakly dependent process, L1 = {g : R →
R, g ∈ G1, Lip(g) ≤ 1}, s ∈ N, j1 ∈ Z, and M = σ{Xt : t ≤ j1 and |t−j1| ≥ s}
, then it is showed in [33, Proposition 2.3] that

θ(s) = sup
j1∈Z

sup
g∈L1

‖E[g(Xj1)|M] − E[g(Xj1)]‖1. (2.12)

An alternative proof of this result can also be found in [28, Lemma 5.1].

Remark 2.16 (About the parameter k and r in Definition 2.14 and 2.13).
Let us start by assuming that Z = (Zi)i∈R is a sequence of independent and
identically distributed (in short, i.i.d.) random variables, then for any F ∈ G∗

u

with u ∈ N, G ∈ G1, and selecting a set Γ = {i1, . . . , iu} ∈ R such that i1 ≤
. . . ≤ iu ≤ iu + k ≤ j, we have that

Cov(F (ZΓ), G(Zj)) = 0,

and θ(k) = 0 for all k ∈ R
+. The process Z is θ-weakly dependent and the

parameter k is encoding the distance between the marginals

P := (Zi1 , . . . ,Ziu), and F := (Zj).

In terms of the process Z, the σ-algebras generated by P and F represent past
and future events. Obviously, in the case of a sequence of independent random
variables, the past plays no role in the unfolding of the future. However, if we
consider a θ-weakly dependent process Z, then it satisfies the inequality

Cov(F (Zi1 , . . . ,Ziu), G(Zj)) ≤ 2‖F‖∞Lip(G)θ(k).

The result above has been proven, for example, in [27] and gives a criterion
to measure explicitly the dependence between past and future. Here, the past is
progressively forgotten for k → ∞. The parameter k expresses the distance at
which we are evaluating the influence of the past on how the future unfolds, and
the coefficients θ(k) is a measure of how fast the past is forgotten.

Similar considerations can be made in the case in which we consider Z =
(Zi)i∈R1+d a θ-lex weakly dependent random field for the constant r ∈ R

+.
However, P and F represent the marginals of lexicographically ordered elements
in this case. The lexicographic order in R

1+d substitutes the natural temporal
order for stochastic processes defined on R.

In the MMAF modeling framework, we can show general formulas computing
upper bounds of the θ-lex coefficients. The latter is given as a function of the
characteristic quadruplet of the driving Lévy basis Λ and the kernel function f
in (2.6), see Proposition B.1.

For d = 1, 2, when the MMAF has a kernel function with no spatial compo-
nent, we can compute a bound for the θ-lex coefficients expressed in terms of
the covariances of the field Z, which can be computed as shown in Section A.2.
These bounds have an expression that allows us to use standard statistical infer-
ence tools to infer the decay rate parameter of the coefficients; see, for example,
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the estimators (2.14) and (2.15). In the general framework described in Propo-
sition B.1, however, similar estimation methodologies are not yet available and
remain an interesting open problem.

Proposition 2.17. Let Λ be an R-valued Lévy basis with characteristic quadru-
plet (γ, σ2, ν, π) and f : H × R → R a B(H × R)-measurable function not de-
pending on the spatial dimension, i.e.,

Zt(x) =
∫
H

∫
At(x)

f(A, t− s)Λ(dA, ds, dξ), (t, x) ∈ R
1+d. (2.13)

(i) For d = 1, if
∫
|x|>1 x

2ν(dx) < ∞ and γ +
∫
|x|>1 xν(dx) = 0, then Z is

θ-lex weakly dependent and

θlex(r)≤2
(
2V ar(Λ′)

∫ ∞

0

∫
A0(0)∩A0(r min(2,c))

f(A,−s)2dsdξπ(dA)
) 1

2

=2
√

2Cov(Z0(0),Z0(rmin(2, c))),

where V ar(Λ′) = σ2 +
∫
R
x2 ν(dx).

(ii) For d = 2, if
∫
|x|>1 x

2ν(dx) < ∞ and γ +
∫
|x|>1 xν(dx) = 0, then Z is

θ-lex weakly dependent and

θlex(r) ≤ 2
(

2Cov

(
Z0(0, 0),Z0

(
rmin

(
1, c√

2

)
, rmin

(
1, c√

2

)))

+2Cov

(
Z0(0, 0),Z0

(
rmin

(
1, c√

2

)
,−rmin

(
1, c√

2

)))) 1
2

.

The proof of the results above is given in Appendix B.1.

Notation 2.18. In general, we indicate the bounds of the θ-lex coefficients
determined in Proposition B.1, Corollary B.2 or Proposition 2.17 using the
sequence (θ̃lex(r))r∈R+ where

θlex(r) ≤ 2θ̃lex(r).

Definition 2.19. For r ∈ R
+, ᾱ > 0, if θ̃lex(r) ≤ ᾱ exp(−λr) we say that Z

admits exponentially decaying θ-lex coefficients, whereas if θ̃lex(r) ≤ ᾱr−λ, we
say that Z admits power decaying θ-lex coefficients.

We give below examples of MMAF with exponential and power-decaying θ-
lex coefficients.

Example 2.20. Let d = 1 and Z be an STOU as in Def. 2.8. If
∫
|x|>1
x2ν(dx)<∞,

γ +
∫
|x|>1 x ν(dx) = 0, then Z is θ-lex weakly dependent with

θ̃lex(r)=
(
V ar(Λ′)

∫
A0(0)∩(A0(ψ)∪A0(−ψ))

exp(2As) ds dξ
) 1

2
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≤
(
2V ar(Λ′)

∫
A0(0)∩A0(ψ)

exp(2As) ds dξ
) 1

2

=
(
2V ar(Λ′)

∫ − ψ
2c

−∞

∫ −cs

ψ+cs

exp(2As) ds dξ
) 1

2 =
( c

A2V ar(Λ′) exp
(−Aψ

c

)) 1
2

=
( c

A2V ar(Λ′) exp
(
− Amin(2, c)

c︸ ︷︷ ︸
2λ

r
)) 1

2

=
√

2Cov(Z0(0),Z0(rmin(2, c))) := ᾱ exp(−λr),

where λ > 0 and ᾱ > 0. Because the temporal and spatial autocovariance
functions of an STOU are exponential, see (A.4), the model admits temporal
and spatial short-range dependence. By estimating the parameter vector θ0 =
{A, c, V ar(Λ′)} using the methodologies revised in Appendix A.3, we can esti-
mate the parameter λ using the following plug-in estimator

λ∗ = min(2, c∗)
2c∗ , (2.14)

where the estimators A∗ and c∗ are defined in (A.19). This estimator is con-
sistent because of [59, Theorem 12] and the continuous mapping theorem. Fur-
thermore, by using an estimator of the parameter V ar(Λ′), we can also obtain
a consistent estimator for the parameter ᾱ.

Example 2.21. Let d = 1 and Z be an MSTOU as defined in Example 2.12.
If
∫
|x|>1 x

2 ν(dx) < ∞, γ +
∫
|x|>1 x ν(dx) = 0, then Z is θ-lex weakly dependent

with

θ̃lex(r) ≤
( c

A2V ar(Λ′)
∫ ∞

0
exp

(−Aψ

c

)
π(dA)

) 1
2

=
( V ar(Λ′)cβα

(β + ψ/c)α−2(α− 2)(α− 1)

) 1
2

=
( V ar(Λ′)cβα

(α− 2)(α− 1)

(
β + rmin(2, c)

c

)−(α−2)) 1
2

=
√

2Cov(Z0(0),Z0(rmin(2, c))) := ᾱr−λ,

where λ = α−2
2 and ᾱ > 0. As already addressed in Example 2.12, for 2 < α ≤ 3,

that is 0 < λ ≤ 1
2 , the model admits temporal and spatial long-range dependence.

Instead, for α > 3, that is λ > 1
2 , the model admits temporal and spatial short

range dependence.
For the model used in Example 2.21, an estimator for

λ∗ = α∗ − 2
2 (2.15)

where the vector of parameters θ1 = {α, β, c, V ar(Λ′)} is estimated using a
GMM estimator θ∗

1 = {α∗,β∗, c∗,V ar(Λ′)∗}.
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Fig 1. Raster data cube’s spatio-temporal index set with origin in (t0, x0).

The estimator of λ depends on the chosen data generating process and the
spatial dimension of the data. For further details on the parametric estimation
methodologies nowadays available for other fields belonging to the MMAF class,
we refer the reader to the Appendices A.3, A.4 and A.5.

3. Mixed moving average field guided learning

3.1. Pre-processing N frames

In this section, we describe MMAF-guided learning for a spatial dimension d =
2. Let (Z̃t(x))(t,x)∈T×L be an observed data set on a regular lattice L ⊂ R

2

across times T = {t0 + ht, . . . , t0 + htN} for ht ∈ R, such that

Z̃t(x) = μt(x) + Zt(x) (3.1)

holds, and no measurement errors are present in the observations. Here, μt(x)
is a deterministic function, and Zt(x) are considered realizations from a zero
mean stationary (influenced) MMAF.

We represent graphically the regular spatial lattice L as a frame made of a
finite amount of pixels, i.e., squared-cells representing each of them a unique
spatial position x ∈ L, see Figure 1. In several applications, such as satellite
imagery, a pixel refers to a spatial cell of several square meters. In the paper,
we assume that a pixel represents the spatial point x ∈ R

2 corresponding to
the center of the pictured squared cell. We then use the name pixel and spatial
position throughout interchangeably. In total, N frames represent the spatio-
temporal index set of the observed data set. This terminology is often used to
describe raster data cubes [62]. We define in Section 3.1.1 a spatio-temporal
embedding for data with such structure. For dimension d = 1, we consider that
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the pixel collapses in the point x ∈ R that describes, see Figure 3. MMAF-
guided learning also applies to spatial index sets of dimension d > 2. However,
we do not represent the spatial positions using pixels in such cases.

We call (t0, x0) the origin of the space-time grid, see Figure 1, and ht and hs

the time and space discretization step in the observed data set, i.e. the distance
between two pixels along the temporal and spatial dimensions.

MMAF-guided learning has the target to determine one-time ahead ensemble
forecasts of the field Z in a pixel x∗. We do not consider further the problem of
estimating the deterministic function μt(x) when performing forecasting tasks,
i.e., we assume our data set to be generated by a zero mean MMAF from now
on. We refer the reader to [26] for a review of how to estimate the function
μt(x).

In the following sections, we need to define a training data set to employ in our
learning methodology. Therefore, we pre-process the set of indices represented
by the N frames to select a set of different examples, i.e., input-output pairs,
to include in the training data set Sm.

3.1.1. Spatio-temporal embedding

Let us consider a stationary random field (Zt(x))(t,x)∈Z×L, and select a pixel
position x∗ in L. We define the input-output vectors

Xi = L−
p (t0 + ia, x∗), and Y i = Zt0+ia(x∗), for i ∈ Z, (3.2)

where
L−

p (t, x∗) = (Zi1(ξ1), . . . ,Zia(p,c)(ξa(p,c)))�, (3.3)

with indices selected in the set

I(t, x∗):={(is, ξs) : ‖x∗−ξs‖≤c (t− is) for 0<t−is≤p, and (is, ξs)<lex (is+1, ξs+1)},
(3.4)

for t = t0 + ia with i ∈ Z, and c > 0. We call a(p, c) := |I(t, x∗)| and assume
that is constant for all t = t0 + ia and i ∈ Z. The parameters a > 0 and p > 0
are multiples of ht such that a = atht, p = ptht, at, pt ∈ N and at ≥ pt + 1. We
note that each element of L−

p (t, x∗) ⊂ l−(t, x∗) for t = t0 + ia and i ∈ Z, where
l−(t, x∗) is defined in (2.11) and identifies the set of all points in R×R

d that could
possibly influence the realization Zt(x∗). The sampling leading to (3.2) can be
performed starting by a pixel x∗ for which the index set I(t0 + ia, x∗) ⊆ Z× L

for all i. Further details on why the examples need to be structured following
the index sets I(t, x∗) are given in the next remark.

Remark 3.1 (Geometry and lexicographic order of the examples). The sets
I(t, x∗) are chosen with a geometry that is inherited by the definition of the
cone-shaped ambit set in (2.9). Such a geometry allows us to give a causal in-
terpretation of the one-time ahead ensemble forecast, as shown in Section 4.
Moreover, we store in the input vectors Xi values of the fields Z with indices in
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Fig 2. (a) Observed raster data cube. (b) Spatio-temporal embedding: the red pixel identifies
the spatial point x∗, and for i ∈ Z the set I(t0 + ia, x∗) defined in (3.4) is represented by the
pixels in the green boxes. The parameters in use in this sampling are c =

√
2, pt = 2, at = 3,

ht = hs = 1. (c) A realization S from the cone-shaped sampling process.

lexicographic order. This choice implies that ((Xi1 ,Y i1), . . . , (Xiu ,Y iu)) and
(Xj ,Y j) for u ∈ N and j ∈ Z are lexicographically ordered marginals of the
field Z. This allows, in turn, to precisely assess how the θ-lex weakly depen-
dence of the data generating process Z (defined w.r.t. lexicographically ordered
marginals, see Definition 2.13) is inherited by the process S and to understand
how the θ-lex weakly dependence plays a role in the definition of the randomized
estimators in Section 3.2. Modifications of this representation may be needed
when using convolutional or transformer architectures as predictors. This latter
issue is outside the scope of the present paper but constitutes an important future
research direction of MMAF-guided learning.

Last but not least, it is important to notice that the considerations above
rule out the choice of overlapping examples, i.e., the possible choice of exam-
ples that maintain the cone-shaped geometry but have indices not following the
lexicographic order. If we were to make this choice, we would then work with
a training data set that does not inherit the dependence structure of the data
generating process Z; see Section 3.1.2 for more details.

The sequence ((Xi,Y i)�)i∈Z is composed of identically distributed random
vectors for all i ∈ Z. We call S := ((Xi,Y i)�)i∈Z a cone-shaped sampling
process. An example of a realization S of the sampling scheme, together with
its related spatio-temporal embedding’s description can be found in Figure 2.
The distribution of S is indicated throughout by P.

Next, let us assume to observe a data set (Zt(x))(t,x)∈T×L, and that we want
to determine a one-time ahead ensemble forecast in the pixel x∗. We define
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m :=
⌊
N
at

⌋
and a training data set Sm = ((Xi, Yi)�))mi=1 as a realization from

the cone-shaped sampling process S of fixed length m. In particular,

Xi = L−
p (t0 + ia, x∗), and Yi = Zt0+ia(x∗) for i = 1, . . . ,m, (3.5)

where

L−
p (t, x∗) = (Zi1(ξ1), . . . , Zia(p,c)(ξa(p,c)))�, and (is, ξs) ∈ I(t, x∗) (3.6)

for s = 1, . . . , a(p, c) and t = t0 + ia with i = 1, . . . ,m. We assume that the
parameters a and p follow the constraints in Table 1. The index set used to define
the training data set (3.5) is a spatio-temporal embedding in the set R×R

2. A
similar interpretation can be given for the index set defining the cone-shaped
sampling process (3.2).

Table 1

Parameters involved in pre-processing N observed frames.
Parameters Constraints Interpretation
a := atht pt + 1 ≤ at ≤

⌊
N
2

⌋
translation vector

p := ptht 1 ≤ pt <
⌊
N
2

⌋
− 1 past time horizon

m :=
⌊
N
at

⌋
2 ≤ m < N number of examples in Sm

For an observed raster data cube, we know the value of the constants N ,
ht, and hs, and it remains to select the parameters at and pt. We discuss the
selection of the parameter at in Section 3.2 and of pt in Section 4.2, respectively.

3.1.2. Study of the dependence structure of L and Lε

We analyze in this section the dependence structure of the processes L :=
(L(h(Xi),Y i))i∈Z and Lε := (Lε(h(Xi),Y i))i∈Z, where L and Lε are the loss
functions defined in Section 1.1, and h is a Lipschitz predictor.

Proposition 3.2. Let S be the cone-shaped sampling process defined by (3.2),
then L is a θ-weakly dependent process for all h ∈ H. Moreover, for a, p > 0,
k ∈ N, and r = ka− p > 0, it has coefficients

θ(k) ≤ d̃(Lip(h)a(p, c) + 1)
(2
d̃
E[|Zt(x) −Z

(r)
t (x)|] + θlex(r)

)
, (3.7)

where d̃ > 0 is a constant independent of r, and Z
(r)
t (x) := Zt(x) ∧ r.

Remark 3.3 (Locally Lipschitz predictor). Let the predictor h be a locally
Lipschitz function such that h(0) = 0 and

|h(x) − h(y)| ≤ c̃ ‖x− y‖1(1 + ‖x‖1 + ‖y‖1) for x, y ∈ R
a(p,c),

for c̃ > 0. Moreover, let Z be a stationary and θ-lex weakly dependent random
field such that |Z| ≤ C almost surely. An easy generalization of Proposition 3.2,
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leads to show that L is θ-weakly dependent with coefficients

θ(k) ≤ d̃(c̃(1 + 2C)a(p, c) + 1)
(2
d̃
E[|Zt(x) −Z

(r)
t (x)|] + θlex(r)

)
, (3.8)

where r = ka − p > 0 for a, p > 0 and k ∈ N, d̃ > 0 is a constant independent
of r, and Z

(r)
t (x) := Zt(x) ∧ r.

