

Inverse and scattering problems on extension domains

Anna Rozanova-Pierrat

with G. Claret (CS), M. Hinz (Bielefeld), A. Teplyaev (Connecticut)

26 September 2024

Laboratoire MICS, Fédération de Mathèmatiques, CentraleSupélec, Université Paris-Saclay, France

Roughness, fractals

When fractals could appear

Bounded case: functional framework

Trace operator as an isometry

Poincaré-Steklov operator in the isometry framework

Calderón's problem

Transmission problems

Well-posedness

Neumann-Poincaré operator

Imaging

 G. Claret, M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Layer potential operators for transmission problems on extension domains, submitted, https:// arxiv.org/pdf/2403.11601.pdf

Roughness, fractals

When fractals could appear

Bounded case: functional framework

Trace operator as an isometry

Poincaré-Steklov operator in the isometry framework

Calderón's problem

Transmission problems

Well-posedness

Neumann-Poincaré operator

Imaging

Nature complexity and their models

Porous materials

Traffic noise absorbing wall

"Fractal wall" TM, porous material is the cement-wood (acoustic absorbent), Patent Ecole Polytechnique-Colas, Canadian and US patent

Acoustic anechoic chambers

Test anechoic chamber

Microsoft anechoic chamber -20db noise level, the quietest place on earth

Test semi-anechoic chamber

Irregularity of boundaries

 $\mathbf{1}\mu m$

Irregularity of boundaries

Irregularity of boundaries

Irregularity of boundaries

Antigiogenesis of cancerous tumours

Examples of self-similar fractal boundaries

Roughness, fractals When fractals could appea

Bounded case: functional framework

Trace operator as an isometry

Poincaré-Steklov operator in the isometry framework

Calderón's problem

Transmission problems

Well-posedness

Neumann-Poincaré operator

Imaging

(One-sided-)extension and admissible domains

Definition

A domain $\Omega \subset \mathbb{R}^n$ is called a H¹-extension domain if there exists a bounded linear extension operator $E_{\Omega} : H^1(\Omega) \to H^1(\mathbb{R}^n)$:

$$\forall u \in H^1(\Omega) \quad \exists v = E_\Omega u \in H^1(\mathbb{R}^n) \text{ with } v|_\Omega = u \text{ and } C(\Omega) > 0:$$

 $\|v\|_{H^1(\mathbb{R}^n)} \leq C \|u\|_{H^1(\Omega)}.$

 H^1 -extension domain Ω is called H^1 -**admissible** if its boundary $\partial \Omega$ has positive capacity.

Jones [1981]: If Ω is an uniform (or (ε, ∞) -) domain, then it is Sobolev extension domain.

Hajłasz, Koskela and Tuominen [2008]: $\Omega \subset \mathbb{R}^n$ is a H^1 -extension domain $\iff \Omega$ is an *n*-set and $H^1(\Omega) = C^{1,2}(\Omega)$ (space of the fractional sharp maximal functions) with norms' equivalence.

Examples, remarks

Domains with boundaries $\partial \Omega$ as

 $\cdot \frac{d \text{-sets:}}{\exists c_1, c_2 > 0,} \quad \exists c_1, c_2 > 0,$

$$c_1 r^d \leq \mu(\partial \Omega \cap \overline{B_r(x)}) \leq c_2 r^d, \quad \text{ for } \forall \ x \in \partial \Omega, \ 0 < r \leq 1,$$

- Lipschitz and more regular boundaries
- bounded dimension boundaries

 $n - 2 < \dim_H \partial \Omega \le n$

Trace operator

Proposition

For a H^1 -admissible domain Ω of \mathbb{R}^n , given $u \in H^1(\Omega)$, let

 $\operatorname{Tr}_{i} u := (E_{\Omega} u)^{\sim}|_{\partial \Omega}$

be the restriction of any quasi continuous representative $(E_{\Omega}u)^{\sim}$ of $E_{\Omega}u$. Then the **(interior) trace operator**

 $\operatorname{Tr}_i: H^1(\Omega) \to \mathcal{B}(\partial \Omega)$

is a well-defined linear surjection.

