Fourier decay for nonlinear pushforwards of self-similar measures

Amlan Banaji¹

Loughborough University

¹Based on joint work in progress with Han Yu

Amlan Banaji (Loughborough University) Fourier decay for nonlinear pushforwards

Fourier transform of measures

• Fourier transform of a measure μ on \mathbb{R}^k is the function $\widehat{\mu}: \mathbb{R}^k \to \mathbb{C}$,

$$\widehat{\mu}(\xi) = \int_{\mathbb{R}^k} e^{-2\pi i \langle \xi, x \rangle} d\mu(x).$$

2/12

Fourier transform of measures

• Fourier transform of a measure μ on \mathbb{R}^k is the function $\widehat{\mu}: \mathbb{R}^k \to \mathbb{C}$,

$$\widehat{\mu}(\xi) = \int_{\mathbb{R}^k} e^{-2\pi i \langle \xi, x \rangle} d\mu(x).$$

 Decay rates of |µ̂(ξ)|→ 0 as |ξ|→ ∞ have applications to normality of μ-typical points, Fourier uniqueness, fractal uncertainty principles, Fourier restriction...

Fourier transform of measures

• Fourier transform of a measure μ on \mathbb{R}^k is the function $\widehat{\mu}: \mathbb{R}^k \to \mathbb{C}$,

$$\widehat{\mu}(\xi) = \int_{\mathbb{R}^k} e^{-2\pi i \langle \xi, x \rangle} d\mu(x).$$

- Decay rates of |µ̂(ξ)|→ 0 as |ξ|→∞ have applications to normality of μ-typical points, Fourier uniqueness, fractal uncertainty principles, Fourier restriction...
- If μ is Cantor–Lebesgue measure,

$$\widehat{\mu}(1) = \widehat{\mu}(3) = \widehat{\mu}(9) = \cdots$$

but $|\hat{\mu}(\xi)|$ decays outside a "zero-dimensional" set of ξ .

Nonlinear pushforwards

Principle: **nonlinear** dynamically defined measures often have polynomial Fourier decay.

Theorem (Kaufman, 1984)

If μ is Cantor–Lebesgue and $f(x) = x^2$ then the pushforward satisfies

$$|\widehat{f_*\mu}(\xi)| \lesssim |\xi|^{-\eta}$$
 for some $\eta > 0$.

Nonlinear pushforwards

Principle: **nonlinear** dynamically defined measures often have polynomial Fourier decay.

Theorem (Kaufman, 1984)

If μ is Cantor–Lebesgue and $f(x) = x^2$ then the pushforward satisfies

 $|\widehat{f_*\mu}(\xi)| \lesssim |\xi|^{-\eta}$ for some $\eta > 0$.

Can η be **quantified**?

- $\eta = 0.01$ works (Mosquera–Shmerkin, 2018)
- $\eta=$ 0.06 works (B.-Yu, 2024+)

Nonlinear pushforwards

Principle: **nonlinear** dynamically defined measures often have polynomial Fourier decay.

Theorem (Kaufman, 1984)

If μ is Cantor–Lebesgue and $f(x) = x^2$ then the pushforward satisfies

$$|\widehat{f_*\mu}(\xi)| \lesssim |\xi|^{-\eta}$$
 for some $\eta > 0$.

Can η be **quantified**?

- $\eta = 0.01$ works (Mosquera–Shmerkin, 2018)
- $\eta=$ 0.06 works (B.–Yu, 2024+)

Conjecture (perhaps should be a question!)

Arbitrary $\eta < \frac{1}{2} \frac{\log 2}{\log 3} \approx 0.32$ works and supp $(f_*\mu)$ is a Salem set.