Remark 3.4. The spatio-temporal embedding discussed in Section 3.1.1 also
apply to θ-weakly dependent time series models Z. In such case, the parameter
c = 0, S is a flat cone-shaped sampling process, and (straightforwardly) a θ-
weakly dependent process with coefficients satisfying the bound (3.7).

In the case of MMAFs, we have obtained explicit bounds for the θ-lex coef-
ficients in Propositions B.1 and 2.17. We now prove that a more refined bound
than (3.7) for the θ-coefficients of the process L can be given in this setting.

We consider the following assumption.

Assumption 3.5. Let Z be an MMAF under the Assumption 2.10 and such
that E[|Zt(x)|2] < ∞. Let N ∈ N, T = {t0 + ht, . . . , t0 + htN} and L ⊂ R

2.
Sm and S are realization from (Zt(x))(t,x)∈Z×L following the spatio-temporal
embedding defined in Section 3.1.1.

Proposition 3.6. Let Assumption 3.5 hold. Then L is a θ-weakly dependent
process for all h ∈ H with coefficients

θ(k) ≤ 2(Lip(h)a(p, c) + 1)θ̃lex(r), (3.9)

where r = ka−p > 0 for a, p > 0 and k ∈ N. In particular, for linear predictors,
i.e., hβ(X) = β0 + βT

1 X, for β := (β0, β1)� ∈ B and B = R
a(p,c)+1, we have

that L is a θ-weakly dependent process for all β ∈ B with coefficients

θ(k) ≤ 2(‖β1‖1 + 1)θ̃lex(r). (3.10)

Lemma A.2 straightforwardly implies that the process Lε is θ-weakly depen-
dent with the same θ-coefficients as the process L under the assumptions of
Proposition 3.2, Remark 3.3 and Proposition 3.6.

3.2. PAC Bayesian bounds for MMAF generated data

Three essential results, namely, the change of measure theorem of Donsker and
Varadhan [34], the Markov’s inequality, and an exponential inequality, are typ-
ically employed to prove a fixed-time PAC Bayesian bound, which holds for a
given choice of m (which in our framework is related to a given number N
of frames). We find in [13] a scheme of proof for PAC Bayesian bounds that
summarizes the above. There is, however, another scheme of proof described
in [23], which allows us to obtain any-time PAC Bayesian bounds, which hold
simultaneously for all m. Such methodology avoids using the Markov’s and
the exponential inequalities by substituting them with the Ville’s inequality for
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non-negative supermartingale [82]. To the best of our knowledge, in the depen-
dent case, the existing proofs of such bounds are holding in the so-called online
framework and make use of martingale properties as detailed in [23] and [43].

In this section, we prove a novel exponential inequality for θ-weakly depen-
dent processes (the dependence property of Lε) such to be capable of applying
the scheme of proof of [13] and obtaining a fixed-time bound. Moreover, we also
prove an any-time bound for θ-weakly dependent processes in the batch learning
framework. We then define a novel scheme of proof for fixed time bounds that
combines an any-time bound with the Markov’s inequality and the projective-
type property of the θ-weak dependence (2.12). The last part of this scheme
of proof is inspired by the analysis made in [2]. Our examples and simulation
studies show that the latter bound allows us to guide a randomized estimator
employing realistic spatio-temporal embeddings, which means training data sets
that can best preserve the serial correlation observed in a given raster data cube.
From the definition of the spatio-temporal embedding in Section 3.1.1, because
the MMAFs are θ-lex weakly dependent fields, the more the parameter at be-
comes bigger, the more the examples in Sm are less correlated. This phenomenon
is a consequence of the dependence structure of the data generating process and
significantly impacts the generalization performance of the employed estimators.

For a measurable space (H, T ) and for any (ρ, π) ∈M1
+(H)2, where ρ �

π means that ρ is absolutely continuous respect to π with Radon-Nikodym
derivative dρ

dπ , the PAC Bayesian bounds introduced in this section employ the
Kullback-Leibler divergence

KL(ρ, π) =
{

ρ
[
log dρ

dπ

]
if ρ � π

+∞ otherwise
,

and the f-divergences defined as

Df (ρ, π) =
{

π
[
f
(

dρ
dπ

)]
if ρ � π

+∞ otherwise
.

For φp(x)=xp, we have that the chi-square divergence corresponds to Dφ2−1(ρ, π).
We prove next an exponential inequality for θ-weakly dependent processes

using the notations introduced in Section 3.1.
Theorem 3.7. Let Z be an R-valued stationary θ-weakly dependent process, and
f : R → [a, b], for a, b ∈ R such that (f(Zi))i∈Z is itself θ-weakly dependent. Let
l = �m

k �, for m, k ∈ N, such that l ≥ 2 and 0 < s < 3l
|b−a| , then

E

[
exp

( s

m

m∑
i=1

(f(Zi)−E[f(Zi)])
)]

≤ exp
(
s2V ar(f(Z1))
2l
(
1− s|b−a|

3l

) )
+ exp(s |b−a|)θ(k)s,

(3.11)

E

[
exp

( s

m

m∑
i=1

(E[f(Zi)]−f(Zi))
)]

≤ exp
(
s2V ar(f(Z1))
2l
(
1− s|b−a|

3l

) )
+ exp(s |b−a|)θ(k)s.

(3.12)
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Note that increasing the parameter k makes the bounds in (3.11) and (3.12)
become tighter because θ(k) goes to zero when k goes to infinity.

We have shown in the last section that the process Lε is θ-weakly depen-
dent. We then apply Theorem 3.7 in the scheme of proof described in [13] and
determine a fixed-time PAC Bayesian bound.

Theorem 3.8 (Fixed-time PAC Bayesian bound- Type I ). Let 0 < ε < 3,
l =

⌊
m
k

⌋
such that l ≥ 2, and Assumption 3.5 holds. If π ∈ M1

+(H) such
that π[θ(k)] < ∞, ρ̂ is a randomized estimator in the sense of Definition (1.2),
ρ̂(·, ω) � π(·) for all ω ∈ Ω, and δ ∈ (0, 1), then

P

{
∀ρ̂ : |ρ̂[Rε(h)] − ρ̂[rε(h)]| ≤

(
KL(ρ̂, π) + log

(1
δ

)) 1√
l

+ 1√
l
log

(
exp

( 3ε2

2(3 − ε)

)
+ π

[
3
√
l exp(3

√
l)θ(k)

])}
≥ 1 − 2δ,

(3.13)

where θ(k) is a θ-coefficient of the process Lε.

For any possible choice of the parameters defining the spatio-temporal em-
bedding leading to Sm, Theorem 3.8 gives us a PAC Bayesian bound for a
randomized estimator ρ̂. The fastest convergence rate that can be obtained in
this framework is O(m−1/2) when choosing the parameter k = 1.

Given an accuracy level ε, if the right-hand side of the PAC Bayesian bound
is less than ε with a high probability (i.e., the bound is not vacuous), we say that
a randomized estimator ρ̂ has good generalization performance. The smaller the
right-hand side becomes, the better the performance of a randomized estimator
in forecasting is. We then aim to select a spatio-temporal embedding such as the
right-hand side of the inequality (3.13) is small as possible. For the reader’s con-
venience, we have summarized all the parameters appearing in MMAF-guided
learning in Table 2.

Table 2

Overview of parameters appearing in MMAF-guided learning.
Parameters Type Interpretation

ε Hyperparameter Accuracy level
N Given Parameter Number of frames
ht Given Parameter time step
hs Given Parameter space step
λ Unknown Parameter Decay rate of the θ-lex coefficients
c Unknown Parameter Speed of information propagation
pt Hyperparameter Length of the past included in each input Xi

at User Choice Parameter Translation vector
k User Choice Parameter k-th θ-coefficient of the process Lε

In the following, we show in our examples and theorems how to guide the
design of two types of randomized estimators, see Definition 1.2:
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• a Dirac delta mass concentrated on the empirical risk minimizer, defined
for all E ∈ T and ω ∈ Ω as

ρ̂(E,ω) := δβ̂(ω), (3.14)

where β̂ : Ω → H defines the empirical risk minimizer

β̂ := arg inf
β

rε(β); (3.15)

• and the randomized Gibbs estimator ρ̄ defined for all E ∈ T and ω ∈ Ω as

ρ̄(E,ω) :=
∫
E

exp(−√
mrε(h))π(dh)∫

H exp(−√
mrε(h))π(dh)

, (3.16)

where rε(h) := r(h) ∧ ε and r(h) is the empirical error.

Note that the definition of a randomized estimator depends on Sm. Therefore,
different values of the parameters ε, at, pt, λ and c give us different distributions
to be used in forecasting tasks.

Remark 3.9 (Possible selection rule for
√
l and the parameter at in relation

to the bound (3.13)). Differently from the classical PAC Bayesian for indepen-
dently and identically distributed data, see reviews [1] and [42], the parameter l
is tuned in the bounds (3.13) through the choice of the spatio-temporal embed-
ding. We now give several examples of the latter that can be chosen to tighten
the right-hand side of the bound (3.13). In Proposition 3.6, we have determined
for a Lipschitz predictor a bound from above of the θ-coefficient θ(k) related to
the process Lε. If we employ this result, we get a PAC Bayesian bound where
we are capable of dividing in the last term the contribution of a predictor h from
the dependence structure of the underlying MMAF field Z expressed through the
θ-lex coefficients. By applying Proposition 3.6, the Lip(h) appears in the bound.

Therefore for l ≥ 2, and r = ka− p, we obtain the bound

P

{
∀ρ̂ : |ρ̂[Rε(h)] − ρ̂[rε(h)]| ≤

(
KL(ρ̂, π) + log

(1
δ

)) 1√
l

+ 1√
l
log

(
exp

( 3ε2

2(3 − ε)

)
+ π

[
3
√
l exp(3

√
l)2(Lip(h)a(p, c) + 1)ᾱ θ̃lex(r)

])}
≥ 1 − 2δ. (3.17)

We now consider that the parameters ε, pt, λ, c, and ᾱ (which determines how
tight θ̃(r) is as a bound of θ(k)) have been selected and we concentrate on the
selection of the parameter at. We refer the reader to Section 4 for a discussion
on the selection of the other parameters.

For k = 1, we obtain a convergence rate of O(m− 1
2 ), and we can pre-process

the data choosing the smallest value of at satisfying the following inequalities⎧⎨⎩ −λht(at−pt)+3
√

N
at
<0 for exp. decaying θ-lex coef., see Def. 2.19,

−λ log(ht(at−pt))+3
√

N
at
<0 for power decaying θ-lex coef., see Def, 2.19.
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Under these choices, we obtain that exp(3
√
l)θ̃lex(r) ≤ 1, and the bound

(3.17) tightens. For k > 1, we obtain a convergence rate of O((m/k)− 1
2 ), and we

can pre-process the data choosing the smallest value of at satisfying the following
inequalities⎧⎨⎩ −λht(kat − pt) + 3

√
N
at

< 0 for exp. decaying θ-lex coef.,

−λ log(ht(kat − pt)) + 3
√

N
at

< 0 for power decaying θ-lex coef..

By choosing k > 1, we could, however, select a lower value of at.
The choice of the parameter at discussed in this section is inversely propor-

tional to the parameter k and proportional to the parameter pt. This means we
obtain more examples (i.e., longer training data sets Sm) when k increases and
pt decreases. Hence, a careful choice of the parameter at must be done even to
obtain training data sets with m ≥ 1, especially when the data generating process
Z admits power decaying θ-lex coefficients.

Example 3.10 (Guided randomized estimators of type (3.14)). Let us assume
to observe two data sets with N = 20000 from an STOU and an MSTOU process
as defined in Example 2.20 and 2.21, respectively. The parameters λ = 1

2 , pt =
1, c = 1, ht = 1 and hs = 1 are associated to the STOU data set and λ = 1

2 , α =
3, pt = 1, c = 1, ht = 1, and hs = 1 to the MSTOU data set. The former is a
serially correlated data set having temporal and spatial short-range dependence
and exponentially decaying θ-lex coefficients, whereas the latter possesses tempo-
ral and spatial long-range dependence and power decaying θ-lex coefficients. Let
us choose at following the rule in Remark 3.9 in the case of linear predictors.
We call S1

m the sampling from the STOU, where at = 92 and m = 217, and
S2
m the one from the MSTOU, where at = 8742 and m = 2. We have that the

dimension of the input space of our examples is a(p, c) = 3 and we consider the
parametric space B ⊂ {β = (β0, β1) : β0 ∈ R, β1 ∈ R

3 and ‖β‖1 ≤ 1} such that
card(B) = M < ∞ for M ∈ N. We look at the bound (3.17) for k = 1. We con-
sider as reference distribution a uniform distribution π on B. For a realization
S1
m or S2

m, we have that

KL(δβ̂ ||π) =
∑
β∈B

log
(δβ̂{β}
π{β}

)
δβ̂{β} = log 1

π{β̂}
= log(M). (3.18)

It is crucial to notice that the bigger the cardinality of the space B is, the more
the term log(M) and the bound increase.

Finally, for δ ∈ (0, 1), we obtain for S1
m and S2

m (obviously w.r.t. different
distribution P depending on their data generation process) the bound

P

{
|Rε(β̂) − rε(β̂)| ≤ log

(M
δ

) 1√
m

+ 1√
m

log
(

exp
( 3ε2

2(3 − ε)

)
+ 3

√
mπ[2(‖β1‖1 + 1)ᾱ]

)}
≥ 1 − 2δ. (3.19)
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Let us assume to work with an accuracy level ε = 1, M = 100, ᾱ = 1, δ = 0.025.
Then, the generalization gap with respect to S1

m is less than 0.98 with at least
95% probability, whereas for S2

m, we can just prove that the generalization gap
is less than 9.40 with a probability of at least 95%. The latter is obviously a
vacuous bound.

The randomized Gibbs estimator is the minimizer of the right hand-side of
the bound (3.13) and gives the best generalization performance in the class
M1

+(H) and has the best possible rate of convergence for k = 1. The result
below is also called an oracle inequality in the literature.

Theorem 3.11 (PAC Bayesian bound for the randomized Gibbs estimator-
Type I ). Let 0 < ε < 3, m ≥ 2, and Assumption 3.5 holds. If π is a distribution
on M1

+(H) such that π[θ(1)] < ∞, ρ̂ is a randomized estimator in the sense
of Definition (1.2), ρ̂(·, ω) � π(·) for all ω ∈ Ω, ρ̄ is the randomized Gibbs
estimator defined in (3.16), and δ ∈ (0, 1)

P

{
ρ̄[Rε(h)] ≤ inf

ρ̂

(
ρ̂[Rε(h)] +

(
KL(ρ̂, π) + log

(1
δ

) 2√
m

)
+ 2√

m
log

(
exp

( 3ε2

2(3 − ε)

)
+ π

[
3
√
m exp(3

√
m)θ(1)

]))}
≥ 1 − 2δ.

(3.20)

We now focus on determining the any-time PAC Bayesian bound in our
framework. Let us define the filtration F = (Fm)m∈N0 where Fm = σ(Sm)
for all m ≥ 1, i.e., the filtration generated by the cone-shaped sampling process,
and F0 is equal to the trivial sigma-algebra. For ε > 0, we then define the
process (fi(S, h))i∈N0 as⎧⎪⎪⎨⎪⎪⎩

f0(S, h) = 0
fm(S, h) = η

∑m
i=1(Lε(h(Xi), Yi) − E[Lε(h(Xi),Y i)])

−η
∑m

i=1(E[Lε(h(Xi), Yi)|Fi−1] − E[Lε(h(Xi),Y i)])
−η2

2 mε2, for m ∈ N.

We can then prove an any-time PAC-Bayesian bound, which allows a choice
of the accuracy level ε > 3 and, therefore, it complements the results given in
Theorem 3.8 for a bounded loss.

Theorem 3.12. Let ε > 0 and Assumption 3.5 holds. If π ∈ M1
+(H) such

that π[θ(1)] < ∞, ρ̂ is a randomized estimator in the sense of Definition (1.2),
ρ̂(·, ω) � π(·) for all ω ∈ Ω, and δ ∈ (0, 1), then

P

{
∀ρ̂,∀m ≥ 1 : ρ̂[rε(h)] − ρ̂[Rε(h)] ≤

KL(ρ̂, π) + log
(

1
δ

)
mη

+ η

2 ε
2

+ ρ̂
[ 1
m

m∑
i=1

E[Lε(h(Xi),Y i)|Fi−1] − E[Lε(h(Xi),Y i)]
]}

≥ 1 − δ. (3.21)
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We call the process 1
m

∑m
i=1(E[Lε(h(Xi),Y i)|Fi−1] − E[Lε(h(Xi),Y i)])i∈N

the residual process.
Following the same line of proof, it can also be proven that an any-time PAC

Bayesian bound holds for the average generalization gap ρ̂[Rε(h)]− ρ̂[rε(h)], by
using the following definition of fm(S, h), namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩

f0(S, h) = 0
fm(S, h) = η

∑m
i=1(E[Lε(h(Xi),Y i)] − Lε(h(Xi), Yi))

−η
∑m

i=1(E[Lε(h(Xi),Y i)] − E[Lε(h(Xi), Yi)|Fi−1])
−η2

2 mε2, for m ∈ N.