Consequently, q. e.

$$x \in \partial \Omega$$
 $\operatorname{Tr}_{i} u(x) = \lim_{r \to 0} \frac{1}{\lambda^{n}(\Omega \cap B_{r}(x))} \int_{\Omega \cap B_{r}(x)} u(y) dy.$

M. Biegert, 2009, Theorem 6.1, Remark 6.2 and Corollary 6.3

Trace theorem

Let $\Omega \subset \mathbb{R}^n$ be an H^1 -admissible bounded domain.

$$H^{1}(\Omega) = H^{1}_{O}(\Omega) \oplus V_{1}(\Omega), \quad V_{1}(\Omega) = \{ u \in H^{1}(\Omega) | -\Delta u + u = O \text{ weakly} \}$$

(i) The space H¹₀(Ω) := C[∞]_c(Ω)<sup>||·||<sub>H¹(Ω)</sup></sup> is the kernel of Tr_i, that is, H¹₀(Ω) = ker Tr_i.
 (ii) Endowed with the norm
</sup></sub>

$$\|f\|_{\mathcal{B}(\partial\Omega)} := \min\{\|v\|_{H^1(\Omega)} \mid v \in H^1(\Omega) \text{ and } \operatorname{Tr}_i v = f\},$$
(1)

the space $\mathcal{B}(\partial \Omega)$ is a Hilbert space.

(iii) $\| \operatorname{Tr}_{i} \|_{\mathcal{L}(H^{1}(\Omega), \mathcal{B}(\partial\Omega))} = 1.$ Its restriction $\operatorname{tr}_{i} : V_{1}(\Omega) \to \mathcal{B}(\partial\Omega)$ to $V_{1}(\Omega)$ is an isometry and onto.

Green formula

Let $\Omega \subset \mathbb{R}^n$ be H^1 -admissible.

$$H^{1}_{\Delta}(\Omega) := \left\{ u \in H^{1}(\Omega) \mid \Delta u \in L^{2}(\Omega) \right\}$$

Given $u \in H^1_{\Delta}(\Omega)$, there is a unique element g of $\mathcal{B}'(\partial \Omega)$ such that

$$\langle g, \operatorname{Tr}_{i} v \rangle_{\mathcal{B}'(\partial\Omega), \mathcal{B}(\partial\Omega)} = \int_{\Omega} (\Delta u) v \, \mathrm{d}x + \int_{\Omega} \nabla u \nabla v \, \mathrm{d}x, \quad v \in H^{1}(\Omega).$$

We call this element g the weak interior normal derivative of u (with respect to Ω) and denote it by $\frac{\partial_i u}{\partial \nu} := g$.

 $\frac{\partial_i}{\partial \nu}: H^1_{\Delta}(\Omega) \to \mathcal{B}'(\partial \Omega)$ is linear and bounded:

$$\left\|\frac{\partial_{i} u}{\partial \nu}\right\|_{\mathcal{B}'(\partial \Omega)} \leq \|u\|_{H^{1}(\Omega)} + \|\Delta u\|_{L^{2}(\Omega)}$$

(thanks to multiple works of M. R. Lancia (d-sets, Jonsson measures))

Some important corollaries

1. $orall f \in \mathcal{B}(\partial \Omega)$ the assigment

$$\iota(f)(h) := \langle f, h \rangle_{\mathcal{B}(\partial \Omega)}, \quad h \in \mathcal{B}(\partial \Omega),$$

defines an isometric isomorphism ι from $\mathcal{B}(\partial\Omega)$ onto $\mathcal{B}'(\partial\Omega)$. The dual pairing is defined by

$$\langle g, f \rangle_{\mathcal{B}'(\partial\Omega), \mathcal{B}(\partial\Omega)} := \langle \iota^{-1}(g), f \rangle_{\mathcal{B}(\partial\Omega)} = \langle g, \iota(f) \rangle_{\mathcal{B}'(\partial\Omega)}, \ f \in \mathcal{B}(\partial\Omega), \ g \in \mathcal{B}'(\partial\Omega).$$

We may identify $\mathcal{B}(\partial\Omega)$ with its image $\iota(\mathcal{B}(\partial\Omega)) \subset \mathcal{B}'(\partial\Omega)$ under ι .

2. Gelfand triple:

$$B(\partial\Omega) \hookrightarrow L^{2}(\partial\Omega,\mu) = (L^{2}(\partial\Omega,\mu))' \hookrightarrow B'(\partial\Omega), \quad B''(\partial\Omega) = B(\partial\Omega)$$

Some important corollaries

1. $orall f \in \mathcal{B}(\partial \Omega)$ the assigment

$$\iota(f)(h) := \langle f,h \rangle_{\mathcal{B}(\partial \Omega)}, \quad h \in \mathcal{B}(\partial \Omega),$$

defines an isometric isomorphism ι from $\mathcal{B}(\partial\Omega)$ onto $\mathcal{B}'(\partial\Omega)$. The dual pairing is defined by

$$\langle g, f \rangle_{\mathcal{B}'(\partial\Omega), \mathcal{B}(\partial\Omega)} := \langle \iota^{-1}(g), f \rangle_{\mathcal{B}(\partial\Omega)} = \langle g, \iota(f) \rangle_{\mathcal{B}'(\partial\Omega)}, \ f \in \mathcal{B}(\partial\Omega), \ g \in \mathcal{B}'(\partial\Omega).$$

We may identify $\mathcal{B}(\partial\Omega)$ with its image $\iota(\mathcal{B}(\partial\Omega)) \subset \mathcal{B}'(\partial\Omega)$ under ι .

