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Nature complexity and their models

Porous materials
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Traffic noise absorbing wall

“Fractal wall” TM, porous material is the cement-wood (acoustic absorbent),
Patent Ecole Polytechnique-Colas, Canadian and US patent
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Acoustic anechoic chambers
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Irregularity of boundaries

Antigiogenesis of cancerous tumours
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Examples of self-similar fractal boundaries

2 < d = log(13)
log(3) ≈ 2.33 < 3 (Wikipedia)
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(One-sided-)extension and admissible domains

Definition
A domain Ω ⊂ R

n is called a H1-extension domain if there exists a bounded linear
extension operator EΩ : H1(Ω) → H1(Rn):

∀u ∈ H1(Ω) ∃v = EΩu ∈ H1(Rn) with v|Ω = u and C(Ω) > 0 :

‖v‖H1(Rn) ≤ C‖u‖H1(Ω).

H1-extension domain Ω is called H1-admissible if its boundary ∂Ω has positive
capacity.

Jones [1981]: If Ω is an uniform (or (ε,∞)-) domain, then it is Sobolev extension
domain.
Hajłasz, Koskela and Tuominen [2008]: Ω ⊂ R

n is a H1-extension domain⇐⇒ Ω

is an n-set and H1(Ω) = C1,2(Ω) (space of the fractional sharp maximal functions)
with norms’ equivalence.
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Examples, remarks

Domains with boundaries ∂Ω as
• d-sets: dimH ∂Ω = d > 0
∃c1, c2 > 0,

c1rd ≤ µ(∂Ω ∩ Br(x)) ≤ c2rd, for ∀ x ∈ ∂Ω, 0 < r ≤ 1,

• Lipschitz and more regular boundaries
• bounded dimension boundaries

n− 2 < dimH ∂Ω ≤ n
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Trace operator

Proposition
For a H1-admissible domain Ω of Rn, given u ∈ H1(Ω), let

Tri u := (EΩu)∼|∂Ω

be the restriction of any quasi continuous representative (EΩu)∼ of EΩu. Then the
(interior) trace operator

Tri : H1(Ω) → B(∂Ω)

is a well-defined linear surjection.

Consequently, q. e.

x ∈ ∂Ω Tri u(x) = lim
r→0

1
λn(Ω ∩ Br(x))

∫

Ω∩Br(x)
u(y)dy.

M. Biegert, 2009, Theorem 6.1, Remark 6.2 and Corollary 6.3
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Trace theorem

Let Ω ⊂ R
n be an H1-admissible bounded domain.

H1(Ω) = H10(Ω)⊕ V1(Ω), V1(Ω) = {u ∈ H1(Ω)| −∆u+ u = 0 weakly}

(i) The space H10(Ω) := C∞c (Ω)
‖·‖H1(Ω) is the kernel of Tri, that is, H10(Ω) = ker Tri.

(ii) Endowed with the norm

‖f‖B(∂Ω) := min{‖v‖H1(Ω) | v ∈ H1(Ω) and Tri v = f}, (1)

the space B(∂Ω) is a Hilbert space.
(iii) ‖Tri ‖L(H1(Ω),B(∂Ω)) = 1.

Its restriction tri : V1(Ω) → B(∂Ω) to V1(Ω) is an isometry and onto.
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Green formula

Let Ω ⊂ R
n be H1-admissible.

H1∆(Ω) :=
{

u ∈ H1(Ω)
∣

∣ ∆u ∈ L2(Ω)
}

Given u ∈ H1∆(Ω), there is a unique element g of B′(∂Ω) such that

〈g,Tri v〉B′(∂Ω),B(∂Ω) =

∫

Ω
(∆u)v dx +

∫

Ω
∇u∇v dx, v ∈ H1(Ω).

We call this element g the weak interior normal derivative of u (with respect to Ω)
and denote it by ∂iu

∂ν := g.
∂i
∂ν : H1∆(Ω) → B′(∂Ω) is linear and bounded:

∥

∥

∥

∥

∂iu
∂ν

∥

∥

∥

∥

B′(∂Ω)

≤ ‖u‖H1(Ω) + ‖∆u‖L2(Ω).