The following result follows straightforwardly by applying a union bound.

Corollary 3.13. Let ε > 0 and Assumption 3.5 holds. If π ∈ M1
+(H) such

that π[θ(1)] < ∞, ρ̂ is a randomized estimator in the sense of Definition (1.2),
ρ̂(·, ω) � π(·) for all ω ∈ Ω, and δ ∈ (0, 1), then

P

{
∀ρ̂,∀m ≥ 1 : |ρ̂[Rε(h)] − ρ̂[rε(h)]| ≤

KL(ρ̂, π) + log
(

1
δ

)
ηm

+ ηε2

2

+ ρ̂
[∣∣∣ 1
m

m∑
i=1

E[Lε(h(Xi),Y i)|Fi−1] − E[Lε(h(Xi),Y i)]
∣∣∣]} ≥ 1 − 2δ.

(3.22)

We can now give the proof of a fixed-time PAC Bayesian bound obtained by
using the bound (3.22), a Markov’s inequality, and the projective-type property
(2.12). In this new scheme of proof, it is determined a fixed-time PAC Bayesian
bound of the residual process following [2, Theorem 1].

Theorem 3.14 (Fixed-time PAC Bayesian bound- Type II ). Let ε > 0 and
Assumption 3.5 holds. If π ∈ M1

+(H) such that π[θ(1)] < ∞, ρ̂ is a randomized
estimator in the sense of Definition (1.2), ρ̂(·, ω)π(·) for all ω ∈ Ω, and δ ∈
(0, 1), then

P

{
∀ρ̂ : |ρ̂[rε(h)] − ρ̂[Rε(h)]| ≤

KL(ρ̂, π) + log
(

1
δ

)
ηm

+ ηε2

2 +
(
επ
[θ(1)

δ

]
(Dφ2−1(ρ̂, π) + 1)

) 1
2
}
≥ 1 − 3δ,

(3.23)

where θ(1) is a θ-coefficient of the process Lε.

Remark 3.15 (Selection rule for the parameter at in relation to the bound
(3.23)). We now discuss an exemplary spatio-temporal embedding which can be
chosen such to tighten the right-hand side of the bound (3.23). We consider
that the parameters ε, pt, λ and c have been selected (the parameter k does not
enter in the determination of the spatio-temporal embedding in this case), and we
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concentrate on the selection of the parameter at. We refer the reader to Section 4
for a discussion on the selection of the other parameters. Let us choose η = 1√

m
,

and select at as the smallest constant such that θ̃lex(a− p) ≤ 1
2m , which implies⎧⎨⎩−λht(at−pt)− log

(
at

2N

)
≤0 for exp. decaying θ-lex coeff., see Def. 2.19,

−λ log(ht(at−pt))− log
(

at

2N

)
≤0 for power decaying θ-lex coeff., see Def. 2.19

So doing we have that the third addend in the right-hand side of the bound has
the same order of magnitude as the other terms, which gives us the convergence
rate of O(m− 1

2 ). We can notice that with respect to the selection rule in Re-
mark 3.9, we can guide the design of a randomized estimator using a lower value
of the parameter at. This ultimately means that we are working with a training
data set that admits a stronger serial correlation along the temporal and spatial
dimension than the ones obtained using the selection rule in Remark 3.9.

The bound (3.23) can also be used in different ways to guide the selection of a
randomized estimator. For example, when working with the estimator (3.14), we
can choose a value of η that minimizes the right-hand side of the bound and then
select a spatio-temporal embedding that makes the bound not vacuous. Examples
of such a spatio-temporal embedding are used in Example 3.17.

Remark 3.16 (Hostile Framework). Theorem 3.14 employs a well-known result
in the PAC Bayesian literature for dependent and stationary data, analyzed in
[2]. The authors determine a general fixed-time bound holding for unbounded
losses; see Theorem 1. In particular, let δ ∈ (0, 1), p > 1, and q = p

p−1 , with
probability at least 1 − δ, they prove that for any ρ̂

ρ̂[R(h)] ≤ ρ̂[r(h)] +
(Mφq,n

δ

) 1
q (Dφp−1(ρ̂, π) + 1)

1
p .

This bound obviously applies to our set-up, but it cannot be used in its general
shape to guide the selection of a randomized estimator, which is the primal target
of our paper. The reason for this is that we cannot write the term Mφq,n as a
function of the θ-coefficients of the process Lε, similarly, as done in [2] in the
case of α-mixing processes. When working with such a dependence notion, the
term Mφq,n can be controlled using Lemma 3 (for bounded losses) and Theorem
3 (for unbounded losses) in [35]. To the best of our knowledge, no proofs in
the literature extend such results for θ-weakly dependent processes. Moreover,
even if we could determine such a proof, following the methodology described
in [2], we will end up estimating the term Mφq,n from above using

∑
j∈Z θ(j).

This estimate diverges for specific power decaying θ-coefficient sequences, such
as those discussed in Example 2.21.

Therefore, we developed novel results where the PAC Bayesian bounds depend
just on one single θ-coefficient and are also not equal to infinity for a given data
set generated by a temporal and spatial long-range dependent MMAF.

Example 3.17 (Guided randomized estimators of type (3.14) and comparisons
between the bounds (3.17) and (3.23)). We use the data described in Exam-
ple 3.10. We also maintain the same assumptions on the set B and the reference
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distribution π. Moreover, we select parameters ε = 1,M = 100, δ = 0.05
3 , and

c = pt = ht = 1. From [2, Proposition 1], we have that (Dφ2−1(ρ̂, π) + 1) = M .
We compute first the bound (3.23) for the estimator (3.14) and the data set
observed from the STOU process. We use the bound (3.10) for the θ-coefficients
of the process Lε, and assume that ᾱ = 1. Moreover, we select the parameter as
η =

√
2 log(M/δ)

ε2m . Such choice minimizes the right-hand side of the bound (3.23)
in this framework, we then obtain for δ ∈ (0, 1) that

P

{
|Rε(β̂)−rε(β̂)|≤

√
2 log(M/δ)

m
+
(
ε
M2(π[‖β1‖1]+1)ᾱθ̃lex(a−p)

δ

) 1
2
}
≥1−3δ.

(3.24)
We then select the smallest parameter at such that θ̃lex(a−p) ≤ δ

4Mm . We obtain
an S1

m, where at = 34 and m = 588, and a generalization gap less than or equal
to 0.21 with at least 95% probability. With the same choice of spatio-temporal
embedding and computing directly the bound (3.19) for δ = 0.025, we obtain that
the generalization gap is less than or equal to 2.99 with at least 95% probability.
Using instead the spatio-temporal embedding defined in Example 3.10 for the
STOU data set, we obtain that the generalization gap computed with (3.24) is
less than 0.28 versus a 0.98 obtained from (3.19).

For the data set observed from the MSTOU process, we now compute the
bound (3.24) by employing the selection rule in Remark 3.15. We then obtain a
spatio-temporal embedding S2

m for at = 1170 and m = 17 and a generalization
error less or equal to 27.51 with probability at least 95%. With the same choice
of spatio-temporal embedding and computing directly the bound (3.19) for δ =
0.025, we obtain a generalization gap less than or equal to 5.66 with at least 95%
probability instead. Using the spatio-temporal embedding defined in Example 3.10
for the MSTOU data set, we obtain that the generalization gap computed with
(3.23) is equal to 18.97 versus a 9.40 obtained from (3.19).

From this simple example, we can notice how, for the temporal and spatial
short-range data set, the bound obtained in (3.24) is tighter than the one pre-
sented in (3.19). In the temporal and spatial long-range case, it seems, however,
that with all spatio-temporal embeddings so far considered, we can just obtain a
vacuous bound. However, there is an aspect of the bound (3.24) that we have not
truly used so far in our evaluations. All the results above hold under the choice
of the accuracy level ε = 1. If we choose ε = 1000 (which goes outside the range
of validity of the bound (3.19)) and compute again the bound in (3.24) for the
choice of at = 1170, we obtain a not-vacuous bound. In fact, under this choice
of the accuracy level, we obtain a generalization error less or equal to 838.84
with a probability at least of 95%. Therefore, for different reasons that in the
case of temporal and spatial short-range data, the bound obtained in 3.24 is the
one to employ when analyzing long-range data.

From the description of possible selection rules for the parameter at and the
Examples 3.10 and 3.17, different questions may arise. The first regards the
vacuousness of the bounds (3.13) and (3.23) observed in some of our examples
when employing temporal and spatial long-range data. Secondly, it is important
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to question the dependence of the bound from the constant Lip(h) and the
accuracy level parameter ε. The three remarks below tackle these issues and
present interesting future research directions for our work.

Remark 3.18 (Spatio-temporal embeddings for temporal and spatial long-
range dependent data sets). In general, the bounds (3.13) and (3.23) depend
non-linearly on the set of parameters listed in Table 2, and assessing their mag-
nitude in the temporal and spatial long-range dependence framework for MMAF
is still an open problem.

It is important to highlight that the selection of the spatio-temporal embed-
ding depends on the discretization step in time ht. Such constant is related, in
practical applications, to the frequency of the observed data and has a significant
impact on the tightness of the bound. From the selection rules in Remarks 3.9
and 3.15, we can see how the parameter value at decreases when ht > 1.

Moreover, the bound (3.23) holds for ε > 0 and this gives us better gener-
alization performance as long as we consider an ε ≥ 3 (which goes outside the
range of validity of the bound (3.13)), see Example 3.17.

Remark 3.19 (Are the fixed-time bounds (3.13) and (3.23) depending on the
value of the Lip(h)?). There is no explicit dependence on the Lip(h) in the
bounds (3.13) and (3.23). Such a coefficient appears if we employ Proposition 3.6
to estimate the θ-coefficients in the bound. However, we do not have a formal
proof of the tightness of this estimation.

When working with deep neural network predictors computing their Lips-
chitz constant is a complex numerical task; see [38] and [74]. In this framework,
we could use the bound (3.9) for the θ-coefficients of the process Lε and then
work with a numerical approximation for the Lip(h). However, future research
should focus on determining tight estimates for the θ-coefficients and assessing
their dependence on the Lip(h) in detail. Such analysis could greatly help the
empirical computation of PAC Bayesian bounds for (random) deep learning ar-
chitectures and extend the range of applicability of MMAF-guided learning in
practical applications.

Remark 3.20 (The importance of the accuracy level ε). For the time being, the
proofs of Theorems 3.8 and 3.14 work just if Lε is bounded. Such an assump-
tion allows us to apply the projective-type representation of the θ-coefficients
discussed in Remark 2.15. This, in turn, allows us to be capable of guiding a
randomized estimator, i.e., choosing the parameters defining the spatio-temporal
embedding by controlling the magnitude of the θ(1)-coefficient of the process Lε.
It is important to highlight that, as observed at the end of Example 3.17 for a
temporal and spatial long-range data set, or in the sensitivity analysis conducted
for a temporal and spatial short-range data set in Section 4.2, the performances
of the employed randomized estimators improve when ε ≥ 3.

In the following theorem, we give an alternative fixed-time bound for the
randomized Gibbs estimator, obtained using Theorem (3.14). In this case, the
estimator no longer minimizes the right-hand side of the inequality.
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Theorem 3.21 (PAC Bayesian bound for the randomized Gibbs estimator-
Type II ). Let ε > 0 and Assumption 3.5 hold. If m ≥ 1, η = 1√

m
, π is a

distribution on H such that π[θ(1)] < ∞, ρ̄ is the randomized Gibbs estimator
defined in (3.16), and δ ∈ (0, 1)

P

{
ρ̄[Rε(h)] ≤ inf

ρ̂

(
ρ̂[Rε(h)]+

(
KL(ρ̂, π) + log

(1
δ

)) 2√
m

)
+ ε2√

m

+ 2
(
επ
[θ(1)

δ

]
(Dφ2−1(ρ̄, π) + 1)

) 1
2
}
≥ 1 − 4δ,

(3.25)

where θ(1) is a θ-coefficient of the process Lε.

Several results on fixed-time PAC Bayesian bounds in a dependent framework
can be found in the batch setting, but only for time series models. We review
them in the remark below.

Remark 3.22 (Are there PAC Bayesian bounds for dependent data with faster
convergence rates?). In [2], the authors determine an oracle inequality with a
rate of O(m− 1

2 ) under the assumption that ((Xi,Y i)�)i∈Z is generated by a sta-
tionary and α-mixing process, see [19] for a detailed explanation of the proper-
ties of this dependence notion, with coefficients (αj)j∈Z such that

∑
j∈Z

αj < ∞.
Such a bound employs the chi-squared divergence and holds for unbounded losses.
It is important to highlight that the randomized estimator obtained by minimiza-
tion of the PAC Bayesian bound is not a Gibbs estimator in this framework. An
explicit bound for linear predictors can be found in their [2, Corollary 2]. This
result holds under the assumption that π[‖β‖6] < ∞.

In [4], the authors prove oracle inequalities for a Gibbs estimator and data
generated by a stationary and bounded θ1,∞-weakly dependent process– such de-
pendence notion extends the concept of φ-mixing discussed in [69]– or a causal
Bernoulli shift process. Models with bounded θ1,∞-weak coefficients are causal
Bernoulli shifts with bounded innovations, uniform φ-mixing sequences, and dy-
namical systems; see [4] for more details. The oracle inequality is here obtained
for an absolute loss function and has a rate of O(m− 1

2 ). An extension of this
work for Lipschitz loss functions under φ-mixing [49] can be found in [3]. Here,
the authors show an oracle inequality for a Gibbs estimator with the optimal
rate O(m−1). This rate is considered optimal in the i.i.d literature, and for a
squared loss function, [20].

Interesting results in the literature of PAC Bayesian bounds for heavy-tailed
data (albeit identically distributed) can also be found in [41] and [47].

MMAF-guided learning has the potential to be extended to general θ-lex
weakly dependent models because of the results in Proposition 3.2. Another
possible extension of the methodology is related to using bounded and local
Lipschitz losses; see Remark 3.3. Considering unbounded losses is beyond the
scope of the present paper and the content of future research treated in [29].
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Fig 3. The x- and y-axes represent the time and spatial dimension, respectively. We picture
the last 3 frames of a data set with spatial dimension d = 1 where the blue stars represent
the pixels used in the definition of the training data set, and the violet stars represent the
space-time points where it is possible to provide forecasts with MMAF-guided learning for
pt = c = ht = 1. Note that the forecast in the time-spatial position (4, 3) lies in the intersection
(red area) of the future lightcones A2(5)+, A2(4)+ and A2(3)+ as defined in (2.10) and
represented with green cones.

4. Ensemble forecasts using MMAF-guided learning

4.1. Practical implementation and casual forecast

The knowledge of all the parameters in Table 2 allows us to have a precise
definition of the spatio-temporal embedding defined in Section 2.1. So far, we
have only discussed the selection of the parameter at. The parameter pt is an
hyperparameter in our learning methodology. By establishing a finite grid of
values I ⊂ N for the parameter pt, we could introduce in (3.13) and (3.23)
an explicit dependence on its possible values. So doing, we could approach the
general question of minimizing the right-hand-side of the bound (also known
as, exact minimization) in the function of every possible randomized estimator
ρ̂ and the grid of values I, see Section 2.1 in [1] for exemplary calculations.
Similarly, we could approach the selection of the parameter ε and obtain a
methodology for the selection of all the hyperparameters involved in MMAF-
guided learning. Such an issue is outside the scope of the present paper. However,
we provide in our numerical experiments in Section 4.2 a sensitivity analysis
about the hyperparameters ε and pt.

If we assume that our data are generated by an STOU or an MSTOU pro-
cess, i.e., we are assuming that the data admits exponential or power-decaying
θ-lex coefficients, as discussed in Section A.3 and A.4, there are several method-
ologies available for the estimation of the parameters c and λ. There are also
other feasible model set-ups for time series models, such as when c = 0. In this
framework, several estimation methodologies can be employed to estimate the
model’s parameters of an MMAF, see A.5.

Remark 4.1. When using the spatio-temporal embeddings described in Re-
mark 3.9 and 3.15, similarly to the kriging literature, we need an inference
step before being capable of delivering one-time ahead ensemble forecasts. In
this literature, it is often assumed that the estimated parameters used in the



MMAF-guided learning 551

calculation of kriging weights and kriging variances are the true one, see [25,
Chapter 3] and [26, Chapter 6] for a discussion on the range of applicability of
such estimates. We implicitly make the same assumptions if, for example, we
use estimated values for the parameters λ and c.

It remains an interesting open problem to understand the interplay of the esti-
mates’ bias of the parameters involved in the computation of the PAC Bayesian
bounds (3.13) and (3.23). One of the biggest problems of this analysis relies
upon disentangling the effect of the bias of the constant c introduced in the pre-
processing step, which changes the length of the input-features vector Xi.