Self-similar measures

Fix $r_1, \ldots, r_m \in (0, 1)$, commuting $k \times k$ orthogonal maps O_1, \ldots, O_m , vectors $t_1, \ldots, t_m \in \mathbb{R}^k$, and weights $p_1, \ldots, p_m \in (0, 1)$ with $p_1 + \cdots + p_m = 1$. The self-similar measure μ satisfies

$$\mu(A) = \sum_{i \in I} p_i \mu(S_i^{-1}(A)).$$

ロ ト く 同 ト く ヨ ト 一 ヨ

Self-similar measures

Fix $r_1, \ldots, r_m \in (0, 1)$, commuting $k \times k$ orthogonal maps O_1, \ldots, O_m , vectors $t_1, \ldots, t_m \in \mathbb{R}^k$, and weights $p_1, \ldots, p_m \in (0, 1)$ with $p_1 + \cdots + p_m = 1$. The self-similar measure μ satisfies

$$\mu(A)=\sum_{i\in I}p_i\mu(S_i^{-1}(A)).$$

Notation:

- A: Assouad dim of supp(μ)
- *B*: Box/Hausdorff dim of supp(μ)
- F: Frostman exponent of μ
- $\kappa_p := \sup \left\{ s \ge 0 : \int_{B(0,R)} |\widehat{\mu}(\xi)|^p d\xi \ll R^{k-s} \right\}$: Fourier ℓ^p dimension of μ .

Always $\kappa_1 \leq F \leq \kappa_2 \leq B \leq A$. If OSC & measure of max dim: $\kappa_1 \leq F = \kappa_2 = B = A$.

Quantitative decay

A Assouad; B Box; F Frostman; κ_p Fourier ℓ^p For μ as above, $f: \mathbb{R}^k \to \mathbb{R}$ is C^2 with graph $\{x, f(x)\}_{x \in \mathbb{R}^k} \subset \mathbb{R}^{k+1}$ having **positive Gauss curvature** over $\operatorname{supp}(\mu)$, and $2^n \ll |\xi| \ll 2^{2n}$,

$$|\widehat{f_*\mu}(\xi)| \lesssim rac{1}{2^{Fn}} (2^{2n}/|\xi|)^A \sum_{D_0 \in \mathcal{C}_n} \int_{D_0} |\widehat{\mu}(\xi')| d\xi' + |\xi|/2^{2n}.$$

ロトメタトメミトメミト ミークタイ

Quantitative decay

A Assouad; B Box; F Frostman; κ_p Fourier ℓ^p For μ as above, $f: \mathbb{R}^k \to \mathbb{R}$ is C^2 with graph $\{x, f(x)\}_{x \in \mathbb{R}^k} \subset \mathbb{R}^{k+1}$ having **positive Gauss curvature** over $\operatorname{supp}(\mu)$, and $2^n \ll |\xi| \ll 2^{2n}$,

$$|\widehat{f_*\mu}(\xi)| \lesssim rac{1}{2^{Fn}} (2^{2n}/|\xi|)^A \sum_{D_0 \in \mathcal{C}_n} \int_{D_0} |\widehat{\mu}(\xi')| d\xi' + |\xi|/2^{2n}.$$

theorem (B.-Yu)

If F > k/2 then $|\widehat{f_*\mu}(\xi)| \lesssim |\xi|^{-\eta}$ for $\eta > 0$ indep. of f. Can take any

$$\eta < \max\left\{\sigma(k-\kappa_1), \sigma((k+B-\kappa_2)/2)
ight\}$$

where

$$\sigma(x) = \frac{\frac{F-x}{1+A-x}}{2-\frac{F-x}{1+A-x}}.$$

- Let μ_b be the natural self-similar measure on the set of numbers whose base-b expansion misses digit 0.
- Chow–Varjú–Yu (2024+): $\kappa_1 \rightarrow 1$ as $b \rightarrow \infty$.

- Let μ_b be the natural self-similar measure on the set of numbers whose base-b expansion misses digit 0.
- Chow–Varjú–Yu (2024+): $\kappa_1 \rightarrow 1$ as $b \rightarrow \infty$.