(thanks to multiple works of M. R. Lancia (d-sets, Jonsson measures))
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Some important corollaries

1. ∀f ∈ B(∂Ω) the assigment

ι(f )(h) := 〈f ,h〉B(∂Ω) , h ∈ B(∂Ω),

defines an isometric isomorphism ι from B(∂Ω) onto B′(∂Ω).
The dual pairing is defined by

〈g, f 〉B′(∂Ω),B(∂Ω) := 〈ι−1(g), f 〉B(∂Ω) = 〈g, ι(f )〉B′(∂Ω) , f ∈ B(∂Ω), g ∈ B′(∂Ω).

We may identify B(∂Ω) with its image ι(B(∂Ω)) ⊂ B′(∂Ω) under ι.
2. Gelfand triple:

B(∂Ω) →֒ L2(∂Ω, µ) = (L2(∂Ω, µ))′ →֒ B′(∂Ω), B′′(∂Ω) = B(∂Ω)

16 /41



Introduction Bounded case Transmission problems Conclusion Trace Poincaré-Steklov operator Calderón’s problem

Some important corollaries

1. ∀f ∈ B(∂Ω) the assigment

ι(f )(h) := 〈f ,h〉B(∂Ω) , h ∈ B(∂Ω),

defines an isometric isomorphism ι from B(∂Ω) onto B′(∂Ω).
The dual pairing is defined by

〈g, f 〉B′(∂Ω),B(∂Ω) := 〈ι−1(g), f 〉B(∂Ω) = 〈g, ι(f )〉B′(∂Ω) , f ∈ B(∂Ω), g ∈ B′(∂Ω).

We may identify B(∂Ω) with its image ι(B(∂Ω)) ⊂ B′(∂Ω) under ι.
2. Gelfand triple:

B(∂Ω) →֒ L2(∂Ω, µ) = (L2(∂Ω, µ))′ →֒ B′(∂Ω), B′′(∂Ω) = B(∂Ω)

The adjoint trace operator Tr∗i : B′(∂Ω) → (H1(Ω))′, is defined:
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Dirichlet type or harmonic extensions for −∆+ 1 on admissible domains

V1(Ω) is also the space of weak solutions of the Dirichlet boundary-value
problem







−∆u+ u = 0 in Ω

u|∂Ω = f ∈ B(∂Ω)

ED : B(∂Ω) → ED(B(∂Ω)) = V1(Ω) ⊂ H1(Ω)
f 7→ uf = ED(f ),

where uf is the unique weak solution to the Dirichlet boundary problem

Proposition
ED : B(∂Ω) → V1(Ω) is an isometry: ∀f ∈ B(∂Ω) ‖f‖B(∂Ω) = ‖EDf‖H1(Ω).

In this sense ED = tr−1i .
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Neumann problem for −∆+ 1 on admissible domains

Let Ω ⊂ R
n be an H1-admissible bounded domain.







−∆u+ u = 0 in Ω

∂u
∂ν |∂Ω = g ∈ B′(∂Ω)

∀v ∈ H1(Ω) ∃!u ∈ H1(Ω) 〈u, v〉H1(Ω) = 〈g,Tri v〉B′(∂Ω),B(∂Ω).

V1(Ω) is the space of the weak solutions of the Neumann boundary value
problem.

EN :
∂iu
∂ν

∈ B′(∂Ω) 7→ u ∈ V1(Ω) ⊂ H1(Ω)

where u is the unique weak solution of the Neumann boundary value problem for
−∆+ 1, is an isometry, (EN)−1 = ∂

∂νi
on V1(Ω)

∀g ∈ B′(∂Ω) ‖ENg‖H1(Ω) = ‖ tr∗i g‖(H1(Ω))′ = ‖g‖B′(∂Ω).
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Corollary

Corollary

Let Ω be H1-admissible.

(i) Both EN : B′(∂Ω) → V1(Ω) and ∂i
∂ν : V1(Ω) → B′(∂Ω) are isometries and onto,

and we have ∂i
∂ν = (EN)−1 on V1(Ω).

(ii) For u, v ∈ V1(Ω) we have
〈∂iu
∂ν

, tri v
〉

B′(∂Ω),B(∂Ω)
= 〈u, v〉H1(Ω) =

〈∂iv
∂ν

, tri u
〉

B′(∂Ω),B(∂Ω)
.