2. Gelfand triple:

 $B(\partial\Omega) \hookrightarrow L^{2}(\partial\Omega,\mu) = (L^{2}(\partial\Omega,\mu))' \hookrightarrow B'(\partial\Omega), \quad B''(\partial\Omega) = B(\partial\Omega)$

The adjoint trace operator $\operatorname{Tr}_i^* : \mathcal{B}'(\partial\Omega) \to (H^1(\Omega))'$, is defined:

 $\forall \mathbf{v} \in H^{1}(\Omega), \quad \forall \mathbf{g} \in \mathcal{B}'(\partial \Omega), \quad \langle \mathbf{g}, \operatorname{Tr}_{i} \mathbf{v} \rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)} = \langle \operatorname{Tr}_{i}^{*} \mathbf{g}, \mathbf{v} \rangle_{(H^{1}(\Omega))', H^{1}(\Omega)}.$

Dirichlet type or harmonic extensions for $-\Delta + 1$ on admissible domains

 $V_1(\Omega)$ is also the space of weak solutions of the **Dirichlet boundary-value** problem

$$egin{array}{ll} -\Delta u+u&={\sf o}\quad {
m in}\ \Omega\ uert_{\partial\Omega}&=f\in \mathcal{B}(\partial\Omega) \end{array}$$

$$\begin{split} E^{\mathsf{D}} &: \mathcal{B}(\partial \Omega) \to E^{\mathsf{D}}(\mathcal{B}(\partial \Omega)) = V_1(\Omega) \subset H^1(\Omega) \\ f &\mapsto u^f = E^{\mathsf{D}}(f), \end{split}$$

where u^f is the unique weak solution to the Dirichlet boundary problem

Proposition

 E^{D} : $\mathcal{B}(\partial\Omega) \to V_{1}(\Omega)$ is an isometry: $\forall f \in \mathcal{B}(\partial\Omega) \quad ||f||_{\mathcal{B}(\partial\Omega)} = ||E^{D}f||_{H^{1}(\Omega)}$. In this sense $E^{D} = \operatorname{tr}_{i}^{-1}$.

Neumann problem for $-\Delta + 1$ on admissible domains

Let $\Omega \subset \mathbb{R}^n$ be an H^1 -admissible bounded domain.

$$\begin{cases} -\Delta u + u = \mathbf{o} \quad \text{in } \Omega \\ \frac{\partial u}{\partial \nu}|_{\partial \Omega} = g \in \mathcal{B}'(\partial \Omega) \end{cases}$$

$$\forall \mathbf{v} \in H^{1}(\Omega) \quad \exists ! \mathbf{u} \in H^{1}(\Omega) \quad \langle \mathbf{u}, \mathbf{v} \rangle_{H^{1}(\Omega)} = \langle \mathbf{g}, \operatorname{Tr}_{i} \mathbf{v} \rangle_{\mathcal{B}'(\partial\Omega), \mathcal{B}(\partial\Omega)}.$$

 $V_1(\Omega)$ is the space of the weak solutions of the **Neumann boundary value problem**.

$$\mathsf{E}^{\mathsf{N}}:rac{\partial_{i}u}{\partial
u}\in\mathcal{B}'(\partial\Omega)\mapsto u\in\mathsf{V}_{\mathsf{1}}(\Omega)\subset\mathsf{H}^{\mathsf{1}}(\Omega)$$

where u is the unique weak solution of the Neumann boundary value problem for $-\Delta + 1$, is an isometry, $(E^N)^{-1} = \frac{\partial}{\partial \nu_i}$ on $V_1(\Omega)$

$$\forall g \in \mathcal{B}'(\partial \Omega) \quad \|E^N g\|_{H^1(\Omega)} = \|\operatorname{tr}_i^* g\|_{(H^1(\Omega))'} = \|g\|_{\mathcal{B}'(\partial \Omega)}.$$

Corollary

Corollary

Let Ω be H^1 -admissible.