We detail now how to guide the design of a randomized Gibbs estimation ρ̄
and make one-time ahead ensemble forecasts. Differently from the notations so
far employed, we indicate the training data set by Sx∗

m to remark the dependence
of the training data set on the pixel position x∗ where we perform our forecasts.
In general, the learning methodology applies to any pixel x∗ for which I(t0 +
ia, x∗) ⊆ T× L for all i = 1, . . . , N .

Application Steps:

(i) We observe a raster data cube whose spatio-temporal index set is described
by N frames and we estimate the parameters λ and c (and ᾱ if necessary).

(ii) We fix a pixel position x∗ and choose a value for the accuracy level ε and
the hyperparameter pt. We then select the parameter at as suggested in
Remark 3.9 or 3.15 and determine the spatio-temporal embedding.

(iii) We determine the training data set Sx∗
m using all available N frames, which

correspond to a specific realization ω ∈ Ω, i.e., Sx∗

m (ω) = Sx∗
m .

(iv) We then draw β from the distribution ρ̄(·, ω), following the definition of
the randomized Gibbs estimator in (3.16).

(v) We perform a so-called ensemble forecast by repeating point (iv) several
times.

A one-time ahead forecast corresponds to the space-time point ((t0 +Na) +
ht, x

∗) and it is given by 〈L−
p ((t0 + Na) + ht), β〉, where β is a draw from the

randomized Gibbs distribution. Therefore, we can make a forecast in a future
time point t = (t0 +Na)+ht as long as the set I((t0 +Na)+ht, x

∗), as defined
in (3.4), has cardinality a(p, c).

For each β, the forecast of the field we obtain in the space-time point ((t0 +
Na) + ht, x

∗) lies in the intersections of the future light cones of the space-time
points belonging to L−

p ((t0 + Na) + ht, x
∗). In Figure 3, we give an example of

a one-time ahead forecast performed for an MMAF for d = 1. As we can see,
MMAF-guided learning enables us to make plausible forecasts in space-time
points (under the causality concept induced by the ambit sets, see Section 2.2)
starting from the set of inputs we observe.

4.2. Linear predictors: an example with simulated data

We work in the hypothesis space H′ = {hβ(X) = β0+βT
1 X, for β := (β0, β1)� ∈

B}, where B ⊂ R
(a(p,c)+1). We use simulated observations from an STOU, i.e.,



552 I. V. Curato et al.

a temporal and spatial short-range dependent field with exponentially decaying
θ-lex weakly dependent coefficients. We simulate four data sets (Zt(x))(t,x)∈T×L

from a zero mean STOU process by employing the diamond grid algorithm in-
troduced in [59] for d = 1. The time and spatial discretization steps are chosen
as ht = hs = 0.05 on the spatio-temporal interval [0, 100] × [0, 10]. There-
fore T = {ht, . . . , 2, 000ht} and L = {0, . . . , 200}. We use the unidimensional
frames related to the time indices T

train = {0, ht, . . . , 1, 999ht} to determine
the training data sets and the one corresponding to T

test = {2000ht} as a
test set. We choose as distribution for the Lévy seed Λ′ a normal distribution
with mean μ = 0 and standard deviation σ = 0.5, and an NIG(α, β, μ, δ) dis-
tribution with α = 5, β = 0, δ = 0.2 and μ = 0; see Exercises 2.2 and 2.3.
We use the latter distribution to test the behavior of MMAF-guided learning
for different sets of heavy-tailed data. We generate data with different seeds
for the Lévy basis realizations. Moreover, the speed of information propaga-
tion c is equal to one for all generated data sets. Finally, we choose different
mean reverting parameters, namely A = 1 or 4. Therefore, λ is equal to 1

2 if
A = 1 or 2 if A = 4. We call these data sets GAU10, GAU1A4, NIG1A4, and
NIG10. For the NIG Lévy seed described above, we generate two further spatio-
temporal data sets called (Zi

t(x))(t,x)∈Ti×L for i = 1, 2 on the spatio-temporal
interval [0, 1000] × [0, 10]. We choose ht = hs = 0.05, L = {0, . . . , 200} and
time indices T1 = {18, 000ht, . . . , 20, 000ht} and T2 = {0, ht, . . . , 20, 000ht}.
Such data sets are called NIG1 in the following. A summary scheme of the
data’s characteristics is given in Table 3. For the NIG1 data sets, we use the
unidimensional frames corresponding to T

train
1 = {18, 000ht, . . . , 19, 999ht} and

T
train
2 = {0, ht, . . . , 19, 999ht} to determine the training data sets, respectively,

and T
test
1 = {20, 000ht} and T

test
2 = {20, 000ht} as test sets. For all the gen-

erated data sets, we perform a one-time ahead ensemble forecast for the pixels
corresponding to L

′ = {1, . . . , 199}.

Table 3

Overview on simulated data sets with c = 1 and spatial dimension d = 1.
Data Set Mean Reverting Parameter Lévy seed Random generator seed
GAU1A4 A = 4 Gaussian 1
GAU10 A = 1 Gaussian 10
NIG1 A = 1 NIG 1

NIG1A4 A = 4 NIG 1
NIG10 A = 1 NIG 10

We follow the steps detailed in Section 4.1 to use MMAF-guided learning in
practice. We start by estimating the parameters c and λ. We use the estima-
tors (A.19) presented in Section A.3 and the plug-in estimator (2.14). Table 4
gives the results for each data set. We then use such estimates and the frames
corresponding to L

′ × T
train, L′ × T

train
1 , or L

′ × T
train
2 in the selection of the

parameter at by following the rules in Remark 3.9 for k = 1, and Remark 3.15.
We then analyze the performance of the different randomized Gibbs estimators
obtained from a particular choice of the parameter at when the reference dis-
tribution is assumed to be multivariate standard Gaussian. We do not give an
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empirical evaluation of the right-hand side of the bounds (3.20) and (3.25) and
base our assessment of the performance of the different estimators on how nar-
row their inter-quartile range on a 50 member ensemble forecast is. Note that
each forecast we make has a casual interpretation as described in Figure 3.

We start by conducting two different experiments to showcase the perfor-
mance of our methodology for ε = 2.99 and pt = 1. We use as a baseline model
a linear model where the estimation of the parameter vector β is performed
using the empirical risk minimizer defined in (3.15).

In the first experiment, we use the data sets GAU1A4, GAU10, NIG1A4,
NIG10 and work with the training data sets Sx∗

m described by the Tables 5
and 6.

Table 4

Estimations of parameters A, c and λ.
Data Set A∗ c∗ λ∗ Frames Used
GAU1A4 3.9684 0.9958 1.9715 T× L

GAU10 0.8429 0.9978 0.4196 T× L

NIG1 1.0186 1.0018 0.5111 T1 × L

NIG1 1.0186 1.0019 0.5112 T2 × L

NIG1A4 4.0308 1.0076 2.0461 T× L

NIG10 0.9728 1.0021 0.4884 T× L

Table 5

Parameters defining the training data sets Sx∗
m used in the first experiment for each pixel.

Selection of parameters as in Remark 3.9
GAU1A4 GAU10 NIG1A4 NIG10
at 124 at 346 at 121 at 313
m 16 m 6 m 17 m 7
k 1 k 1 k 1 k 1

Table 6

Parameters defining the training data sets Sx∗
m used in the first experiment for each pixel.

Selection of parameters as in Remark 3.15
GAU1A4 GAU10 NIG1A4 NIG10
at 47 at 156 at 45 at 139
m 41 m 13 m 43 m 15
k 1 k 1 k 1 k 1

An acceptance-rejection algorithm with a Gaussian proposal determines a
draw β from the randomized Gibbs estimator. We show in Figure 4 the min-max
range of the two ensemble forecasts (dark grey for the parameters in Table 5,
and light grey for the one in Table 6) as well as the inter-quartile ranges of a
50-member ensemble forecast for each pixel in L

′ compared with the test set.
As the plots clearly show, using a randomized Gibbs estimator, we obtain an
inter-quartile range that contains the test set for each spatial position x∗ ∈ L

′.
Moreover, the ranges seem to have a similar behavior independently of the test
set and the Lévy seeds. The randomized Gibbs estimators guided by the choices
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Fig 4. Min-max and inter-quartile range of a 50-member ensemble forecast for the training
data sets Sx∗

m described in Tables 5 and 6. Dark grey and orange colors represent the ranges
related to the use of Table 5, whereas the light grey and red colors represent the ranges related
to the use of Table 6. The test set is depicted with a thick black line, while the forecasts
obtained using the baseline estimator (3.15) are represented with a violet thick line. The
training data set Sx∗

m described in Table 6 are used for computing the baseline estimates with
respect to the GAU1A4, NIG1A4, GAU10, and NIG10 data sets in (a), (b), (c) and (d),
respectively. The x-axis represents the pixels in L

′, whereas the forecast values are along the
y-axis.

of parameters in Table 6 have narrower inter-quartile ranges (in red) with respect
to the ones guided by the choices of parameters in Table 5 (in orange).

Let us define the average Relative Mean Absolute Error (averRMAE) to
compare our forecasts with the baseline model. Let P = |L′|, we define the
average Relative Mean Absolute Error as

averRMAE = 1
P

P∑
i=1

|Zt(xi) − Ẑt(xi)|
|Zt(xi)|

,

where Ẑt(xi) is the one-time ahead forecast obtained with the linear model for
all i. The observations in our simulated data sets have an order of magnitude (on
average) of 10−3. Tables 7 and 8 show that the empirical risk minimizer cannot
capture any significant digit, as also seen in Figure 4. Our ensemble forecasts
give, at least, an interval where the one-time ahead forecasts can lie.

In the second experiment, we analyze the performance of randomized Gibbs
estimators for the data sets NIG1. For each pixel, we work with the data sets
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Table 7

averRMAE for the baseline estimator following the selection rule in Remark 3.9. The NIG1
data set’s averRMAE has been computed with respect to S2,x∗

m described in Table 9.
GAU1A4 GAU10 NIG1A4 NIG10 NIG1

linear 0.0304 0.0176 0.0168 0.0127 0.0142

Table 8

averRMAE for the baseline estimator following the selection rule in Remark 3.15. The
NIG1 data set’s averRMAE has been computed with respect to S2,x∗

m described in Table 10.
GAU1A4 GAU10 NIG1A4 NIG10 NIG1

linear 0.0303 0.0176 0.0156 0.0128 0.0138

S1,x∗
m and S2,x∗

m described in Tables 9 and 10, obtaining the ensemble forecasts
in Figure 5.

Fig 5. Inter-quartile range of a 50-member ensemble forecast using S1,x∗
m (in violet) and

S2,x∗
m (in green) as defined in Table 9 (a) and Table 10 (b). The test set and the baseline

forecasts are depicted with thick black and violet lines, respectively. The training data sets
S2,x∗
m in Table 9 and 10 are respectively used as baseline estimates in (a) and (b). The x-axis

represents the pixels in L
′, whereas the forecast values are along the y-axis.

Table 9

Parameters describing the training data sets used in the second experiment at each pixel x∗.
Selection of parameters

as in Remark 3.9
S1,x∗
m S2,x∗

m

at 303 at 652
m 7 m 32
k 1 k 1

By comparing the inter-quartile range of the ensemble forecasts, we see that
in both cases, the green range representing the forecasts related to S2,x∗

m is
contained in the purple range, which represents the inter-quartile range of the
forecasts made using the data set S1,x∗

m . Both of them include the test set. The
amplitude of the inter-quartile range reduces when the number of observations
in the data set increases. The forecasts of the baseline model are performed
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Table 10

Parameters describing the training data sets used in the second experiment at each pixel x∗.
Selection of parameters

as in Remark 3.15
S1,x∗
m S2,x∗

m

at 134 at 207
m 15 m 96
k 1 k 1

using the data set S2,x∗
m and have a high averRMAE as reported in Tables 7

and 8.
We want now to analyze our methodology’s sensitivity to the hyperparameter

pt when at is selected following the rules in Remarks 3.9 and 3.15, respectively.
The selection of the parameter at is proportional to the values of pt. Therefore,
the smaller we choose this parameter, the more examples we obtain in Sx∗

m . We
work in this experiment with the data sets GAU1A4 and NIG1A4. However, we
obtained the same conclusions for all the other data sets employed in our study.
We generate ensemble forecasts (and their respective inter-quartile ranges) for
pt = 1, 8, 15. All inter-quartile ranges in Figure 6 contain the test set, and
a significant increase of pt has a negative impact on the inter-quartile range
amplitude. For this reason, we have chosen the parameter pt = 1 in our previous
experiments.

Table 11

Parameters describing the training data sets Sx∗
m used in the third experiment for each pixel.

Selection of parameters as in Remark 3.9
GAU1A4 NIG1A4

pt 1 pt 8 pt 15 pt 1 pt 8 pt 15
at 124 at 129 at 134 at 121 at 127 at 132
m 16 m 15 m 14 m 17 m 15 m 14
k 1 k 1 k 1 k 1 k 1 k 1

Table 12

Parameters describing the training data sets Sx∗
m used in the third experiment for each pixel.

Selection of parameters as in Remark 3.15
GAU1A4 NIG1A4

pt 1 pt 8 pt 15 pt 1 pt 8 pt 15
at 47 at 53 at 58 at 45 at 52 at 58
m 41 m 37 m 33 m 43 m 39 m 35
k 1 k 1 k 1 k 1 k 1 k 1

Finally, we analyze the sensitivity of our methodology to the choice of the
accuracy level ε. We work in this experiment with the data set GAU10 and
the related Sx∗

m described in Tables 5 and 6. However, we obtained the exact
same conclusions for all the other data sets employed in our study. We choose
ε = 1, 2, 2.99 for the Sx∗

m in Table 5 and ε = 1, 2.99, 5 for the training data set in
Table 6. We remind that the bounds (3.20) and (3.25) work for 0 < ε < 3 and
ε > 0, respectively. Also, in this experiment, we plot the inter-quartile ranges
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Fig 6. Inter-quantile range of a 50-member ensemble forecast for pt = 1 (blue), pt = 8 (lilac),
pt = 15 (magenta) using the training data sets described in Table 11 and Table 12. The test
set and the baseline forecasts are depicted in black and violet thick lines, respectively. The
training data sets Sx∗

m in Table 12 are respectively used as baseline estimates in (a), (b),
(c) and (d). The x-axis represents the pixels in L

′, whereas the forecast values are along the
y-axis.

Fig 7. (a) Inter-quantile range of a 50-member ensemble forecast for ε = 1 (magenta), ε = 2
(lilac), ε = 2.99 (blue) using the training data set described in Table 5 for the GAU10. The
test set and the baseline forecasts are depicted in thick black and violet lines, respectively. The
training data sets Sx∗

m in Table 5 is used as baseline estimates for ε = 2.99. (b) Inter-quantile
range of a 50-member ensemble forecast for ε = 1 (magenta), ε = 2.99 (lilac), ε = 5 (blue)
using the training data sets described in Table 6 for the GAU10. The test set and the baseline
forecasts are depicted in thick black and violet lines, respectively. The training data sets Sx∗

m
in Table 6 is used as baseline estimates for ε = 5. The x-axis represents the pixels in L

′,
whereas the forecast values are along the y-axis.
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obtained for the different randomized Gibbs estimators in Figure 7 and observe
that the bigger the parameter ε, the narrower the amplitude of the ranges. We
choose in our experiment ε = 2.99 because it is the bigger ε for which both the
bound (3.20) and (3.25) are defined.

5. Conclusions

We define a novel theory-guided machine learning methodology for spatio-temporal
data called MMAF-guided learning, which works in the class of the Lipschitz
functions, e.g., linear functions and several types of neural network modules.
Our methodology applies to raster data cubes, and it works under the assump-
tion that such data are generated by an influenced mixed moving average field
(MMAF, in short) defined on a cone-shaped ambit set. Such random fields are
strictly stationary, θ-lex weakly dependent, and can be employed to model Gaus-
sian and non-Gaussian distributed data. Moreover, they can be non-Markovian
and admit non-separable covariance functions.

We show fixed-time and any-time PAC Bayesian bounds in this framework.
All our bounds are determined for a bounded loss and depend on one single
θ-lex coefficients of the underlying MMAF. In particular, our bounds hold for
temporal and spatial short and long-range dependent data.

To enable one-time ahead ensemble forecasts, we need an estimate of the
decay rate of the θ-lex coefficients of the underlying MMAF. Such an estimation
is feasible, for example, in the case of STOU and MSTOU processes. We can
then define spatio-temporal embeddings such that they make the right-hand side
of the fixed-time PAC Bayesian bounds, proven in the paper, not vacuous. The
analyzed embeddings give us possible training data sets for learning randomized
estimators that have good generalization performance with a high probability.
We can then determine one-time ahead ensemble forecasts.

In conclusion, we test the learning procedure for a guided randomized Gibbs
estimator and a Gaussian reference distribution on the class of linear models.
Our estimator has a convergence rate of O(m− 1

2 ). We simulate a set of six data
sets from an STOU process with Gaussian and NIG Lévy seed and determine
(50 members) ensemble forecasts. We obtain that the inter-quartile ranges of
our forecasts always contain the test set and are narrower when the number of
observations in the training data set increases. Moreover, our forecasts have a
causal interpretation induced by the ambit sets of the data-generating process
known as Rubin’s potential outcomes framework.