(iii) The dual
( ∂i
∂ν

)∗
: B(∂Ω) → (V1(Ω))′ of ∂i

∂ν on V1(Ω) is an isometry and onto.
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Poincaré-Steklov operator for admissible domains

Theorem
Let Ω be a H1-admissible bounded domain and k ∈ R \ σ(−∆D). Then the
Poincaré-Steklov operator

A : B(∂Ω) → B′(∂Ω)

Tr u 7→
∂u
∂ν

∣

∣

∣

∣

∂Ω

associated with the weak solutions from

u ∈ H1∆(Ω) :=
{

v ∈ H1(Ω)
∣

∣ ∆v ∈ L2(Ω)
}

(−∆+ k)u = 0 on Ω with Tr u|∂Ω = f ∈ B(∂Ω), (2)

is a linear bounded operator with Ker A 6= {0} and it coincides with its adjoint.
d-sets K. Arfi, A.R.-P. 2019, A.R.-P. 2020, Lipschitz case by W. Arendt, A. F. M. ter Elst 2011, 2015
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Poincaré-Steklov operator as an isometry for admissible domains

Lemma

Let Ω be a bounded H1-admissible domain.

(i) For any k ∈ R \ σ(∆D) the Poincaré-Steklov operator Ak : B(∂Ω) → B′(∂Ω) is
injective if and only if k is not an eigenvalue of the self-adjoint Neumann
Laplacian for Ω.

(ii) The Poincaré-Steklov operator A1 : B(∂Ω) → B′(∂Ω) is an isometry and

A1 =
∂i
∂ν

◦ (tri)
−1.
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Different isometries

(EN)−1 = ∂
∂νi
, ED = tr−1i

∀g ∈ B′(∂Ω) ‖g‖B′(∂Ω) = ‖ tr∗i g‖(H1(Ω))′ ,

∀u ∈ V1(Ω) ‖u‖H1(Ω) = ‖ tri u‖B(∂Ω).

in complement to S. N. Chandler Wilde, D. P. Hewett, A. Moiola, 2017-... 22 /41
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Framework of harmonic problems for −∆

Definition
Ḣ1(Ω) = {u ∈ L2loc(Ω)| ∇u ∈ L2(Ω,Rn) modulo locally constant functions}

is the Hilbert space, endowed with the scalar product 〈u, v〉Ḣ1(Ω) =
∫

Ω ∇u∇v dx.

• A domain Ω ⊂ R
n is an Ḣ1-extension domain if

there is a bounded linear extension operator ĖΩ : Ḣ1(Ω) → Ḣ1(Rn).

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985
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2) ∂Ω is compact and of positive capacity.

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985
23 /41



Introduction Bounded case Transmission problems Conclusion Trace Poincaré-Steklov operator Calderón’s problem

Framework of harmonic problems for −∆

Definition
Ḣ1(Ω) = {u ∈ L2loc(Ω)| ∇u ∈ L2(Ω,Rn) modulo locally constant functions}

is the Hilbert space, endowed with the scalar product 〈u, v〉Ḣ1(Ω) =
∫

Ω ∇u∇v dx.

• A domain Ω ⊂ R
n is an Ḣ1-extension domain if

there is a bounded linear extension operator ĖΩ : Ḣ1(Ω) → Ḣ1(Rn).
• Ω is Ḣ1-admissible if 1) Ω is an Ḣ1-extension domain and

2) ∂Ω is compact and of positive capacity.
• If so, Ḃ(∂Ω) is the vector space modulo constants of all q.e. equivalence
classes of pointwise restrictions w̃|∂Ω of quasi continuous representatives w̃
of classes u ∈ Ḣ1(Rn).

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985
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Precisions on Ḣ1(Ω) and Ḃ(∂Ω)

(i) Let Ω be a bounded H1-extension domain. Then

Ḣ1(Ω) ≈ {u ∈ H1(Ω)|
∫

Ω
u(x) dx = 0}

H1(Ω) ≈ Ḣ1(Ω)⊕ R

(ii) Let Ω be a bounded H1- and Ḣ1-admissible domain. Then

B(∂Ω) ≈ Ḃ(∂Ω)⊕ R

24 /41
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Several Examples

For n ≥ 2:

(i) by JONES-1981: Any (ε, δ)-domain Ω ⊂ R
n is an H1-domain;

any (ε,∞)-domain is Ḣ1-extension domain.
(ii) Any (ε,∞)-domain Ω ⊂ R

n with R
n\Ω 6= ∅ is H1-admissible, and if one of the

two open sets is bounded, it is also Ḣ1-admissible.
(iii) Ω = R

n\{0} is not H1-admissible.