- (i) Both $E^N : \mathcal{B}'(\partial\Omega) \to V_1(\Omega)$ and $\frac{\partial_i}{\partial\nu} : V_1(\Omega) \to \mathcal{B}'(\partial\Omega)$ are isometries and onto, and we have $\frac{\partial_i}{\partial\nu} = (E^N)^{-1}$ on $V_1(\Omega)$.
- (ii) For $u, v \in V_1(\Omega)$ we have

$$\left\langle \frac{\partial_{i} u}{\partial \nu}, \operatorname{tr}_{i} v \right\rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)} = \left\langle u, v \right\rangle_{\mathcal{H}^{1}(\Omega)} = \left\langle \frac{\partial_{i} v}{\partial \nu}, \operatorname{tr}_{i} u \right\rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)}$$

(iii) The dual $\left(\frac{\partial_i}{\partial \nu}\right)^*$: $\mathcal{B}(\partial \Omega) \to (V_1(\Omega))'$ of $\frac{\partial_i}{\partial \nu}$ on $V_1(\Omega)$ is an isometry and onto.

Poincaré-Steklov operator for admissible domains

Theorem

Let Ω be a H¹-admissible bounded domain and $k \in \mathbb{R} \setminus \sigma(-\Delta_D)$. Then the **Poincaré-Steklov operator**

$$\begin{array}{l} \mathsf{A} : \mathcal{B}(\partial \Omega) \to \mathcal{B}'(\partial \Omega) \\ \\ \mathsf{Tr} \ \mathsf{u} \mapsto \left. \frac{\partial \mathsf{u}}{\partial \nu} \right|_{\partial \Omega} \end{array}$$

associated with the weak solutions from

$$u \in H^{1}_{\Delta}(\Omega) := \left\{ v \in H^{1}(\Omega) \mid \Delta v \in L^{2}(\Omega) \right\}$$

$$(-\Delta + k)u = 0 \text{ on } \Omega \quad \text{with} \quad \operatorname{Tr} u|_{\partial\Omega} = f \in \mathcal{B}(\partial\Omega),$$
(2)

is a linear bounded operator with $\text{Ker } A \neq \{0\}$ and it coincides with its adjoint.

d-sets K. Arfi, A.R.-P. 2019, A.R.-P. 2020, Lipschitz case by W. Arendt, A. F. M. ter Elst 2011, 2015

Poincaré-Steklov operator as an isometry for admissible domains

Lemma

Let Ω be a bounded $H^1\text{-}admissible$ domain.

- (i) For any k ∈ ℝ \ σ(Δ_D) the Poincaré-Steklov operator A_k : B(∂Ω) → B'(∂Ω) is injective if and only if k is not an eigenvalue of the self-adjoint Neumann Laplacian for Ω.
- (ii) The Poincaré-Steklov operator $A_1 : \mathcal{B}(\partial\Omega) \to \mathcal{B}'(\partial\Omega)$ is an isometry and

$$\mathsf{A}_1 = \frac{\partial_i}{\partial \nu} \circ (\mathrm{tr}_i)^{-1}.$$

Different isometries

$$\begin{split} (E^{N})^{-1} &= \frac{\partial}{\partial \nu_{i}}, \, E^{D} = \operatorname{tr}_{i}^{-1} \\ &\quad \forall g \in \mathcal{B}'(\partial \Omega) \quad \|g\|_{\mathcal{B}'(\partial \Omega)} = \|\operatorname{tr}_{i}^{*}g\|_{(H^{1}(\Omega))'}, \\ &\quad \forall u \in V_{1}(\Omega) \quad \|u\|_{H^{1}(\Omega)} = \|\operatorname{tr}_{i}u\|_{\mathcal{B}(\partial \Omega)}. \end{split}$$

in complement to S. N. Chandler Wilde, D. P. Hewett, A. Moiola, 2017-...

Framework of harmonic problems for $-\Delta$

Definition

 $\dot{H}^{1}(\Omega) = \{ u \in L^{2}_{loc}(\Omega) | \nabla u \in L^{2}(\Omega, \mathbb{R}^{n}) \text{ modulo locally constant functions} \}$

is the Hilbert space, endowed with the scalar product $\langle u, v \rangle_{\dot{H}^1(\Omega)} = \int_{\Omega} \nabla u \nabla v \, dx$.

• A domain $\Omega \subset \mathbb{R}^n$ is an \dot{H}^1 -extension domain if there is a bounded linear extension operator $\dot{E}_{\Omega} : \dot{H}^1(\Omega) \to \dot{H}^1(\mathbb{R}^n)$.

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985

Framework of harmonic problems for $-\Delta$

Definition

 $\dot{H}^{1}(\Omega) = \{ u \in L^{2}_{loc}(\Omega) | \nabla u \in L^{2}(\Omega, \mathbb{R}^{n}) \text{ modulo locally constant functions} \}$

is the Hilbert space, endowed with the scalar product $\langle u, v \rangle_{\dot{H}^1(\Omega)} = \int_{\Omega} \nabla u \nabla v \, dx$.