Appendix A: Appendix

A.1. Weak dependence notions for causal processes and (influenced)
MMAF

In this section, we discuss in more detail the dependence notions called θ-weak
dependence and θ-lex weak dependence. The latter notion has been introduced
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in [28, Definition 2.1] as an extension to the random field case of the notion of
θ-weak dependence satisfied by causal stochastic processes [32]. This notion of
dependence is presented in Definition 2.14. However, the notion of θ-lex weak
dependence given in Definition 2.13 slightly differs from the one given in [28,
Definition 2.1] and represents an extension to the random field case of the θ-
weak dependence notion defined in [33, Remark 2.1]. Note that the definitions of
θ-weak dependence in [32] and [33, Remark 2.1] differ because of the cardinality
of the marginal distributions on which the function G is computed, namely,
G ∈ G1 in the former and G ∈ Gν for ν ∈ N in the latter.

Let us now analyze the relationship between θ-weak dependence, α-mixing,
and φ-mixing. Most of the PAC Bayesian literature for stationary and heavy-
tailed data employs the following two mixing conditions, see Remark 3.22,
namely α-mixing and φ-mixing. The results in the Lemma below give us a
proof that the θ-weak dependence is more general than α-mixing and φ-mixing
and therefore describes the dependence structure of a bigger class of models.

Let M and V be two sub-sigma algebras of F . First of all, the strong mixing
coefficient [70] is defined as

α(M,V) = sup{|P (M)P (V ) − P (M ∩ V )|,M ∈ M, V ∈ V}.

A stochastic process X is said to be α-mixing if

α(r) = α(σ{Xs, s ≤ 0}, σ{Xs, s ≥ r})

converges to zero as r → ∞. The φ-mixing coefficient has been introduced in
[49] and defined as

φ(M,V) = sup{|P (V |M) − P (V )|,M ∈ M, V ∈ V, P (M) > 0}.

A stochastic process X is said to be φ-mixing if

φ(r) = φ(σ{Xs, s ≤ 0}, σ{Xs, s ≥ r})

converges to zero as r → ∞.

Lemma A.1. Let (Xt)t∈Z be a stationary real-valued stochastic process such
that E[|X0|q] < ∞ for some q > 1. Then,

(a) θ(r) ≤ 2
2q−1

q α(r)
q−1
q ‖X0‖q ≤ 2

q−1
q φ(r)

q−1
q ‖X0‖q, and

(b) θ-weak dependence is a more general dependence notion than α-mixing
and φ-mixing.

Proof. The proof of the first inequality at point (a) is proven in [28, Proposi-
tion 2.5] using the representation of the θ-coefficients (2.12). The proof of the
second inequality follows from a classical result in [19, Proposition 3.11]. In [28,
Proposition 2.7], a stochastic process is defined, which is θ-weak dependent but
neither α-mixing or φ-mixing.

As seen in Definition 2.13 by using the lexicographic order in R
1+d, an op-

portune extension of θ-weak dependence valid for random fields can be defined.
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The definition of θ-lex coefficients for G ∈ G1 is given in [28, Definition 2.1].
The latter can be represented as θvlex(r) := supu∈N{θu,v(r)} for v = 1. Therefore,
an alternative way to define the θ-lex coefficients in Definition 2.13 is obviously

θlex(r) = sup
v∈N

θvlex(r), v ∈ N for all r ∈ R
+. (A.1)

The following Lemma has important applications in the following sections.

Lemma A.2. Let Z be a θ-lex weakly dependent random field and M > 0, then
ZM

i = Zi ∨ (−M) ∧M is θ-lex weakly dependent.

Proof. Let u, v ∈ N, M > 0, F ∈ G∗
u, G ∈ Gv, and i1, i2, . . . , iu ∈ V r

Γ′ where Γ′ =
{j1, . . . , jv}. Let FM(Zi1 , . . . ,Ziu)=F (ZM

i1 , . . . ,Z
M
iu ), and GM(Zj1 , . . . ,Zjv ) =

G(ZM
j1 , . . . ,Z

M
jv ). We have that FM is a bounded function on (Rn)u and GM is

a bounded and Lipschitz function on (Rn)v (with the same Lipschitz coefficients
as the function G). Let (Z1, . . . ,Zv) and (Z̃1, . . . , Z̃v) ∈ (Rn)v, then

|GM (Z1, . . . ,Zv) −GM (Z̃1, . . . , Z̃v)| ≤ Lip(G)
v∑

i=1
|ZM

i − Z̃
M

i |

≤ Lip(G)
v∑

i=1
|Zi − Z̃i|.

Hence, it holds that

|Cov(F (ZM
i1 , . . . ,Z

M
iu ), G(ZM

j1 , . . . ,Z
M
jv ))| ≤ ‖F‖∞vLip(G)θlex(r),

where θlex(r) are the θ-coefficients of the field Z. So, the field ZM
t (x) is θ-lex

weakly dependent.

Note that the above result also holds for X a θ-weakly dependent process.
Therefore, the truncated XM

t = Xt ∨ (−M) ∧ M is a θ-weakly dependent
process.

The notion of θ-lex weak dependence also admits a projective-type represen-
tation.

Remark A.3. Let (Zt)t∈Z1+d be a real-valued and θ-lex weakly dependent ran-
dom field, L1 = {g : R → R, g ∈ Gv, Lip(g) ≤ 1} and Γ′ = {j1, . . . , jv} ∈ Z

1+d

such that |Γ′| = v. Let r ∈ N, and M = σ{Zt : t ∈ V r
Γ′ ⊂ Z

1+d}, then it holds
that

θlex(r) = sup
v∈N

sup
Γ′

sup
g∈L1

‖E[g(Zj1 , . . . ,Zjv )|M] − E[g(Zj1 , . . . ,Zjv )]‖1. (A.2)

The result above follows by readily applying [28, Lemma 5.1].

We now use the representation of the θ-lex coefficients (A.2) to understand its
relationships to α∞,v-mixing and φ∞,v-mixing for v ∈ N ∪ {∞}. These notions
are defined in [31], and they are strong mixing notions used in the study of
stationary random fields.
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In general, for u, v ∈ N ∪ {∞}, given coefficients

αu,v(r) = sup{α(σ(ZΓ), σ(ZΓ′)),Γ,Γ′ ∈ R
1+d, |Γ| ≤ u, |Γ′| ≤ v, dist(Γ,Γ′) ≥ r},

and

φu,v(r) = sup{φ(σ(ZΓ), σ(ZΓ′)),Γ,Γ′ ∈ R
1+d, |Γ| ≤ u, |Γ′| ≤ v, dist(Γ,Γ′) ≥ r}.

a random field Z is said to be αu,v-mixing or φu,v-mixing if the coefficients
(αu,v(r))r∈R+ or (φu,v(r))r∈R+ converge to zero as r → ∞. We then have the
following result.

Lemma A.4. Let (Zt)t∈Z1+dbe a stationary real-valued random field such that
E[|Z0|q]<∞ for some q > 1. Then, for v ∈ N ∪ {∞},

(a) θlex(r) ≤ 2
2q−1

q α∞,v(r)
q−1
q ‖Z0‖q ≤ 2

q−1
q φ∞,v(r)

q−1
q ‖Z0‖q, and

(b) it holds that θ-lex weak dependence is more general than α∞,v-mixing and
α-mixing in the special case of stochastic processes. Moreover, θ-lex weak
dependence is more general than φ∞,v-mixing.

Proof. From the proof of [28, Proposition 2.5], we have that

θ1
lex(r) ≤ 2

2q−1
q α∞,1(r)

q−1
q ‖Z0‖q.

Because of (A.1) and [19, Proposition 3.11], we have that

θlex(r) ≤ 2
2q−1

q α∞,1(r)
q−1
q ‖Z0‖q ≤ 2

q−1
q φ∞,1(r)

q−1
q ‖Z0‖q.

Equally,

θlex(r) ≤ 2
2q−1

q α∞,v(r)
q−1
q ‖Z0‖q ≤ 2

q−1
q φ∞,v(r)

q−1
q ‖Z0‖q.

The proof of the point (b) follows directly by [28, Proposition 2.7]. In fact
θlex(r) = θ1,∞(r) following the notations of [33, Definition 2.3] and the process
used in the proof of the Proposition is θ-lex weakly dependent but neither α∞,v,
α or φ∞,v-mixing.

A.2. Autocovariance structure of MMAF and isotropy

Moment conditions for MMAFs are typically expressed in function of the char-
acteristic quadruplet of its driving Lévy basis and the kernel function f .

Proposition A.5. Let Z be an R-valued MMAF driven by a Lévy basis with
characteristic quadruplet (γ, σ2, ν, π) with kernel function f : H × R× R

d → R

and defined on an ambit set At(x) ⊂ R× R
d.

(i) If
∫
|x|>1 |x|ν(dx) < ∞ and f ∈ L1(H×R×R

d)∩L2(H×R×R
d) the first

moment of Z is given by

E[Zt] = E(Λ′)
∫
H

∫
At(x)

f(A,−s,−ξ)ds dξ π(dA),

where E(Λ′) = γ +
∫
|x|≥1 x ν(dx).
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(ii) If
∫
R
x2 ν(dx) < ∞ and f ∈ L2(H × R× R

d), then Z ∈ L2(Ω) and

V ar(Zt(x)) = V ar(Λ′)
∫
H

∫
R×Rd

f(A,−s,−ξ)2ds dξ π(dA),

Cov(Z0(0),Zt(x))

=V ar(Λ′)
∫
H

∫
A0(0)∩At(x)

f(A,−s,−ξ)f(A, t− s, x− ξ) ds dξ π(dA),

and
Corr(Z0(0),Zt(x))

=

∫
H

∫
A0(0)∩At(x) f(A,−s,−ξ)f(A, t−s, x−ξ) ds dξ π(dA)∫

H

∫
R×Rd f(A,−s,−ξ)2ds dξ π(dA)

,

where V ar(Λ′)=σ2+
∫
Rd xx

′ν(dx).
(iii) If σ2=0,

∫
|x|∈R

|x| ν(dx)<∞, and f ∈ L1(H × R × R
d), then the first

moment of Z is given by

E[Zt(x)]=
∫
H

∫
At(x)

f(A,−s,−ξ)
(
γ0+

∫
R

xν(dx)
)
ds dξ π(dA),

where
γ0 := γ −

∫
|x|≤1

x ν(dx). (A.3)

Proof. Immediate from [73, Section 25] and [28, Theorem 3.3].

From Proposition A.5, we can evince that the autocovariance function of an
MMAF depends on the variance of the Lévy seed Λ′, the kernel function f and
the distribution π of the random parameter A.

We give below the explicit expression of the autocovariance functions for an
STOU and MSTOU process.

Example A.6. Let Z ad defined in Example 2.8, u ∈ R
d, τ ∈ R, and E[Zt(x)2]

< ∞. Then,

Cov(Zt(x),Zt+τ (x + u)) = V ar(Λ′) exp(−Aτ)
∫
At(x)∩At+τ (x+u)

exp(−2A(t− s))ds dξ,

(A.4)
and

Corr(Zt(x),Zt+τ (x + u)) =
exp(−Aτ)

∫
At(x)∩At+τ (x+u) exp(−2A(t− s)) ds dξ∫
At(x) exp(−2A(t− s)) ds dξ

.

(A.5)

Example A.7. Let Z ad defined in Example 2.8 and d = 1, then

ρT (τ) := Corr(Zt(x),Zt+τ (x)) = exp(−A|τ |), (A.6)
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ρS(u) := Corr(Zt(x),Zt(x + u)) = exp
(
−A

|u|
c

)
, (A.7)

ρST (τ, u) := Corr(Zt(x),Zt+τ (x + u)) = min
(

exp(−A|τ |), exp
(
− A|u|

c

))
.

(A.8)

Example A.8. Let Z be defined as in Example 2.9, u ∈ R
d and τ ∈ R, and

E[Zt(x)2] < ∞, then

Cov(Zt(x),Zt+τ (x + u)) =

= V ar(Λ′) exp(−Aτ)
∫ ∞

0

∫
At(x)∩At+τ (x+u)

exp(−2A(t− s))ds dξ l(A)dA,

(A.9)
Corr(Zt(x),Zt+τ (x + u)) =

exp(−Aτ)
∫∞
0

∫
At(x)∩At+τ (x+u) exp(−2A(t− s)) ds dξ l(A)dA∫∞

0
∫
At(x) exp(−2A(t− s)) ds dξ l(A)dA

.

(A.10)

Example A.9. Let Z be defined as in Example 2.9 for d = 1, Assumption 2.10
hold, and l(A) = βα

Γ(α)A
α−1 exp(−βA) be the Gamma density with shape and

rate parameters α > d + 1 and β > 0. For d = 1, u ∈ R and τ ∈ R

V ar(Zt(x)) = V ar(Λ′)cβ2

2(α− 2)(α− 1) (A.11)

Cov(Zt(x),Zt+τ (x + u)) = V ar(Λ′)cβα

2(β + max{|τ |, |u|/c})α−2(α− 2)(α− 1) , (A.12)

ρST (τ, u) := Corr(Zt(x),Zt+τ (x + u)) =
(

β

β + max{|τ |, |u|/c}

)α−2

. (A.13)

It follows the definition of an isotropic spatio-temporal random field.

Definition A.10 (Isotropy). Let t ∈ R and x ∈ R
d. A spatio-temporal random

field (Zt(x))(t,x)∈R×Rd is called isotropic if its spatial covariance:

Cov(Zt(x),Zt(x + u)) = C(|u|), ∀u ∈ R
d

for some positive definite function C.

STOU and MSTOU processes defined on cone-shaped ambit sets are isotropic
random fields.

A.3. Inference on STOU processes

Let us start by explaining the available estimation methodologies for the param-
eter vector θ0 = {A, c, V ar(Λ′)} under the STOU modeling assumption when
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the spatial dimension d = 1. Throughout, we refer to the notations used in
Example 2.20.

We have two ways of estimating the parameter vector θ0 in such a scenario.
The first one is presented in [59]. Here, the parameters A and c are first estimated
using normalized spatial and temporal variograms defined as

γS(u) := E((Zt(x) −Zt(x− u))2)
V ar(Zt(x)) = 2(1 − ρS(u)) = 2

(
1 − exp

(
− Au

c

))
,

(A.14)
and

γT (τ) := E((Zt(x) −Zt−τ (x))2)
V ar(Zt(x)) = 2(1 − ρT (τ)) = 2(1 − exp(−Aτ)), (A.15)

where ρS and ρT are defined in Example A.7. Note that normalized variograms
are used to separate the estimation of the parameters A and c from the param-
eter V ar(Λ′). Let N(u) be the set containing all the pairs of indices at mutual
spatial distance u for u > 0 and the same observation time. Let N(τ) be the set
containing all the pairs of indices where the observation times are at a distance
τ > 0 and have the same spatial position. |N(u)| and |N(τ)| give the number
of the obtained pairs, respectively. Moreover, let k̂2 be the empirical variance
which is defined as

k̂2 = 1
(D − 1)

D∑
i=1

Z2
ti(xi), (A.16)

where D denotes the sample size. The empirical normalized spatial and temporal
variograms are then defined as follows:

γ̂S(u) = 1
|N(u)|

∑
i,j∈N(u)

(Zti(xi) −Ztj (xj))2

k̂2
(A.17)

γ̂T (τ) = 1
|N(τ)|

∑
i,j∈N(τ)

(Zti(xi) −Ztj (xj))2

k̂2
. (A.18)

By matching the empirical and the theoretical forms of the normalized vari-
ograms, we can estimate A and c by employing the estimators

A∗ = −τ−1 log
(
1 − γ̂T (τ)

2

)
, and c∗ = − A∗u

log
(
1 − γ̂S(u)

2

) . (A.19)

Alternatively, we can use a least square methodology to estimate the parameters
A and c, i.e. (A.17) and (A.18) are computed at several lags, and a least-squares
estimation is used to fit the computed values to the theoretical curves. The au-
thors in [59] use the methodology discussed in [54] to achieve the last target.
We refer the reader also to [25, Chapter 2] for further discussions and examples
of possible variogram model fitting. The parameter V ar(Λ′) can be estimated
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by matching the second-order cumulant of the STOU with its empirical coun-
terpart. The consistency of this estimation procedure is proven in [59, Theorem
12].

A second possible methodology for estimating the vector θ0 employs a gener-
alized method of moment estimator (GMM), as in [60]. It is essential to notice
that by using such an estimator, we cannot separate the parameter V ar(Λ′)
from the estimation of the parameters A and c. Instead, all moment conditions
must be combined into one optimization criterion, and all the estimations must
be found simultaneously. Consistency and asymptotic normality of the GMM
estimator are discussed in [60] and [28], respectively.

For d ≥ 2, a least square methodology is still applicable for estimating the
variogram’s parameters. The estimator used in [59] is a normalized version of the
least-square estimator for spatial variogram’s parameters discussed in [54], which
also applies for d > 1. This method, paired with a method of moments (matching
the second-order cumulant of the field Z with its empirical counterparts), allows
estimating the parameter V ar(Λ′). The GMM methodology discussed in [60] also
continues to apply for d ≥ 2. However, when the spatial dimension is increasing,
the shape of the normalized variograms and the field’s moments become more
complex, and higher computational effort is required to navigate through the
high dimensional surface of the optimization criterion behind least-squares or
GMM estimators.