For n = 1:

(a) (a,b) with a or b finite is H1-admissible;
(b) if a and b finite, (a,b) also Ḣ1-admissible.

25 /41
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Conductivity problem

Let Ω be a bounded Ḣ1-admissible domain. γ ∈ L∞≫0(Ω) continuous near ∂Ω.






∇ · (γ∇u) = 0 on Ω,

γ
∂i
∂νu = g ∈ Ḃ′(∂Ω).

Variational formulation: ∀v ∈ Ḣ1(Ω), (γ∇u,∇v)L2(Ω) = 〈g, tri v〉Ḃ′(∂Ω),Ḃ(∂Ω).

Aγ : Tr u|∂Ω 7→ γ
∂i
∂ν
u
∣

∣

∣

∣

∂Ω

26 /41
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Calderón’s problem

Knowing Aγ , can we recover γ?

Theorem
Let Ω be a bounded Ḣ1-admissible domain of Rn such that

∃δ, ρ > 0, ∀x0 ∈ ∂Ω, ∀r < ρ, ∃z ∈ Ωc, δr < d(z, ∂Ω) ≤ |z− x0| < r.

Let ℓ, L > 0. Let γ1, γ2 ∈ W1,∞(Ω) be such that ℓ ≤ γ1,2 and ‖γ1,2‖W1,∞(Ω) ≤ L. Then,
it holds

‖γ1 − γ2‖L∞(∂Ω) ≤ c ‖Aγ1 − Aγ2‖L(Ḃ(∂Ω),Ḃ′(∂Ω)),

where c > 0 depends on ℓ, L, n, diam(Ω) and cΩn , where

∀x ∈ Ω, ∀r ∈ ]0, 1], λn(Br(x) ∩Ω) ≥ cΩn rn.

Generalization of: Alessandrini, Singular solutions of elliptic equations and the determination of
conductivity by boundary measurements, 1991. 27 / 41
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Classical case: Lipschitz boundaries

Transmission problem:



















−∆u = 0 on R
n\∂Ω,

Jtr uK = f ∈ L20(∂Ω, λ(n−1)),s
∂u
∂ν

{
= g ∈ L20(∂Ω, λ(n−1)).

Solution given by u = S∂Ωg−D∂Ωf where:

S∂Ωg(x) :=
∫

∂Ω
G(x − y)g(y)λ(n−1)(dy), x ∈ R

n

is the single layer potential operator, and

D∂Ωf (x) :=
∫

∂Ω

∂G
∂νy

(x − y)f (y)λ(n−1)(dy), x ∈ R
n\∂Ω

is the double layer potential operator, with G the fundamental solution to −∆ on
R
n.
Verchota, 1984.
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Two-sided Ḣ1-admissible domains

Ωc

Ω















−∆u = 0 on R
n \ ∂Ω

ui|∂Ω − ue|∂Ω = −f ∈ Ḃ(∂Ω)
∂iui
∂ν |∂Ω − ∂eue

∂ν |∂Ω = g ∈ Ḃ′(∂Ω)

Definition
Ω ⊂ R

n is a two-sided Ḣ1-admissible domain if
1. Ω 6= ∅ and Ωc 6= ∅ are Ḣ1-extension domains
2. the Lebesgue measure of ∂Ω is zero.

⇒ dimH(∂Ω) ≥ n− 1, hence its capacity is positive.
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Two-sided Ḣ1-admissible domains

Ωc

Ω















−∆u = 0 on R
n \ ∂Ω

ui|∂Ω − ue|∂Ω = −f ∈ Ḃ(∂Ω)
∂iui
∂ν |∂Ω − ∂eue

∂ν |∂Ω = g ∈ Ḃ′(∂Ω)

Ḣ1(Rn\∂Ω) = Ḣ1(Ω)⊕ Ḣ1(Ωc) = Ḣ10(Rn\∂Ω)⊕ V̇0(Rn\∂Ω)

u ∈ Ḣ1(Rn\∂Ω), JṪr uK := Ṫri u− Ṫre u

Ṫri : Ḣ1(Ω) → Ḃ(∂Ω), Ṫre : Ḣ1(Ωc) → Ḃ(∂Ω)

Ḃ(∂Ω) is the Hilbert space with norm

‖f‖Ḃ(∂Ω),t :=
(

‖f‖2Ḃ(∂Ω),i + ‖f‖2Ḃ(∂Ω),e
)1/2
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Weak exterior normal derivative

Ω is a two-sided Ḣ1-admissible domain.