- A domain $\Omega \subset \mathbb{R}^n$ is an \dot{H}^1 -extension domain if there is a bounded linear extension operator $\dot{E}_{\Omega} : \dot{H}^1(\Omega) \to \dot{H}^1(\mathbb{R}^n)$.
- Ω is H¹-admissible if 1) Ω is an H¹-extension domain and
 2) ∂Ω is compact and of positive capacity.

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985

Framework of harmonic problems for $-\Delta$

Definition

 $\dot{H}^{1}(\Omega) = \{ u \in L^{2}_{loc}(\Omega) | \nabla u \in L^{2}(\Omega, \mathbb{R}^{n}) \text{ modulo locally constant functions} \}$

is the Hilbert space, endowed with the scalar product $\langle u, v \rangle_{\dot{H}^1(\Omega)} = \int_{\Omega} \nabla u \nabla v \, dx$.

- A domain $\Omega \subset \mathbb{R}^n$ is an \dot{H}^1 -extension domain if there is a bounded linear extension operator $\dot{E}_{\Omega} : \dot{H}^1(\Omega) \to \dot{H}^1(\mathbb{R}^n)$.
- Ω is H¹-admissible if 1) Ω is an H¹-extension domain and
 2) ∂Ω is compact and of positive capacity.
- If so, $\dot{\mathcal{B}}(\partial\Omega)$ is the vector space modulo constants of all q.e. equivalence classes of pointwise restrictions $\tilde{w}|_{\partial\Omega}$ of quasi continuous representatives \tilde{w} of classes $u \in \dot{H}^1(\mathbb{R}^n)$.

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985

Precisions on $\dot{H}^{1}(\Omega)$ and $\dot{\mathcal{B}}(\partial\Omega)$

(i) Let Ω be a bounded $\mathit{H}^{1}\text{-}\mathsf{extension}$ domain. Then

$$\dot{H}^{1}(\Omega) \approx \{ u \in H^{1}(\Omega) | \int_{\Omega} u(x) \, \mathrm{d}x = \mathsf{o} \}$$

 $H^{1}(\Omega) \approx \dot{H}^{1}(\Omega) \oplus \mathbb{R}$

(ii) Let Ω be a bounded $\textit{H}^1\mathchar`-$ and $\dot{\textit{H}}^1\mathchar`-$ admissible domain. Then

 $\mathcal{B}(\partial\Omega) pprox \dot{\mathcal{B}}(\partial\Omega) \oplus \mathbb{R}$

Several Examples

For $n \ge 2$:

- (i) **by JONES-1981:** Any (ε, δ) -domain $\Omega \subset \mathbb{R}^n$ is an H^1 -domain; any (ε, ∞) -domain is \dot{H}^1 -extension domain.
- (ii) Any (ε, ∞) -domain $\Omega \subset \mathbb{R}^n$ with $\mathbb{R}^n \setminus \overline{\Omega} \neq \emptyset$ is H^1 -admissible, and if one of the two open sets is bounded, it is also \dot{H}^1 -admissible.
- (iii) $\Omega = \mathbb{R}^n \setminus \{\mathbf{0}\}$ is not H^1 -admissible.

For *n* = 1:

- (a) (a, b) with a or b finite is H¹-admissible;
- (b) if a and b finite, (a, b) also \dot{H}^1 -admissible.

Conductivity problem

Let Ω be a bounded \dot{H}^1 -admissible domain. $\gamma \in L^{\infty}_{\gg 0}(\Omega)$ continuous near $\partial \Omega$.

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = \mathbf{o} & \text{on } \Omega, \\ \gamma \frac{\partial_i}{\partial \nu} u = g \in \dot{\mathcal{B}}'(\partial \Omega). \end{cases}$$

Variational formulation: $\forall v \in \dot{H}^{1}(\Omega)$, $(\gamma \nabla u, \nabla v)_{L^{2}(\Omega)} = \langle g, \operatorname{tr}_{i} v \rangle_{\dot{\mathcal{B}}'(\partial \Omega), \dot{\mathcal{B}}(\partial \Omega)}$.

$$\mathsf{A}_{\gamma}: \mathsf{Tr}\, u|_{\partial\Omega} \mapsto \left. \gamma \frac{\partial_{i}}{\partial \nu} u \right|_{\partial\Omega}$$

Calderón's problem

Knowing A_{γ} , can we recover γ ?