A.4. Inference for MSTOU processes

When estimating the parameter vector θ1 = {α, β, c, V ar(Λ′)} under an MSTOU
modeling assumption– see, for example, solely the shape of the coefficients in
Example 2.21– it is evident that the shape of the autocorrelation function,
and therefore of the normalized temporal and spatial variograms, become more
complex for increasing d. As already addressed in the previous sections, when
estimating the parameters (α, β, c) alone, we can use the least-squares type es-
timator discussed in [54]. Moreover, by pairing the latter with a method of
moments or using a GMM estimator, we can estimate the complete vector θ1.

A.5. Time series models

In the MMAF framework, we can also find time series models. The latter are
θ-weakly dependent.

Example A.11 (Time series case). The supOU process studied in [7] and [12]
is an example of a causal mixed moving average process. Let the kernel function
f(A, s) = e−As1[0,∞)(s), A ∈ R

+, s ∈ R and Λ a Lévy basis on R
+ × R with

generating quadruple (γ, σ2, ν, π) such that∫
|x|>1

log(|x|) ν(dx) < ∞, and
∫
R+

1
A
π(dA) < ∞, (A.20)
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then the process

Zt =
∫
R+

∫ t

−∞
e−A(t−s) Λ(dA, ds) (A.21)

is well defined for each t ∈ R and strictly stationary and called a supOU process
where A represents a random mean reversion parameter.

If E(Λ′) = 0 and
∫
|x|>1 |x|2ν(dx) < ∞, the supOU process is θ-weakly depen-

dent with coefficients

θZ(r) ≤
(∫

R+

∫ r

−∞
e−2Asσ2 ds π(dA)

) 1
2 =

[
V ar(Λ′)

∫
R+

e−2Ar

2A π(dA)
] 1

2

(A.22)

= Cov(Z0,Z2r)
1
2 ,

where V ar(Λ′) = σ2 +
∫
R
x2ν(dx), by using Theorem 3.11 in [12].

If E(Λ′) = μ and
∫
|x|>1 |x|2ν(dx) < ∞, the supOU process is θ-weakly depen-

dent with coefficients

θZ(r) ≤
(
Cov(Z0,Z2r) + 4μ2

V ar(Λ′)2Cov(Z0,Zr)2
) 1

2
. (A.23)

If
∫
R
|x|ν(dx) < ∞, σ2 = 0, γ0 = γ −

∫
|x|≤1 x ν(dx) > 0 and ν(R−) = 0, where

R
− identifies the set of the negative real numbers, then the supOU process admits

θ-coefficients

θZ(r) ≤ μ

∫
R+

e−Ar

A
π(dA), (A.24)

and when in addition
∫
|x|>1 |x|2ν(dx) < ∞

θZ(r) ≤ 2μ
V ar(Λ′)Cov(Z0,Zr). (A.25)

Note that the necessary and sufficient condition
∫
R+

1
A π(dA) for the supOU

process to exist is satisfied by many continuous and discrete distributions π, see
[79, Section 2.4] for more details. For example, a probability measure π being
absolutely continuous with density π′ = xhl(x) and regularly varying at zero
from the right with h > 0, i.e. l is slowly varying at zero and satisfies the above
condition. If moreover, l(x) is continuous in (0. + ∞) and limx→0+ l(x) > 0
exists, it holds that

Cov(Z0,Zr) ∼
C

rh
, with a constant C > 0 and r ∈ R

+

where for h ∈ (0, 1) the supOU process exhibits long memory and for h > 1 short
memory. In this set-up, concrete examples where the covariances are calculated
explicitly can be found in [9] and [27].
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Another interesting example of MMAFs is given by the class of trawl pro-
cesses. A distinctive feature of these processes is that one can model the correla-
tion structure independently from the marginal distribution, see [10] for further
details on their definition. In the case of trawl processes, we also have available
in the literature likelihood-based methods for estimating their parameters; see
[15] for further details.

In general, the generalized method of moments is employed to estimate the
parameters of an MMAF, see [27, 59, 60].

Appendix B: Appendix

B.1. Bounds for the θ-lex coefficients of MMAF

In [28, Proposition 3.11], it is given a general methodology to show that an
MMAF Z is θ-lex weakly dependent. Given that the definition of θ-lex-weak
dependence used in the paper slightly differs from the one given in [28], the proof
of Proposition B.1 differs from the one of [28, Proposition 3.11]. Proposition 2.17
is a novel computation of a θ-lex coefficients’ bound of an MMAF when the
kernel does not depend on the spatial component.
Before giving a detailed account of these proofs, let us state first some notations.
Let r > 0, {(tj1 , xj1), . . . (tjv , xjv )} = Γ′ ∈ R

1+d and {(ti1 , xi1), . . . , (tiu , xiu)} =
Γ ∈ V r

Γ′ such that |Γ| = u and |Γ′| = v for (u, v) ∈ N×N. We call the truncated
(influenced) MMAF the vector

Z
(ψ)
Γ′ =

(
Z

(ψ)
tj1

(xj1), . . . ,Z
(ψ)
tjv

(xjv )
)�

, (B.1)

where ψ := ψ(r) for r > 0. In particular, for all a ∈ {1, . . . , u} and a b ∈
{1, . . . , v}, ψ has to be chosen such that it exists a set Bψ

tjb
(xjb) with the following

properties.

• |Bψ
tjb

(xjb)| → ∞ as r → ∞ for all b, and
• Iia = H ×Atia (xia) and Ijb = H ×Bψ

tjb
(xjb) are disjoint sets or intersect

on a set H ×O, where O ⊂ R
1+d and dim(O) < d + 1, for all a and b

Let us now assume that it is possible to construct the sets Bψ
tjb

(xjb). Then,
since π×λ1+d(H ×O) = 0 and by the definition of a Lévy basis, it follows that

Ztia (xia) =
∫
H

∫
Atia

(xia )
f(A, tia − s, xia − ξ)Λ(dA, ds, dξ) and

Z
(ψ)
tjb

(xjb) =
∫
H

∫
Bψ

tjb
(xjb

)
f(A, tjb − s, xjb − ξ)Λ(dA, ds, dξ),

and ZΓ and Z
(ψ)
Γ′ are independent. Hence, for F ∈ G∗

u and G ∈ Gv, F (ZΓ) and
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G(Z(ψ)
Γ′ ) are also independent. Now

|Cov(F (ZΓ), G(ZΓ′))|
≤ |Cov(F (ZΓ), G(Z(ψ)

Γ′ ))| + |Cov(F (ZΓ), G(ZΓ′) −G(Z(ψ)
Γ′ ))|

= |E[(G(ZΓ′) −G(Z(ψ)
Γ′ ))F (ZΓ)] −E[G(ZΓ′) −G(Z(ψ)

Γ′ )]E[F (ZΓ)]|
≤ 2‖F‖∞E[|G(ZΓ′) −G(Z(ψ)

Γ′ )|]

≤ 2Lip(G)‖F‖∞
v∑

l=1

E[|Ztjl
(xjl) −Z

(ψ)
tjl

(xjl)|] =

= 2Lip(G)‖F‖∞vE[|Ztj1
(xj1) −Z

(ψ)
tj1

(xj1)|],

(B.2)

because an (influenced) MMAF is a stationary random field. To show that a field
satisfy Definition 2.13, is then enough to prove that E[|Ztj1

(xj1)−Z
(ψ)
tj1

(xj1)|] in
the above inequality converges to zero as r → ∞. The proofs of Proposition B.1
and 2.17 below differ in the definition of the sequence ψ and the sets Bψ

tjb
(xjb).

Proposition B.1. Let Λ be an R-valued Lévy basis with characteristic quadru-
plet (γ, σ2, ν, π), f : H × R

1+d → R a B(H × R
1+d)-measurable function and

Zt(x) be defined as in (2.6).

(i) If
∫
|x|>1 x

2ν(dx) < ∞, γ +
∫
|x|>1 xν(dx) = 0 and f ∈ L2(H ×R

1+d), then
Z is θ-lex-weakly dependent and

θlex(r) ≤ 2
(∫

H

∫ ρ(r)

−∞
V ar(Λ′)

∫
‖ξ‖≤cs

f(A,−s,−ξ)2dsdξπ(dA)
) 1

2
.

(ii) If
∫
|x|>1 x2ν(dx) < ∞ and f ∈ L2(H ×R

1+d) ∩L1(H ×R
1+d), then Z is

θ-lex-weakly dependent and

θlex(r) ≤ 2
(∫

H

∫ ρ(r)

−∞
V ar(Λ′)

∫
‖ξ‖≤cs

f(A,−s)2 dsdξπ(dA)

+
∣∣∣∣ ∫

H

∫ ρ(r)

−∞
E(Λ′)

∫
‖ξ‖≤cs

f(A,−s) dsdξπ(dA)
∣∣∣∣2) 1

2

.

(iii) If
∫
R
|x| ν(dx) < ∞, σ2 = 0 and f ∈ L1(H × R

1+d) with γ0 defined in
(A.3), then Z is θ-lex-weakly dependent and

θlex(r) ≤ 2
(∫

H

∫ ρ(r)

−∞

∫
‖ξ‖≤cs

|f(A,−s)γ0| ds dξπ(dA)

+
∫
H

∫ ρ(r)

−∞

∫
‖ξ‖≤cs

∫
R

|f(A,−s)x| ν(dx) dsπ(dA)
)
.

The results above hold for all r > 0 with

ρ(r) = −rmin(1/c, 1)√
(d + 1)(c2 + 1)

, (B.3)
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V ar(Λ′) = σ2 +
∫
R
x2 ν(dx) and E(Λ′) = γ +

∫
|x|≥1 xν(dx).

Proof of Proposition B.1. In this proof, we assume that Bψ
tjb

(xjb) =
Atjb

(xjb)\V
ψ
(tjb,xjb

), where ψ = ψ(r) := r√
(d+1)(c2+1) .

(i) Using the translation invariance of At(x) and V
(ψ)
(t,x) we obtain

E[|Ztj1
(xj1)−Z

(ψ)
tj1

(xj1)|]

≤
(∫

H

∫
A0(0)∩V ψ

0

V ar(Λ′)f(A,−s,−ξ)2dξdsπ(dA)
) 1

2

=
(∫

H

∫ −r min(1/c,1)√
(d+1)(c2+1)

−∞
V ar(Λ′)

∫
‖ξ‖≤cs

f(A,−s,−ξ)2 dξdsπ(dA)
) 1

2

,

where we have used Proposition A.5-(ii) to bound the L1-distance from
above. Overall, we obtain

θlex(r) ≤ 2
(∫

H

∫ −r min(1/c,1)√
(d+1)(c2+1)

−∞
V ar(Λ′)

∫
‖ξ‖≤cs

f(A,−s,−ξ)2dξdsπ(dA)
) 1

2

,

which converges to zero as r tends to infinity by applying the dominated
convergence theorem.

(ii) By applying Proposition A.5-(i) and (ii), we obtain

E[|Ztj1
(xj1) −Z

(ψ)
tj1

(xj1)|]

≤
(∫

H

−r min(1/c,1)√
(d+1)(c2+1)∫

−∞

V ar(Λ′)
∫
‖ξ‖≤cs

f(A,−s,−ξ)2dξdsπ(dA)

+
(∫

H

−r min(1/c,1)√
(d+1)(c2+1)∫

−∞

E(Λ′)
∫
‖ξ‖≤cs

f(A,−s,−ξ)dξdsπ(dA)
)2) 1

2

.

Finally, we proceed similarly to proof (i) and obtain the desired bound.
(iii) We apply now Proposition A.5-(iii). Then,

E[|Ztj1
(xj1) −Z

(ψ)
tj1

(xj1)|]

≤
(∫

H

∫ −r min(1/c,1)√
(d+1)(c2+1)

−∞

∫
‖ξ‖≤cs

|f(A,−s,−ξ)γ0|dξdsπ(dA)

+
∫
H

∫ −r min(1/c,1)√
(d+1)(c2+1)

−∞

∫
‖ξ‖≤cs

∫
R

|f(A,−s,−ξ)y|ν(dy)dξdsπ(dA)
)
.



570 I. V. Curato et al.

The bound for the θ-lex-coefficients is obtained following the proof line in
(i).

Proposition B.1 gives general bounds for the θ-lex coefficients of MMAF. For
example, it can also be used to compute upper bounds for the θ-lex-coefficients
of an MSTOU process for d > 2 which Proposition 2.17 does not cover.

Corollary B.2. Let Z be an MSTOU process as in Definition 2.9 and (γ, σ2, ν, π)
be the characteristic quadruplet of its driving Lévy basis. Moreover, let the
mean reversion parameter A be Gamma(α, β) distributed with density l(A) =
βα

Γ(α)A
α−1 exp(−βA) where α > d + 1 and β > 0.

(i) If
∫
|x|>1 x

2 ν(dx) < ∞ and γ +
∫
|x|>1 xν(dx) = 0, then Z is θ-lex-weakly

dependent. Let c ∈ [0, 1], then for

d=1,

θlex(r)≤2
(
cV ar(Λ′)βα

2Γ(α)

(
Γ(α− 2)

(2ψ + β)α−2 + 2ψΓ(α− 1)
(2ψ + β)α−1

)) 1
2

,

and for
d≥2,

θlex(r)≤2
(
Vd(c)

d!V ar(Λ′)βα

2d+1

d∑
k=0

(2ψ)k

k!(2ψ+β)α−d−1+k

Γ(α−d−1+k)
Γ(α)

) 1
2

.

Let c > 1, then for

d ∈ N,

θlex(r)≤2
(
Vd(c)

d!V ar(Λ′)βα

2d+1

d∑
k=0

(
2ψ
c

)k

k!
(

2ψ
c + β

)α−d−1+k

Γ(α−d−1+k)
Γ(α)

) 1
2

.

The above implies that, in general, θlex(r) = O(r
(d+1)−α

2 ).
(ii) If

∫
R
|x| ν(dx) < ∞, Σ = 0 and γ0 as defined in (A.3), then Z is θ-lex-

weakly dependent. Let c ∈ (0, 1], then for

d∈N, θlex(r)≤2Vd(c)d!βαγabs

d∑
k=0

ψk

k!(ψ+β)α−d−1+k

Γ(α−d−1+k)
Γ(α) ,

whereas for c > 1 and

d∈N, θlex(r)≤2Vd(c)d!βαγabs

d∑
k=0

(
ψ
c

)k

k!
(

ψ
c +β

)α−d−1+k

Γ(α−d−1+k)
Γ(α) ,
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where γabs = |γ0|+
∫
R
|x|ν(dx),Vd(c)denotes the volume of the d-dimensional

ball with radius c, and ψ := ψ(r) = 1√
c2+1

r
d+1 .

Proof. Proof of this corollary can be obtained by modifying the proof of [28,
Section 3.7] in line with the calculations performed in Proposition B.1.

The results of the Corollary above imply that, in general, θlex(r)=O(r(d+1)−α).
We give now the proof of Proposition 2.17.

Proof of Proposition 2.17. (i) Without loss of generality, let us determine the
truncated set when (tjb , xjb) = (0, 0). We use, to this end, two auxiliary
ambit sets translated by a value ψ > 0 along the spatial axis, namely, the
cones A0(ψ) and A0(−ψ), as illustrated in Figure 8-(a), (c) for c ≤ 1 and
in Figure 8-(b), (d) for c > 1. Then, we set the truncated integration set to
Bψ

0 (0) = A0(0)\(A0(ψ) ∪ A0(−ψ)). Since (tia , xia) ∈ V r
(0,0), it is sufficient

to choose ψ such that the integration set of Z(ψ)
0 (0) is a subset of (V r

(0,0))c.
To this end, the three intersecting points (−ψ

2c ,
−ψ
2 ), (−ψ

c , 0) and (−ψ
2c ,

ψ
2 )

have to be inside the set (V r
(0,0))c, as illustrated in Figure 8-(e) for c ≤ 1

and in Figure 8-(f) for c > 1. Clearly, this leads to the conditions ψ ≤ rc,
ψ ≤ 2r and ψ ≤ 2rc, which are satisfied for ψ = rmin(2, c). Hence, by
using Proposition A.5-(ii), we have that

θlex(r) ≤ 2V ar(Λ′) 1
2

(∫ ∞

0

∫
A0(0)∩(A0(ψ)∪A0(−ψ))

f(A,−s)2dsdξπ(dλ)
) 1

2

= 2V ar(Λ′) 1
2

(∫ ∞

0

∫
A0(0)∩A0(ψ)

f(A,−s)2dsdξπ(dλ)

+
∫ ∞

0

∫
A0(0)∩A0(−ψ)

f(A,−s)2dsdξπ(dλ)

−
∫ ∞

0

∫
A0(0)∩A0(ψ)∩A0(−ψ)

f(A,−s)2dsdξπ(dλ)
) 1

2

≤ 2
√

2Cov(Z0(0),Z0(rmin(2, c))).

which converges to zero as r → ∞ for the dominated convergence theorem.