∀v ∈ Ḣ1(Ω),
〈

∂̇iu
∂ν

, Ṫri v
〉

Ḃ′, Ḃ
=

∫

Ω
(∆u)v dx +

∫

Ω
∇u · ∇v dx,

where u ∈ Ḣ1(Ω) with ∆u ∈ L2(Ω). Then, ∂̇iu∂ν ∈ Ḃ′(∂Ω).

∀v ∈ Ḣ1(Ωc),
〈

∂̇eu
∂ν

, Ṫre v
〉

Ḃ′, Ḃ
= −

∫

Ωc
(∆u)v dx −

∫

Ωc
∇u · ∇v dx,

where u ∈ Ḣ1(Ωc) with ∆u ∈ L2(Ωc). Then, ∂̇eu∂ν ∈ Ḃ′(∂Ω).
We denote

q
∂̇u
∂ν

y
:= ∂̇iu

∂ν − ∂̇eu
∂ν .

Proposition
∂̇i
∂ν : Ḣ1∆(Ω) → Ḃ′(∂Ω) and ∂̇e

∂ν : Ḣ1∆(Ωc) → Ḃ′(∂Ω) are continuous.
M.R. Lancia,A Transmission Problem with a Fractal Interface, 2002.
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Jump trace properties

Suppose that Ω ⊂ R
n is a two-sided Ḣ1-admissible domain.

V̇0,Ṡ(R
n\∂Ω) := {u ∈ V̇0(Rn\∂Ω) | Jṫr uK = 0}

and
V̇0,Ḋ(R

n\∂Ω) := {u ∈ V̇0(Rn\∂Ω) |
r ∂̇u
∂ν

z
= 0}.

Lemma

(i) ṫr : V̇0,Ṡ(Rn\∂Ω) → Ḃ(∂Ω), is a linear isometry and onto.

(ii) ∂̇
∂ν : V̇0,Ḋ(Rn\∂Ω) → B′(∂Ω), defined as ∂̇

∂ν := ∂̇i
∂ν = ∂̇e

∂ν , is a linear isometry
and onto.

(iii) V̇0(Rn\∂Ω) = V̇0,Ṡ(Rn\∂Ω)⊕ V̇0,Ḋ(Rn\∂Ω).
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Case of two-sided Ḣ1 admissible domains

Transmission problem:















−∆u = 0 on R
n \ ∂Ω

ui|∂Ω − ue|∂Ω = −f ∈ Ḃ(∂Ω)
∂iui
∂ν |∂Ω − ∂eue

∂ν |∂Ω = g ∈ Ḃ′(∂Ω)

(3)

Weak formulation:
∀v ∈ Ḣ1(Rn\∂Ω) with Jtr vK = 0,
u ∈ Ḣ1(Rn\∂Ω) a weak solution in the Ḣ1-sense if

〈u, v〉Ḣ1(Rn\∂Ω) = 0 ∀v ∈ C∞c (Rn\∂Ω),

〈u, v〉Ḣ1(Rn\∂Ω) =
〈

g, ṫr v
〉

Ḃ′(∂Ω),Ḃ(∂Ω)
∀v ∈ V̇0,Ṡ(R

n\∂Ω) and

〈u, v〉Ḣ1(Rn\∂Ω) =
〈q ∂̇v

∂ν

y
, f
〉

Ḃ′(∂Ω),Ḃ(∂Ω)
∀v ∈ V̇0,Ḋ(R

n\∂Ω).
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Case of two-sided Ḣ1 admissible domains

Transmission problem:















−∆u = 0 on R
n \ ∂Ω

ui|∂Ω − ue|∂Ω = −f ∈ Ḃ(∂Ω)
∂iui
∂ν |∂Ω − ∂eue

∂ν |∂Ω = g ∈ Ḃ′(∂Ω)

(3)

For g = 0:

Lemma
Let Ω ⊂ R

n be two-sided Ḣ1-admissible. For all f ∈ Ḃ(∂Ω), ∃! weak solution
uf ∈ V̇0,Ḋ(Rn\∂Ω) of (3) in the Ḣ1-sense s.t. ‖uf‖Ḣ1(Rn\∂Ω) ≤ ‖f‖Ḃ(∂Ω).