Theorem Let Ω be a bounded \dot{H}^1 -admissible domain of \mathbb{R}^n such that

$$\exists \delta, \rho > \mathbf{0}, \ \forall \mathbf{x}_{\mathbf{0}} \in \partial \Omega, \ \forall \mathbf{r} < \rho, \ \exists \mathbf{z} \in \Omega^{\mathsf{c}}, \quad \delta \mathbf{r} < \mathbf{d}(\mathbf{z}, \partial \Omega) \leq |\mathbf{z} - \mathbf{x}_{\mathbf{0}}| < \mathbf{r}.$$

Let $\ell, L > 0$. Let $\gamma_1, \gamma_2 \in W^{1,\infty}(\Omega)$ be such that $\ell \leq \gamma_{1,2}$ and $\|\gamma_{1,2}\|_{W^{1,\infty}(\Omega)} \leq L$. Then, it holds

$$\|\gamma_{1}-\gamma_{2}\|_{L^{\infty}(\partial\Omega)} \leq c \, \|A_{\gamma_{1}}-A_{\gamma_{2}}\|_{\mathcal{L}(\dot{\mathcal{B}}(\partial\Omega),\dot{\mathcal{B}}'(\partial\Omega))},$$

where $\mathbf{c} > \mathbf{0}$ depends on ℓ , \mathbf{L} , \mathbf{n} , $diam(\Omega)$ and $c_{\mathbf{n}}^{\Omega}$, where

$$\forall x \in \Omega, \ \forall r \in]0,1], \quad \lambda^n(B_r(x) \cap \Omega) \ge c_n^\Omega r^n.$$

Generalization of: Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, 1991.

Roughness, fractals

When fractals could appear

Bounded case: functional framework

Trace operator as an isometry

Poincaré-Steklov operator in the isometry framework

Calderón's problem

Transmission problems

Well-posedness

Neumann-Poincaré operator

Imaging

Classical case: Lipschitz boundaries

Transmission problem:

$$\begin{cases} -\Delta u = 0 & \text{on } \mathbb{R}^n \setminus \partial \Omega \\ \llbracket \operatorname{tr} u \rrbracket = f \in L^2_0(\partial \Omega, \lambda^{(n-1)}), \\ \llbracket \frac{\partial u}{\partial \nu} \rrbracket = g \in L^2_0(\partial \Omega, \lambda^{(n-1)}). \end{cases}$$

Solution given by $u = \mathcal{S}_{\partial\Omega}g - \mathcal{D}_{\partial\Omega}f$ where:

$$\mathcal{S}_{\partial\Omega}g(x) := \int_{\partial\Omega} G(x-y)g(y)\,\lambda^{(n-1)}(\mathrm{d} y), \quad x\in\mathbb{R}^n$$

is the single layer potential operator, and

$$\mathcal{D}_{\partial\Omega}f(x):=\int_{\partial\Omega}\frac{\partial \mathsf{G}}{\partial\nu_y}(x-y)f(y)\,\lambda^{(n-1)}(\mathrm{d} y),\quad x\in\mathbb{R}^n\backslash\partial\Omega$$

is the **double layer potential operator**, with *G* the fundamental solution to $-\Delta$ on \mathbb{T}^n

<u>r</u>⊳n

Verchota, 1984.

Two-sided \dot{H}^1 -admissible domains

$$\begin{cases} -\Delta u &= \mathsf{o} \quad \text{on } \mathbb{R}^n \setminus \partial \Omega \\ u_i|_{\partial\Omega} - u_e|_{\partial\Omega} &= -f \in \dot{\mathcal{B}}(\partial\Omega) \\ \frac{\partial_i u_i}{\partial \nu}|_{\partial\Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial\Omega} &= g \in \dot{\mathcal{B}}'(\partial\Omega) \end{cases}$$

Definition

 $\Omega \subset \mathbb{R}^n$ is a two-sided H1-admissible domain if

- 1. $\Omega \neq \varnothing$ and $\Omega^c \neq \varnothing$ are $\dot{H}^1\text{-extension}$ domains
- 2. the Lebesgue measure of $\partial\Omega$ is zero.

 $\Rightarrow \dim_{\mathcal{H}}(\partial \Omega) \ge n - 1$, hence its capacity is positive.