(ii) In this proof, we indicate the spatial components and write xia=(yia , zia) ∈
R × R and xjb = (yjb , zjb) ∈ R × R for a ∈ {1, . . . , u} and b ∈ {1, . . . , v}.
Without loss of generality, let us then determine the truncated set when
(tjb , yjb , zjb) = (0, 0, 0). To this end, we use four additional ambit sets
that are translated by a value ψ > 0 along both spatial axis, namely, the
cones A0(ψ,ψ), A0(ψ,−ψ), A0(−ψ,ψ) and A0(−ψ,−ψ), as illustrated in
Figure 10-(c) for c ≤ 1 and in Figure 10-(d) for c > 1). Then, we set the
truncated integration set to Bψ

0 (0) = A0(0, 0)\(A0(ψ,ψ) ∪ A0(ψ,−ψ) ∪
A0(−ψ,ψ) ∪ A0(−ψ,−ψ)). Since (tia , yia , zia) ∈ V r

(0,0,0), it is sufficient to



572 I. V. Curato et al.

Fig 8. Exemplary integration set and truncated integration set of an MMAF Zt(x) for (t, x) =
(0, 0).
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choose ψ such that the integration set of Z(ψ)
0 (0, 0) is a subset of (V r

(0,0,0))c,
i.e.

sup
b∈Bψ

0 (0)
‖b‖∞ ≤ r. (B.4)

In the following, we prove that the choice ψ = rmin(1, c/
√

2) is sufficient
for (B.4) to hold. We investigate cross-sections of the truncated integration
set Bψ

0 (0) along the time axis. For a fixed time point t, we call this cross-
section Bt and, similarly, we denote the cross-section of an ambit set by
At. Note that the cross sections of our ambit sets along the time axis are
circles with radius |ct| (see also Figure 9).

t ∈
(

−ψ√
2c , 0

]
: As the distance between the center of the circle At

0(0, 0) and the
centers of the circles At

0(ψ,ψ), At
0(−ψ,ψ), At

0(ψ,−ψ),
At

0(−ψ,−ψ) is
√

2ψ, respectively, the set At
0(0, 0) (which is a

circle with radius |ct|) is disjoint from every of the additional
ambit sets’ cross-sections at t and hence Bt = At

0(0, 0) (see Fig-
ure 9-(a)). Clearly, we obtain

sup
t∈
(
−ψ/(

√
2c),0

] sup
b∈Bt

‖b‖ = sup
t∈
(
−ψ/(

√
2c),0

]max(c|t|, |t|)

= max
(

ψ√
2
,

ψ√
2c

)
. (B.5)

t∈
(
−ψ

c,−
ψ√
2c

]
: For such t the set At

0(0, 0) intersects with every additional ambit
sets’ cross-section (see Figure 9-(b)). However, as the additional
ambit sets’ cross-sections do not intersect with each other, the
point p1(t) = (t, c|t|, 0) ∈ Bt on the boundary of At

0(0, 0) (see
the red point in Figure 9-(b)) is not excluded from Bt by any
additional ambit set. Note that symmetry makes it sufficient to
look at p1(t). Hence, we obtain

sup
t∈
(
−ψ/c,−ψ/(

√
2c)

] sup
b∈Bt

‖b‖ = sup
t∈
(
−ψ/c,−ψ/(

√
2c)

]‖p1(t)‖

= max
(
ψ,

ψ

c

)
. (B.6)

t∈
(
−

√
2ψ
c ,−ψ

c

]
: For such t the set At

0(0, 0) intersects with every additional am-
bit sets’ cross-section. Such intersections additionally restrict
At

0(0, 0) (see Figure 9-(c)). Straightforward calculations show
that the point where the boundaries of At

0(−ψ,ψ) and At
0(−ψ,ψ)

as well as the set At
0(0, 0) intersect, say p2(t), is given by (t, 0, ψ−√

(ct)2 − ψ2) (see red point in Figure 9-(c)). Note that symme-
try makes it sufficient to look at p2(t). We obtain

sup
t∈
(
−
√

2ψ/c,−ψ/c
] sup
b∈Bt

‖b‖ = sup
t∈
(
−
√

2ψ/c,−ψ/c
]‖p2(t)‖
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= max
(
ψ,

√
2ψ
c

)
. (B.7)

t ≤ −
√

2ψ
c : In the following, we show that for such t, the set At(0, 0) is en-

tirely included in the union of the additional ambit sets’ cross
sections. Clearly, this is true if the upper point where the bound-
aries of At

0(−ψ,ψ) and At
0(−ψ,ψ) intersect, say p3(t), is outside

of At
0(0, 0) (see the red point in Figure 9-(d)). Note that symme-

try makes it sufficient to look at p3(t). As straightforward cal-
culations show that p3(t) = (t, 0, ψ +

√
(ct)2 − ψ2), this is true

if ψ +
√

(ct)2 − ψ2 ≥ c|t|, or equivalently (ψ +
√

(ct)2 − ψ2)2 ≥
(ct)2. Moreover, we have

ψ2 + 2ψ
√

(ct)2 − ψ2 + (ct)2 − ψ2 ≥ (ct)2 ⇐⇒ ψ ≥ 0. (B.8)

In view of condition (B.4) we combine (B.5), (B.6) and (B.7) and set
ψ = rmin(1, c/

√
2), which also satisfies (B.8).

In addition to the cross-sectional views from Figure 9, we give a full three-
dimensional view of the set Bψ

0 (0) for c ≤ 1 in Figure 10-(e) and for c > 1
in Figure 10-(f) that highlight the points on the boundary of Bψ

0 (0) with
maximal ∞-norm for ψ = rmin(1, c/

√
2).

Therefore, because of Proposition A.5-(ii), we can conclude that

θlex(r)

≤ 2V ar(Λ′) 1
2

(∫ ∞

0

∫
A0(0,0)∩(A0(ψ,ψ)∪A0(−ψ,ψ)∪A0(ψ,−ψ)∪A0(−ψ,−ψ))

f(A,−s)2dsdξπ(dλ)
) 1

2

= 2V ar(Λ′) 1
2

(∫ ∞

0

∫
A0(0,0)∩A0(ψ,ψ)

f(A,−s)2dsdξπ(dλ)

+
∫ ∞

0

∫
A0(0,0)∩A0(−ψ,ψ)

f(A,−s)2dsdξπ(dλ)

+
∫ ∞

0

∫
A0(0,0)∩A0(ψ,−ψ)

f(A,−s)2dsdξπ(dλ)

+
∫ ∞

0

∫
A0(0,0)∩A0(−ψ,−ψ)

f(A,−s)2dsdξπ(dλ)

−
∫ ∞

0

∫
A0(0)∩A0(ψ,−ψ)∩A0(−ψ,−ψ)

f(A,−s)2dsdξπ(dλ)

−
∫ ∞

0

∫
A0(0)∩A0(−ψ,ψ)∩(A0(ψ,−ψ)∪A0(−ψ,−ψ))

f(A,−s)2dsdξπ(dλ)

−
∫ ∞

0

∫
A0(0)∩A0(ψ,ψ)∩(A0(−ψ,ψ)∪A0(ψ,−ψ)∪A0(−ψ,−ψ))

f(A,−s)2dsdξπ(dλ)
) 1

2
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Fig 9. Cross sections of the auxiliary ambit sets and At
0(0, 0) at different time points for

ψ = 3.

≤ 2
√

2Cov(Z0(0, 0),Z0(ψ,ψ)) + 2Cov(Z0(0, 0),Z0(ψ,−ψ)).

which converges to zero as r → ∞ for the dominated convergence theorem.

B.2. Proofs of Section 3

Proof of Proposition 3.2. We drop the bold notations indicating random fields
and stochastic processes in the following. Let h ∈ H, we call Li = L(h(Xi), Yi)
for i ∈ Z, Z(M)

t (x) := Zt(x)∨(−M)∧M for M > 1, and L
(M)
i =L(h(X(M)

i ), Y (M)
i )

where

X
(M)
i = L−(M)

p (t0 + ia, x∗), and Y
(M)
i = Z

(M)
t0+ia(x

∗), for i ∈ Z,

and

L−(M)
p (t, x∗) = {Z(M)

s (ξ) : (s, ξ) ∈ Z× L, ‖x∗ − ξ‖ ≤ c (t− s) and t− s ≤ p}.
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Fig 10. Integration set and truncated integration set of an MMAF Zt(y, z) for d = 2.
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for t = t0 + ia with i ∈ Z. For u ∈ N, i1 ≤ i2 ≤ . . . ≤ iu < iu + k = j with
k ∈ N, let us consider the marginal of the field(

(Xi1 , Yi1), . . . , (Xiu , Yiu), (Xj , Yj)
)
, (B.9)

and let us define

Γ = {(ti, xi) ∈ Z
1+d: Zti(xi) ∈ L−

p (t0 + isa, x
∗) or (ti, xi) = (t0 + isa, x

∗)
for s = 1, . . . , u},

and

Γ′ = {(ti, xi) ∈ Z
1+d: Zti(xi) ∈ L−

p (t0 + ja, x∗) or (ti, xi) = (t0 + ja, x∗)}.
Then r = dist(Γ,Γ′). In particular Γ ∈ V r

Γ′ , and r = (j − iu)a − p. For F ∈ G∗
u

and G ∈ G1, then

|Cov(F (Li1 , . . . , Liu), G(Lj))| (B.10)

≤|Cov(F (Li1 , . . . , Liu), G(Lj) −G(L(M)
j ))|

(B.11)

+ |Cov(F (Li1 , . . . , Liu), G(L(M)
j ))|. (B.12)

The summand (B.11) is less than or equal to

2‖F‖∞Lip(G)E[|Lj − L
(M)
j |]

≤ 2‖F‖∞Lip(G)(E[|Yj − Y
(M)
j |] + E[|h(Xj) − h(X(M)

j )|])

≤ 2‖F‖∞Lip(G)(Lip(h)a(p, c) + 1)E[|Zt1(x1) − Z
(M)
t1 (x1)|]

by stationarity of the field Z, and because L and h are Lipschitz functions.
Moreover, the function G(L(M)

j ) belongs to Ga(p,c)+1. Let (X,Y ), (X ′, Y ′) ∈
R

a(p,c)+1, then

|G(L(h(X(M)), Y (M))) −G(L(h(X ′(M)), Y ′(M)))|
≤ Lip(G)|L(h(X(M)), Y (M)) − L(h(X ′(M)), Y ′(M))|
≤ Lip(G)(|h(X(M))) − h(X ′(M))| + |Y (M) − Y ′(M)|
≤ Lip(G)(Lip(h) + 1)(‖X −X ′‖1 + |Y − Y ′|),

and Lip(G(L(M)
j )) ≤ Lip(G)(Lip(h) + 1).

Because Z is a θ-lex weakly dependent random field, (B.12) is less than or
equal to

d̃‖F‖∞Lip(G)(Lip(h) + 1)θlex(r).
We choose now M = r and obtain that (B.10) is less than or equal than

‖F‖∞Lip(G)d̃(Lip(h)a(p, c) + 1)
(2
d̃
E[|Zt1(x1) − Z

(r)
t1 (x1)|] + θlex(r)

)
.

The quantity above converges to zero as r → ∞. Therefore, (Li)i∈Z is a θ-weakly
dependent process.
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Remark B.3. Note that when working with a general θ-weakly dependent ran-
dom field, as in Proposition 3.2, we do not employ the truncated random field
defined in (B.1). This happens because a θ-lex weakly dependent field is not
generally defined as an integral driven by a Lévy basis on an ambit set. The
field (B.1) can just be employed in the MMAF framework. In a more general
framework, without further information on the structure of the field, we can just
employ the truncated random field Z

(M)
t (x) := Zt(x) ∨ (−M) ∧M .

Proof of Proposition 3.6. We drop the bold notations indicating random fields
and stochastic processes in the following. We call Li = L(h(Xi), Yi) for i ∈ Z,
as defined in Proposition B.1. Moreover, we employ the truncated field Z

(ψ)
t (x)

and define L(ψ) = (L(h(X(ψ)
i ), Y (ψ)

i ))i∈Z where

X
(ψ)
i = L−(ψ)

p (t0 + ia, x∗), and Y
(ψ)
i = Z

(ψ)
t0+ia(x

∗), for i ∈ Z,

and

L−(ψ)
p (t, x∗) = {Z(ψ)

s (ξ) : (s, ξ) ∈ Z× L, ‖x∗ − ξ‖ ≤ c (t− s) and t− s ≤ p}.

for t = t0 + ia with i ∈ Z. For u ∈ N, i1 ≤ i2 ≤ . . . ≤ iu < iu + k = j with
k ∈ N, let us consider the marginal of the field(

(Xi1 , Yi1), . . . , (Xiu , Yiu), (Xj , Yj)
)
, (B.13)

and let us define

Γ = {(ti, xi) ∈ Z
1+d: Zti(xi) ∈ L−

p (t0 + isa, x
∗) or (ti, xi) = (t0 + isa, x

∗)
for s = 1, . . . , u},

and

Γ′ = {(ti, xi) ∈ Z
1+d: Zti(xi) ∈ L−

p (t0 + ja, x∗) or (ti, xi) = (t0 + ja, x∗)}.

Then r = dist(Γ,Γ′). In particular Γ ∈ V r
Γ′ , and r = (j − iu)a − p. For F ∈ G∗

u

and G ∈ G1, then

|Cov(F (Li1 , . . . , Liu), G(Lj))|
≤|Cov(F (Li1 , . . . , Liu), G(Lj) −G(L(ψ)

j ))| (B.14)

+ |Cov(F (Li1 , . . . , Liu), G(L(ψ)
j ))|. (B.15)

The summand (B.15) is equal to zero because Γ ∈ V r
Γ′ , see proof of Propo-

sition 2.17 for more details about this part of the proof. We can then bound
(B.14) from above by

2‖F‖∞Lip(G)E[|Lj − L
(ψ)
j |]

≤ 2‖F‖∞Lip(G)(E[|Yj − Y
(ψ)
j |] + E[|h(Xj) − h(X(ψ)

j )|]) (B.16)
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≤ 2‖F‖∞Lip(G)(Lip(h)a(p, c) + 1)E[|Zt1(x1)−Z(ψ)
t1 (x1)|] (B.17)

where (B.16) holds because L is a function with Lipschitz constant equal to one,
and (B.17) holds given that h is Lipschitz.

When we work with linear functions, we consider h parameterized with re-
spect to the set B ∈ R

a(p,c)

E[|hβ(Xj) − hβ(X(ψ)
j )‖] = E

[∣∣∣ a(p,c)∑
l=1

β1,l(Ztl(xl) − Z
(ψ)
tl

(xl))
∣∣∣]. (B.18)

By stationarity of the field Z, we have that (B.18) is smaller or equal than
‖β1‖1E[|Zt1(x1) − Z

(ψ)
t1 (x1)|]. Overall, we have that (B.14) is smaller or equal

than

2‖F‖∞Lip(G)(Lip(h)a(p, c)+1)E[|Zt1(x1)−Z(ψ)
t1 (x1)|] for h a Lipschitz function,

or it is smaller or equal than

2‖F‖∞Lip(G)(‖β1‖1 + 1)E[|Zt1(x1) − Z
(ψ)
t1 (x1)|] for hβ a linear function.

Because of the properties of the truncated field Z
(ψ)
t1 (x1), we have that the

above bounds converge to zero as r → ∞. Therefore, L is a θ-weakly dependent
process.

The proof of Theorem 3.7 uses a blocks technique introduced in the papers
[44] and [56]. Such results are based on the use of several lemmas. To ease the
complete understanding of the proof of Theorem 3.7, we prove these Lemmas
below, given that they undergo several modifications in our framework. Let us
start by partitioning a set {1, 2, . . . ,m} into k blocks. Each block will contain
l = �m

k � terms. Let h = m− k l < k denote the remainder when we divide m by
k. We now construct k blocks such that the number of elements in the jth-block
is defined by

l̄j =
{

l + 1 if j = 1, 2, . . . , h
l if j = h + 1, . . . , k .

Let (U i)i∈Z a stationary process, and V m =
∑m

i=1 U i, for j = 1, . . . , k we define
the j-th block as

V j,m = U j + U j+k + . . .U j+(l̄j−1) k =
l̄j∑
i=1

U j+(i−1) k

such that

V m =
k∑

j=1
V j,m =

k∑
j=1

l̄j∑
i=1

U j+(i−1) k.

For j=1, 2, . . . , k, let us define pj = l̄j
m . It follows that

k∑
j=1

pj = 1
m

k∑
j=1

l̄j = 1.
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Lemma B.4. For all s ∈ R

E

[
exp

(
s
V m

m

)]
≤

k∑
j=1

pjE
[
exp

(
s
V j,m

l̄j

)]
The proof of the result above is due to Hoeffding [46].

Lemma B.5. Let the assumptions of Theorem 3.7 hold and define the process
(U i)i∈Z such that U i := f(Zi) − E[f(Zi)]. For all j = 1, 2, . . . , k, l ≥ 2 and
0 < s < 3l

|b−a|

Ml̄j
(s) =

∣∣∣E[ l̄j∏
i=1

exp
(sU j+(i−1) k

l̄j

)]
−

l̄j∏
i=1

E

[
exp

(sU j+(i−1) k

l̄j

)]∣∣∣
≤ exp(s |b− a|)θ(k)s (B.19)

The same result holds when defining the process (U i)i∈Z for U i = E[f(Zi)] −
f(Zi).