Double layer potential operator:

Ḋ : Ḃ(∂Ω) → V̇0,Ḋ(R
n\∂Ω), Ḋf := uf

is linear bounded bijective, and its inverse is Ḋ−1 = −JṫrK.
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(3)

For f = 0:

Lemma
Let Ω ⊂ R

n be two-sided Ḣ1-admissible. For all g ∈ Ḃ′(∂Ω), ∃! weak solution
ug ∈ V̇0,Ṡ(Rn\∂Ω) of (3) in the Ḣ1-sense s.t. ‖ug‖Ḣ1(Rn\∂Ω) ≤ ‖g‖Ḃ′(∂Ω).

Single layer potential operator:

Ṡ : Ḃ′(∂Ω) → V̇0,Ṡ(R
n\∂Ω), Ṡg := ug

is linear bounded bijective, and its inverse is Ṡ−1 =
q

∂̇
∂ν

y
.
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Case of two-sided Ḣ1 admissible domains

Transmission problem:















−∆u = 0 on R
n \ ∂Ω

ui|∂Ω − ue|∂Ω = −f ∈ Ḃ(∂Ω)
∂iui
∂ν |∂Ω − ∂eue

∂ν |∂Ω = g ∈ Ḃ′(∂Ω)

(3)

Corollary
Let Ω be two-sided Ḣ1-admissible.

∀f ∈ Ḃ(∂Ω) and ∀g ∈ Ḃ′(∂Ω), ∃!u ∈ V̇0(Rn\∂Ω)

in the Ḣ1-sense of (3) is given by Green’s third identity:

u = Ṡg− Ḋf

and satisfies
‖u‖Ḣ1(Rn\∂Ω) ≤ ‖f‖Ḃ(∂Ω) + ‖g‖Ḃ′(∂Ω).
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Representations of layer potentials

Let K denote the fundamental solution (or Green’s function) to ∆ on R
n.

Given a finite signed Borel measure ν , K ∗ ν := K ∗ ν+ − K ∗ ν− on R
n\∂Ω.

K ∗ ν(x) :=
∫

Rn
K(x − y)ν(dy), x ∈ R

n

We call ν centered if ν(Rn) = 0. The measure ν is of finite energy if ∃c > 0 such
that

∫

∂Ω
|v| d|ν| ≤ c ‖v‖H1(Rn), v ∈ H1(Rn) ∩ Cc(Rn). (4)

Proposition
Let n ≥ 2 and let Ω be a two-sided Ḣ1-admissible domain in R

n. Then

1. S = I ◦ tr∗,

where the Newton potential operator u 7→ Iu = (|ξ|−2û)∨ extended to an isometric
isomorphism Ḣ−1(Rn) → Ḣ1(Rn) (Iν = K ∗ ν).
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Representations of layer potentials

Let K denote the fundamental solution (or Green’s function) to ∆ on R
n.

Given a finite signed Borel measure ν , K ∗ ν := K ∗ ν+ − K ∗ ν− on R
n\∂Ω.

K ∗ ν(x) :=
∫

Rn
K(x − y)ν(dy), x ∈ R

n

We call ν centered if ν(Rn) = 0. The measure ν is of finite energy if ∃c > 0 such
that

∫

∂Ω
|v| d|ν| ≤ c ‖v‖H1(Rn), v ∈ H1(Rn) ∩ Cc(Rn). (4)

Proposition
Let n ≥ 2 and let Ω be a two-sided Ḣ1-admissible domain in R

n. Then

2. Let ν be a centered finite signed Borel measure on ∂Ω of finite energy. Then sets of
zero capacity have zero ν-measure, and ν defines an element of Ḃ′(∂Ω) by

〈ν, f 〉Ḃ′(∂Ω),Ḃ(∂Ω) :=

∫

∂Ω
f dν, f ∈ Ḃ(∂Ω). (5)

Moreover, K is a representative modulo constants of ∗ .
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Some properties of the generalized layer potentials

The operators S∂Ω : Ḃ′(∂Ω) → Ḣ1(Rn\∂Ω) and D∂Ω : Ḃ(∂Ω) → Ḣ1(Rn\∂Ω) are
linear and continuous.

Green’s third identity: the unique weak solution u ∈ Ḣ1(Rn\∂Ω) to (3) is

u := uS − uD = S∂Ωg−D∂Ωf .
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Some properties of the generalized layer potentials

The operators S∂Ω : Ḃ′(∂Ω) → Ḣ1(Rn\∂Ω) and D∂Ω : Ḃ(∂Ω) → Ḣ1(Rn\∂Ω) are
linear and continuous.