Corollary

If $f: \mathbb{R} \to \mathbb{R}$ has f'' > 0, then $|\widehat{f_*\mu_b}(\xi)| \lesssim |\xi|^{-\eta}$, where we can take $\eta = 1/3 - o_b(1)$.

If μ_b is Salem then one could take $\eta = 1/2 - o_b(1)$.

Nonlinear arithmetic

- Arithmetic product of $X, Y \subseteq \mathbb{R}$ is $X \cdot Y := \{xy : x \in X, y \in Y\} \subseteq \mathbb{R}.$
- Multiplicative convolution μ · ν of measures on ℝ is pushforward of μ × ν under f(x, y) = xy.

Nonlinear arithmetic

- Arithmetic product of $X, Y \subseteq \mathbb{R}$ is $X \cdot Y := \{xy : x \in X, y \in Y\} \subseteq \mathbb{R}.$
- Multiplicative convolution μ · ν of measures on ℝ is pushforward of μ × ν under f(x, y) = xy.
- If X, Y are "large" (dimension), when does this imply X · Y is "large" (positive Lebesgue measure)?
- Generalised Marstrand projection theorem (Peres–Schlag, 2000): $K \subset \mathbb{R}^2$ compact, dim_H K > 1, P_a a family of smooth maps (satisfying conditions), then $P_a(K)$ has positive measure for "almost every" a.

Arithmetic of self-similar sets

When can exceptional directions be removed?

Theorem (Hochman-Shmerkin, 2012)

If self-similar set *E* has some contraction ratio *s* and *F* has a contraction ratio *t* with $\log s/\log t \notin \mathbb{Q}$ then $\dim_{\mathrm{H}}(A \cdot B) = \min\{\dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B, 1\}.$

Arithmetic of self-similar sets

When can exceptional directions be removed?

Theorem (Hochman–Shmerkin, 2012)

If self-similar set *E* has some contraction ratio *s* and *F* has a contraction ratio *t* with $\log s/\log t \notin \mathbb{Q}$ then $\dim_{\mathrm{H}}(A \cdot B) = \min\{\dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B, 1\}.$

Conjectures

- Let E, F be self-similar sets in \mathbb{R} . If dim_H E + dim_H F > 1, then Leb $(E \cdot F) > 0$.
- Let μ, ν be self-similar measures on \mathbb{R} . If dim_H μ + dim_H ν > 1 then $\mu \cdot \nu$ is absolutely continuous.

Arithmetic of self-similar sets

When can exceptional directions be removed?

Theorem (Hochman–Shmerkin, 2012)

If self-similar set *E* has some contraction ratio *s* and *F* has a contraction ratio *t* with $\log s/\log t \notin \mathbb{Q}$ then $\dim_{\mathrm{H}}(A \cdot B) = \min\{\dim_{\mathrm{H}} A + \dim_{\mathrm{H}} B, 1\}.$

Conjectures

- Let E, F be self-similar sets in \mathbb{R} . If dim_H E + dim_H F > 1, then Leb $(E \cdot F) > 0$.
- Let μ, ν be self-similar measures on \mathbb{R} . If dim_H μ + dim_H ν > 1 then $\mu \cdot \nu$ is absolutely continuous.

Note f(x, y) is a **nonlinear** projection! Won't work for linear projections or E + F (recall Ian Morris's talk).

theorem (B.-Yu)

 $\bullet~$ If μ is self-similar with SSC and natural weights and

$$\dim_{\mathrm{H}} \mu > (\sqrt{65} - 5)/4 pprox 0.766...$$

then $\mu \cdot \mu$ has an L^2 density.

- If we only assume exponential separation, conclusion holds when $\dim_{\rm H}\mu>7/9\approx 0.777....$

theorem (B.-Yu)

 $\bullet~$ If μ is self-similar with SSC and natural weights and

$$\dim_{\mathrm{H}} \mu > (\sqrt{65} - 5)/4 pprox 0.766...$$

then $\mu \cdot \mu$ has an L^2 density.