Proof. Let us first discuss the case when U i = f(Zi) − E[f(Zi)], we have that
the process U has mean zero and |U i| ≤ |b−a|. Let us define Fj = σ(U i, i ≤ j).

Ml̄j
:=

∣∣∣∣∣E[
l̄j∏
i=1

exp
(sU j+(i−1)k

l̄j

)]
−

l̄j∏
i=1

E

[
exp

(sU j+(i−1)k

l̄j

)]∣∣∣∣∣
=

∣∣∣∣∣E[
l̄j−1∏
i=1

exp
(sU j+(i−1)k

l̄j

)
E

[
exp

(sU j+(l̄j−1)k

l̄j

)∣∣∣Fj+(l̄j−2)k

]]

−
l̄j∏
i=1

E

[
exp

(sU j+(i−1)k

l̄j

)]∣∣∣∣∣
≤

∣∣∣∣∣E[
l̄j−1∏
i=1

exp
(sU j+(i−1)k

l̄j

)(
E

[
exp

(sU j+(l̄j−1)k

l̄j

)∣∣∣Fj+(l̄j−2)k

]
−E

[
exp

(sU j+(l̄j−1)k

l̄j

)])]∣∣∣∣∣
+

∣∣∣∣∣E[exp
(sU j+(l̄j−1)k

l̄j

)]∣∣∣∣∣
∣∣∣∣∣E[

l̄j−1∏
i=1

exp
(sU j+(i−1)k

l̄j

)]
−

l̄j−1∏
i=1

E

[
exp

(sU j+(i−1)k

l̄j

)]∣∣∣∣∣
≤

∥∥∥∥∥
l̄j−1∏
i=1

exp
(s|U j+(i−1)k|

l̄j

)∥∥∥∥∥
∞

E

[∣∣∣E[ exp
(sU j+(l̄j−1)k

l̄j

)∣∣∣Fj+(l̄j−2)k

]
−E

[
exp

(sU j+(l̄j−1)k

l̄j

)]∣∣∣]
+

∥∥∥∥∥ exp
(s|U j+(l̄j−1)k|

l̄j

)∥∥∥∥∥
∞

Ml̄j−1
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The above is then less than or equal to

exp
(s(l̄j − 1)|b− a|

l̄j

)
exp

(−sa

l̄j

)
E

[∣∣∣∣∣E
[

exp
(
sf(Zj+(l̄j−1)k)

l̄j

)∣∣∣∣∣Fj+(l̄j−2)k

]
(B.20)

− E

[
exp

(
sf(Zj+(l̄j−1)k)

l̄j

)]∣∣∣∣∣
]

+ exp
(s|b− a|

l̄j

)
Ml̄j−1.

Note that the function g(x) =
exp

(
sx
l̄j

)
exp

(
sb
l̄j

)
s
l̄j

1[a,b](x) is in L1 for each s. We then use

the projective-type representation of the θ-coefficients of f(Z), see Remark 2.15,
and obtain that

Ml̄j
≤ exp

(sl̄j |b− a|
l̄j

)
θ(k) s

l̄j
+ exp

(s|b− a|
l̄j

)
Ml̄j−1. (B.21)

Let now, u = exp
(

s|b−a|
l̄j

)
, we have that

Ml̄j
≤ θ(k)ul̄j

s

l̄j
+ uMl̄j−1

≤ (l̄j − 2)θ(k)ul̄j
s

l̄j
+ ul̄j−2

∣∣∣E[ exp
(sU j

l̄j

)
exp

(sU j+k

l̄j

)]
− E

[
exp

(sU j

l̄j

)]
E

[
exp

(sU j+k

l̄j

)]∣∣∣
≤ (l̄j − 2)θ(k)ul̄j

s

l̄j
+ ul̄j−1

∣∣∣E[ exp
(sU j+k

l̄j

)
|Fj

]
− E

[
exp

(sUj+k

l̄j

)]∣∣∣
≤ (l̄j − 1)θ(k)ul̄j

s

l̄j
= (l̄j − 1) exp

(
s|b− a|

)
θ(k) s

l̄j
.

In conclusion, for all j = 1, . . . , k (and remembering that l̄j = l or l̄j = l + 1)

Ml̄j
≤ exp(s |b− a|)θ(k)s.

For U i = E[f(Zi)] − f(Zi), the proof follows the same line as above provided
that the point (B.20) is changed as follows:

exp
(s(l̄j − 1)|b− a|

l̄j

)
exp

(sb
l̄j

)
E

[∣∣∣∣∣E
[

exp
(
−sf(Zj+(l̄j−1)k)

l̄j

)∣∣∣∣∣Fj+(l̄j−2)k

]

− E

[
exp

(
−sf(Zj+(l̄j−1)k)

l̄j

)]∣∣∣∣∣
]

+ exp
(s|b− a|

l̄j

)
Ml̄j−1.

Note that the function g(x) =
exp

(
sx
l̄j

)
exp

(
−sa
l̄j

)
s
l̄j

1[−b,−a](x) is in L1 for each s. We then

use the projective-type representation of the θ-coefficients of f(Z) and obtain
again that the inequality (B.21) holds.
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Lemma B.6. Let the Assumptions of Theorem 3.7 hold and define the process
(U i)i∈Z such that U i = f(Zi) − E[f(Zi)]. For all j = 1, 2, . . . , k, l ≥ 2 and
0 < s < 3l

b−a

E

[
exp

(sV j,m

l̄j

)]
≤ exp

(
s2
E[U2

1]
2l
(
1 − s|b−a|

3l

)) + exp(s |b− a|)θ(k)s

The same result holds when defining the process (U i)i∈Z for U i = E[f(Zi)] −
f(Zi).

Proof.

E

[
exp

(sV j,m

l̄j

)]
= E

[
exp

( l̄j∑
i=1

sU j+(i−1) k

l̄j

)]
≤

l̄j∏
i=1

E

[
exp

(sU j+(i−1) k

l̄j

)]

+
∣∣∣E[ l̄j∏

i=1
exp

(sU j+(i−1) k

l̄j

)]
−

l̄j∏
i=1

E

[
exp

(sU j+(i−1) k

l̄j

)]∣∣∣
= E

[
exp

(sU j+(i−1) k

l̄j

)]l̄j
+ Ml̄j

(B.22)

We have that E[U j+(i−1) k] = 0 by definition of the process U , and Uj+(i−1) k

l̄j

satisfies the Bernstein moment condition (Remark A1 [56]) with K1 = |b−a|
3l̄j

.

Hence, for l̄j ≥ 2 and 0 < s <
3l̄j

|b−a|

E

[
exp

(sU j+(i−1) k

l̄j

)]
≤ exp

(
s2
E[(U j+(i−1)k/l̄j)2]

2
(
1 − s|b−a|

3l̄j

) )
. (B.23)

Because l̄j ≥ l, we can conclude that the inequality above holds for l ≥ 2.
Moreover, by stationarity of the process U and since for all j = 1, 2, . . . , k, we
can bound (B.22) uniformly with respect to the index j by using Lemma B.5,
and noticing that

0 < s <
3l

|b− a| ≤
3l̄j

|b− a| ,

and then(
1 − s|b− a|

3l̄j

)
≥

(
1 − s|b− a|

3l

)
.

The same proof applies when defining U i = E[f(Zi)] − f(Zi).

Proof of Theorem 3.7. By combining Lemmas B.4, B.5, B.6, for 0 < s < 3l
|b−a| :

E

[
exp

(
s

1
m

m∑
i=1

f(Zi) − E[f(Zi)]
)]

= E

[
exp

(
s

1
m

m∑
i=1

U i

)]



MMAF-guided learning 583

= E

[
exp

( s

m

k∑
j=1

V j,m

)]

=E

[
exp

( s

m

k∑
j=1

l̄j∑
i=1

U j+(i−1) k

)]

≤
k∑

j=1
pjE

[
exp

(sV j,m

l̄j

)]
(B.24)

≤ exp
(
s2V ar(f(Z1))
2l
(
1− s|b−a|

3l

) )
+exp(s |b−a|)θ(k)s,

(B.25)

where V j,m =
∑l̄j

i=1 U j+(i−1) k. The inequalities (B.24) and (B.25) hold because
of Lemma B.4 and Lemma B.6, respectively. We have then proved the inequality
(3.11). The same proof applies to showing the bound (3.12) by defining U i =
E[f(Zi)] − f(Zi).

We remind the reader that the proof of Theorem 3.8 and 3.14 use the below
Lemma that we recall for completeness.

Lemma B.7 (Legendre transform of the Kullback-Leibler divergence function).
Let (H, T ) be a measurable space (note that in the case of hypotheses of type
{fθ : θ ∈ Θ} then H = Θ). For any π ∈ M1

+(H), for any measurable function
f : H → R such that π[exp(f)] ≤ ∞, we have that

π[exp(f)] = exp
(

sup
ρ̂∈M1

+(H)
ρ̂[f ] −KL(ρ̂, π)

)
,

with the convention ∞ − ∞ = −∞. Moreover, as soon as f is upper bounded
on the support of π, the supremum with respect to ρ̂ in the right-hand side is
reached for the Gibbs distribution with Radon-Nikodym derivative w.r.t. π equal
to exp(f)

π[exp(h)] .

The proof of Lemma (B.7) has been known since the work of Kullback [53]
in the case of a finite space B, whereas Donsker and Varadhan have proved the
general case [34]. Given this result, we are ready to prove our PAC Bayesian
bounds.

Proof of Theorem 3.8. Let us choose f(s) = s
ε for 0 < s < ε, which satisfies the

assumptions of Theorem 3.7 and has support in [0, 1]. We have that Rε(h) −
rε(h) = ε

m (
∑m

i=1 E[f(Lε
i)]−f(Lε

i)). We have, in this case, that U i = E[f(Li)]−
f(Lε

i) such that E[U i] = 0 and |U i| ≤ 1. Note that the process f(Lε
i)i∈Z has

the same θ-weak coefficients of the process (Lε
i)i∈Z because f is a 1-Lipschitz

function. By Theorem 3.7 applied for 0 < ε
√
l < 3

√
l, and the bound (3.9),

E

[
exp

(√
l (Rε(h) − rε(h))

)]
= E

[
exp

(
ε
√
l
1
m

m∑
i=1

U i

)]
≤ exp

( 3ε2

2(3 − ε)

)



584 I. V. Curato et al.

+ 3
√
l exp(3

√
l)θ(k)
(B.26)

where the last equality holds because of the particular shape of the chosen
function f .

We follow the scheme of proof developed by [13].
√
l ρ̂[Rε(h)] − ρ̂[rε(h)] = ρ̂[

√
l (Rε(h) − rε(h))]

≤ KL(ρ̂||π) + log(π[exp(
√
l (Rε(h) − rε(h)))]) (P-a.s. by Lemma B.7).

(B.27)

We have that π[exp(
√
l (Rh(β) − rε(h)))] := Am is a random variable on Sm.

By Markov’s inequality, for δ ∈ (0, 1)

P

(
Am ≤ E[Am]

δ

)
≥ 1 − δ.

This, in turn, implies that with probability at least 1 − δ over Sm

ρ̂[Rε(h)]− ρ̂[rε(h)]

≤
KL(ρ̂||π) + log 1

δ√
l

+ 1√
l
log

(
π
[
E

[
exp

(√
l(Rε(h) − rε(h))

)]])
(B.28)

≤
KL(ρ̂||π)+log 1

δ√
l

+ 1√
l
log

(
π
[
exp

( 3ε2

2(3 − ε)

)
+3

√
l exp(3

√
l)θ(k)

])
,

(B.29)

where (B.28) holds by swapping the expectation over Sm and over π using
Fubini’s Theorem, and (B.29) is obtained by using (B.26). Similarly, it can be
proven that the bound (B.29) holds for ρ̂[Rε(h)] − ρ̂[rε(h)]. We then conclude
by using an union bound.

Proof of Theorem 3.11. Let dρ̄
dπ = exp(−√

mrε(h))
π[exp(−√

mrε(h))] .

ρ̄ = arg inf
ρ̂

(
KL(ρ̂||π) − ρ̂[−

√
mrε(h)]

)
= arg inf

ρ̂

(KL(ρ̂||π)√
m

+ ρ̂[rε(h)]
)
,

and by using one side of the bound (3.13) for k = 1, for all δ ∈ (0, 1)

P

{
ρ̄[Rε(h)] ≤ inf

ρ̂

(
ρ̂[rε(h)] +

(
KL(ρ̂, π) + log

(1
δ

)) 1√
m

)
+ 1√

m
log

(
π
[
exp

( 3ε2

2(3 − ε)

)
+ 3

√
m exp(3

√
m)θ(1)

])}
≥ 1 − δ

We now substitute to ρ̂[rε(β)] the other side of the bound (3.13), we obtain that

P

{
ρ̄[Rε(h)] ≤ inf

ρ̂

(
ρ̂[Rε(h)] +

(
KL(ρ̂, π) + log

(1
δ

)) 2√
m

)
(B.30)
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+ 2√
m

log
(
π
[
exp

( 3ε2

2(3 − ε)

)
+ 3

√
m exp(3

√
m)θ(1)

])}
≥ 1 − 2δ

(B.31)

by using an union bound.

Proof of Theorem 3.12. First of all, we show that the process (exp(fi(S, h))i∈N0

is a super-martingale. Note that{
f0(S, h) =0
fm(S, h) =η

∑m
i=1(Lε(h(Xi), Yi)−E[Lε(h(Xi), Yi)|Fi−1])−η2

2 mε2, for m∈N.

In fact, the process η

m∑
i=1

(Lε(h(Xi), Yi) − E[Lε(h(Xi),Y i)]) minus the residual

process is equal to a sum of martingale differences with respect to the filtration
(Fm)m∈N0 , namely

η
m∑
i=1

(Lε(h(Xi), Yi) − E[Lε(h(Xi),Y i)|Fi−1]).

We have that

Em−1[exp(fm(S, h)] = exp(fm−1(S, h))Em−1[exp(η(Lε(h(Xm),Y m)

− E[Lε(h(Xm),Y m)|Fm−1]) −
η2

2 ε2)] ≤ 1,

by applying the conditional Hoeffding’s Lemma. By direct application of Theo-
rem 4 in [23], we obtain that for all m ≥ 1 and δ ∈ (0, 1), we have that

ρ̂
[
η

m∑
i=1

(Lε(h(Xi), Yi) − E[Lε(h(Xi),Y i)])
]
≤ KL(ρ̂, π) + log

(1
δ

)
+ η2

2 mε2

+ ρ̂
[
η

m∑
i=1

E[Lε(h(Xi),Y i)|Fi−1] − E[Lε(h(Xi),Y i)]
]

with probability at least 1 − δ. Dividing both sides of the inequality by m, we
obtain that for all m ≥ 1 and δ ∈ (0, 1)

ρ̂[rε(h) −Rε(h)] ≤
KL(ρ̂, π) + log

(
1
δ

)
ηm

+ η

2 ε
2

+ ρ̂
[ 1
m

m∑
i=1

E[Lε(h(Xi),Y i)|Fi−1] − E[Lε(h(Xi),Y i)]
]
.

(B.32)

with probability at least 1 − δ.
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Proof of Theorem 3.14. Let us apply the scheme of proof used in [2, Theorem 1]
to the residual process Δm(h) = 1

m

∑m
i=1 E[Lε(h(Xi),Y i)|Fi−1]− E[Lε(h(Xi),

Y i)].

We have that

ρ̂[|Δm(h)|]=
∫
H
|Δm(h)| dρ̂

dπ
dπ

≤
(∫

H
|Δm(h)|2 dπ

) 1
2
(∫

H

( dρ̂

dπ

)2
dπ

) 1
2(Cauchy-Schwarz’s Inequality)

≤
(
ε

∫
H
|Δm(h)| dπ

) 1
2
(
Dφ2−1(ρ̂, π) + 1

) 1
2
.

We then apply the Markov’s inequality to
∫
H |Δm(h)| dπ, and for δ ∈ (0, 1)

obtain that with probability at least 1 − δ

ρ̂[|Δm(h)|] ≤
(
ε
E[
∫
H |Δm(h)| dπ]

δ

) 1
2
(
Dφ2−1(ρ̂, π) + 1

) 1
2

≤
(
ε
π[E[|Δm(h)|]

δ

) 1
2
(
Dφ2−1(ρ̂, π) + 1

) 1
2 (Fubini’s Theorem)

≤
(
ε
π[θ(1)]

δ

) 1
2
(
Dφ2−1(ρ̂, π) + 1

) 1
2 (Definition 2.12)

The last inequality holds because L is a θ-weakly dependent process as proven
in Proposition 3.6, and the truncation of this process through the accuracy level
ε means applying a projection function to the process L which has Lip(h) = 1,
see Erratum in the arXiv version of [27] for a detailed explanation. We can then
apply the projective-type representation of the θ-coefficients in Remark 2.15.
We then use an union bound to combine the result above with the any-time
bound in Corollary 3.13.
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