Green’s third identity: the unique weak solution u ∈ Ḣ1(Rn\∂Ω) to (3) is

u := uS − uD = S∂Ωg−D∂Ωf .

It holds:
∀g ∈ Ḃ′(∂Ω), S∂Ωg = G ∗Rn tr

∗ g.

In particular, if µ is a d-upper regular measure on ∂Ω and if g ∈ L2(∂Ω, µ):

S∂Ωg(x) :=
∫

∂Ω
G(x − y)g(y)µ(dy), x ∈ R

n.
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Neumann-Poincaré operator for −∆ with [[tr u]] = −f and
[[

∂u
∂ν

]]

= 0

Definition
If Ω is a bounded two-sided-admissible domain of Rn, let us define:

K̇ : Ḃ(∂Ω) → Ḃ(∂Ω), defined by

K̇ :=
1
2(ṫri+ ṫre) ◦ Ḋ,

is the Neumann-Poincaré operator for the problem associated to −∆:

K̇ : Ḃ(∂Ω) → Ḃ(∂Ω)

−f = [[ṫr u]] 7→ 1
2(ṫri+ ṫre)u =

1
2(ṫri+ ṫre) ◦ Ḋf .
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Adjoint Neumann-Poincaré operator for −∆ with g =

[[

∂u
∂ν

]]

and [[tr(u)]] = 0

K̇∗ : Ḃ′(∂Ω) → Ḃ′(∂Ω) denotes the adjoint operator to K̇ : Ḃ(∂Ω) → Ḃ(∂Ω).

Theorem

Let Ω be two-sided Ḣ1-admissible. Then

(i) ṫri ◦Ḋ = − 1
2 I+ K̇ and ṫre ◦Ḋ = 1

2 I+ K̇.

(ii) ∂̇i
∂ν ◦ Ṡ = 1

2 I+ K̇∗ and ∂̇e
∂ν ◦ Ṡ = − 1

2 I+ K̇∗. In particular,

K̇∗ =
1
2

( ∂̇i
∂ν

+
∂̇e
∂ν

)

◦ Ṡ

Moreover, K̇ : Ḃ(∂Ω) → Ḃ(∂Ω) and K̇∗ : Ḃ′(∂Ω) → Ḃ′(∂Ω) are linear and
continuous.
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Spectral properties of the Neumann-Poincaré operator on Ḃ(∂Ω)

Lipschitz case on L2 of G. Verchota 1984

Theorem

Let Ω be two-sided Ḣ1-admissible.

For λ ∈ C, if |λ− 1
2 | ≥ 1 or |λ+ 1

2 | ≥ 1, then
the operators λI+ K̇ and λI+ K̇∗ are invertible on Ḃ(∂Ω) and Ḃ′(∂Ω) respectively.

In particular, their real spectra are included in (− 1
2 ,

1
2).
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Spectral properties of the Neumann-Poincaré operator on Ḃ(∂Ω)

Lipschitz case on L2 of G. Verchota 1984

Im(λ)

Re(λ)
1
2− 1

2
3
2− 3

2

i
√
3
2

−i
√
3
2
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Two-phased transmission problem Lipschitz case of H. Ammari, H. Kang 2004

Let (Ω, µ) and (D, η) be two-sided-admissible domains of Rn,
D ⊂⊂ Ω, k ∈]0, 1[∪]1,+∞[.











∇ ·
(

(

1+ (k− 1)1D
)

∇u
)

= 0 on Ω,

∂iu
∂ν

∣

∣

∣

∣

∂Ω

= g ∈ Ḃ′(∂Ω)
(6)
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Subdomain identification: uniqueness with one measurement in the monotone
case

Theorem

Let D1 ⊂ D2 ⊂⊂ Ω be tree bounded two-sided-admissible domains of Rn. Let
k ∈]0, 1[∪]1,+∞[ and
u1 and u2 be the solutions to the two-phased transmission problem, respectively
associated to D1 and D2.

If, for some Neumann condition g ∈ Ḃ′(∂Ω)\{0}, tr∂Ωi u1 = tr∂Ωi u2, then D1 = D2.
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Conclusion

Results independent on the boundary measure

Poincaré-Steklov and layer potentials on such boundaries

Transmission problem and imagery application by the Neumann-Poincaré
operator

Thank you very much for your attention!
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