• If we only assume exponential separation, conclusion holds when $\dim_{\rm H}\mu>7/9\approx 0.777....$

Idea: apply quantitative theorem. If ν on \mathbb{R} has $|\hat{\nu}(\xi)| \lesssim |\xi|^{-1/2-\varepsilon}$ then $\int_{\mathbb{R}} |\hat{\nu}(\xi)|^2 d\xi < \infty$. By Plancherel ν has an L^2 density.

Progress for sets

No separation conditions!

theorem (B.-Yu)

• If $F \subset \mathbb{R}$ is self-similar with $\min\{\dim_{\mathrm{H}} E, \dim_{\mathrm{H}} F\} > (\sqrt{65} - 5)/4$ then $\operatorname{Leb}(F \cdot F) > 0$.

ロ * * ● * * ● * * ● * ● * ● * ● * ●

10 / 12

Progress for sets

No separation conditions!

theorem (B.-Yu)

If F ⊂ ℝ is self-similar with min{dim_H E, dim_H F} > (√65 - 5)/4 then Leb(F · F) > 0. Also if R_(a,b) is the radial projection from (a, b) then Leb(R_{a,b}(F × F)) > 0 for all (a, b) ∉ F × F.

No separation conditions!

theorem (B.-Yu)

If F ⊂ ℝ is self-similar with min{dim_H E, dim_H F} > (√65 - 5)/4 then Leb(F · F) > 0. Also if R_(a,b) is the radial projection from (a, b) then Leb(R_{a,b}(F × F)) > 0 for all (a, b) ∉ F × F.
If F₁,..., F_n ⊂ ℝ are self-similar and ∑ⁿ_{i=1} dim_H F_i > 1 + (n - 1)⁻¹ then Leb(F₁ · ... · F_n) > 0

(ロ) 《 □ > 《 三 > 《 三 >) 回 ● ^ ○ ○ ○

No separation conditions!

theorem (B.-Yu)

If F ⊂ ℝ is self-similar with min{dim_H E, dim_H F} > (√65 - 5)/4 then Leb(F · F) > 0. Also if R_(a,b) is the radial projection from (a, b) then Leb(R_{a,b}(F × F)) > 0 for all (a, b) ∉ F × F.
If F₁,..., F_n ⊂ ℝ are self-similar and

 $\sum_{i=1}^{n} \dim_{\mathrm{H}} F_i > 1 + (n-1)^{-1}$ then $\mathrm{Leb}(F_1 \cdot \ldots \cdot F_n) > 0$

Proof: take a SSC subsystem with ε dimension loss, put natural measure on it, apply corollary for measures.

theorem (B.-Yu)

Let μ be a self-similar measure on \mathbb{R}^k not supported in an affine subspace, with commuting linear parts. Let U be an open neighbourhood of supp (μ) . Let $f: U \to \mathbb{R}^d$ be analytic; assume the graph of f is not contained in a proper affine subspace of \mathbb{R}^{k+d} . Then $|f_*\mu(\xi)| \lesssim |\xi|^{-\eta}$ for some $\eta > 0$.

theorem (B.-Yu)

Let μ be a self-similar measure on \mathbb{R}^k not supported in an affine subspace, with commuting linear parts. Let U be an open neighbourhood of supp (μ) . Let $f: U \to \mathbb{R}^d$ be analytic; assume the graph of f is not contained in a proper affine subspace of \mathbb{R}^{k+d} . Then $|f_*\mu(\xi)| \lesssim |\xi|^{-\eta}$ for some $\eta > 0$.

Application: combining with Algom – Rodriguez Hertz – Wang (2023+,2024+) this proves that in many cases **nonlinear analytically-self-conformal measures** in dimension 1 and 2 have polynomial Fourier decay.

(日本) (周本) (日本) (日本) (日本)

Thank you for listening!