Two-sided \dot{H}^1 -admissible domains

$$\begin{cases} -\Delta u &= 0 \quad \text{on } \mathbb{R}^n \setminus \partial \Omega \\ u_i|_{\partial\Omega} - u_e|_{\partial\Omega} &= -f \in \dot{\mathcal{B}}(\partial\Omega) \\ \frac{\partial_i u_i}{\partial \nu}|_{\partial\Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial\Omega} &= g \in \dot{\mathcal{B}}'(\partial\Omega) \end{cases}$$

$$\begin{split} \dot{H}^{1}(\mathbb{R}^{n} \setminus \partial \Omega) &= \dot{H}^{1}(\Omega) \oplus \dot{H}^{1}(\Omega^{c}) = \dot{H}^{1}_{o}(\mathbb{R}^{n} \setminus \partial \Omega) \oplus \dot{V}_{o}(\mathbb{R}^{n} \setminus \partial \Omega) \\ & u \in \dot{H}^{1}(\mathbb{R}^{n} \setminus \partial \Omega), \quad [\![\dot{\mathsf{T}}\mathsf{r}\,u]\!] := \dot{\mathsf{T}}\mathsf{r}_{i}\,u - \dot{\mathsf{T}}\mathsf{r}_{e}\,u \\ & \dot{\mathsf{T}}\mathsf{r}_{i} : \dot{H}^{1}(\Omega) \to \dot{\mathcal{B}}(\partial \Omega), \quad \dot{\mathsf{T}}\mathsf{r}_{e} : \dot{H}^{1}(\Omega^{c}) \to \dot{\mathcal{B}}(\partial \Omega) \end{split}$$

 $\dot{\mathcal{B}}(\partial\Omega)$ is the Hilbert space with norm

$$\|f\|_{\dot{\mathcal{B}}(\partial\Omega),t} := \left(\|f\|_{\dot{\mathcal{B}}(\partial\Omega),i}^2 + \|f\|_{\dot{\mathcal{B}}(\partial\Omega),e}^2\right)^{1/2}$$

Weak exterior normal derivative

 Ω is a two-sided $\dot{H}^{1}\text{-}admissible$ domain.

$$\forall \mathbf{v} \in \dot{H}^{1}(\Omega), \quad \left\langle \frac{\dot{\partial}_{i} \mathbf{u}}{\partial \nu}, \dot{\mathsf{T}} \mathbf{r}_{i} \mathbf{v} \right\rangle_{\dot{\mathcal{B}}', \dot{\mathcal{B}}} = \int_{\Omega} (\Delta \mathbf{u}) \mathbf{v} \, \mathrm{d} \mathbf{x} + \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \, \mathrm{d} \mathbf{x},$$

where $u \in \dot{H}^1(\Omega)$ with $\Delta u \in L^2(\Omega)$. Then, $\frac{\dot{\partial}_i u}{\partial \nu} \in \dot{\mathcal{B}}'(\partial \Omega)$.

$$\forall \mathbf{v} \in \dot{H}^{1}(\Omega^{c}), \quad \left\langle \frac{\dot{\partial}_{\boldsymbol{e}} \mathbf{u}}{\partial \nu}, \dot{\mathsf{T}}_{\mathbf{r}_{\boldsymbol{e}}} \mathbf{v} \right\rangle_{\dot{\mathcal{B}}', \dot{\mathcal{B}}} = -\int_{\Omega^{c}} (\Delta \mathbf{u}) \mathbf{v} \, \mathrm{d} \mathbf{x} - \int_{\Omega^{c}} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \, \mathrm{d} \mathbf{x},$$

where $u \in \dot{H}^{1}(\Omega^{c})$ with $\Delta u \in L^{2}(\Omega^{c})$. Then, $\frac{\dot{\partial}_{e}u}{\partial\nu} \in \dot{\mathcal{B}}'(\partial\Omega)$. We denote $\left[\!\left[\frac{\dot{\partial}u}{\partial\nu}\right]\!\right] := \frac{\dot{\partial}_{i}u}{\partial\nu} - \frac{\dot{\partial}_{e}u}{\partial\nu}$.

Proposition

 $\frac{\partial_i}{\partial u}: \dot{H}^1_{\Lambda}(\Omega) \to \dot{\mathcal{B}}'(\partial \Omega) \text{ and } \frac{\partial_e}{\partial u}: \dot{H}^1_{\Lambda}(\Omega^c) \to \dot{\mathcal{B}}'(\partial \Omega) \text{ are continuous.}$

M.R. Lancia, A Transmission Problem with a Fractal Interface, 2002.

Jump trace properties

Suppose that $\Omega \subset \mathbb{R}^n$ is a two-sided \dot{H}^1 -admissible domain.

$$\dot{V}_{\mathsf{o},\dot{\mathcal{S}}}(\mathbb{R}^n \backslash \partial \Omega) := \{ u \in \dot{V}_{\mathsf{o}}(\mathbb{R}^n \backslash \partial \Omega) \mid \llbracket \mathrm{tr} \, u \rrbracket = \mathsf{o} \}$$

and

$$\dot{V}_{\mathsf{o},\dot{\mathcal{D}}}(\mathbb{R}^n\backslash\partial\Omega):=\{u\in\dot{V}_\mathsf{o}(\mathbb{R}^n\backslash\partial\Omega)\mid \left[\!\!\left[\frac{\dot{\partial} u}{\partial\nu}\right]\!\!\right]=\mathsf{o}\}.$$

Lemma

- (i) $\operatorname{tr}: \dot{V}_{o,\dot{S}}(\mathbb{R}^n \setminus \partial \Omega) \to \dot{\mathcal{B}}(\partial \Omega)$, is a linear isometry and onto.
- (ii) $\frac{\dot{\partial}}{\partial\nu}: \dot{V}_{o,\dot{D}}(\mathbb{R}^n \setminus \partial\Omega) \to \mathcal{B}'(\partial\Omega)$, defined as $\frac{\dot{\partial}}{\partial\nu}:=\frac{\dot{\partial}_i}{\partial\nu}=\frac{\dot{\partial}_e}{\partial\nu}$, is a linear isometry and onto.

(iii)
$$\dot{V}_{0}(\mathbb{R}^{n}\setminus\partial\Omega) = \dot{V}_{0,\dot{\mathcal{S}}}(\mathbb{R}^{n}\setminus\partial\Omega) \oplus \dot{V}_{0,\dot{\mathcal{D}}}(\mathbb{R}^{n}\setminus\partial\Omega).$$

Transmission problem:

$$\begin{cases} -\Delta u = \mathbf{0} \quad \text{on } \mathbb{R}^{n} \setminus \partial \Omega \\ u_{i}|_{\partial\Omega} - u_{e}|_{\partial\Omega} = -f \in \dot{\mathcal{B}}(\partial\Omega) \\ \frac{\partial_{i}u_{i}}{\partial\nu}|_{\partial\Omega} - \frac{\partial_{e}u_{e}}{\partial\nu}|_{\partial\Omega} = g \in \dot{\mathcal{B}}'(\partial\Omega) \end{cases}$$
(3)

Weak formulation:

 $\begin{aligned} \forall \mathbf{v} \in \dot{H}^{1}(\mathbb{R}^{n} \setminus \partial \Omega) \text{ with } \llbracket \operatorname{tr} \mathbf{v} \rrbracket &= \mathbf{0}, \\ u \in \dot{H}^{1}(\mathbb{R}^{n} \setminus \partial \Omega) \text{ a weak solution in the } \dot{H}^{1} \text{-sense if} \end{aligned}$

$$\begin{split} \langle u, v \rangle_{\dot{H}^{1}(\mathbb{R}^{n} \setminus \partial \Omega)} &= \mathbf{O} \quad \forall v \in C^{\infty}_{c}(\mathbb{R}^{n} \setminus \partial \Omega), \\ \langle u, v \rangle_{\dot{H}^{1}(\mathbb{R}^{n} \setminus \partial \Omega)} &= \langle g, \operatorname{tr} v \rangle_{\dot{\mathcal{B}}'(\partial \Omega), \dot{\mathcal{B}}(\partial \Omega)} \quad \forall v \in \dot{V}_{o, \dot{\mathcal{S}}}(\mathbb{R}^{n} \setminus \partial \Omega) \text{ and} \\ \langle u, v \rangle_{\dot{H}^{1}(\mathbb{R}^{n} \setminus \partial \Omega)} &= \langle \left[\!\!\left[\frac{\dot{\partial} v}{\partial \nu}\right]\!\!\right], f \rangle_{\dot{\mathcal{B}}'(\partial \Omega), \dot{\mathcal{B}}(\partial \Omega)} \quad \forall v \in \dot{V}_{o, \dot{\mathcal{D}}}(\mathbb{R}^{n} \setminus \partial \Omega). \end{split}$$

Transmission problem:

$$\begin{cases} -\Delta u = \mathbf{0} \quad \text{on } \mathbb{R}^{n} \setminus \partial \Omega \\ u_{i}|_{\partial\Omega} - u_{e}|_{\partial\Omega} = -f \in \dot{\mathcal{B}}(\partial\Omega) \\ \frac{\partial_{i}u_{i}}{\partial\nu}|_{\partial\Omega} - \frac{\partial_{e}u_{e}}{\partial\nu}|_{\partial\Omega} = g \in \dot{\mathcal{B}}'(\partial\Omega) \end{cases}$$
(3)

For *g* = 0:

Lemma

Let $\Omega \subset \mathbb{R}^n$ be two-sided \dot{H}^1 -admissible. For all $f \in \dot{\mathcal{B}}(\partial\Omega)$, $\exists !$ weak solution $u^f \in \dot{V}_{o,\dot{\mathcal{D}}}(\mathbb{R}^n \setminus \partial\Omega)$ of (3) in the \dot{H}^1 -sense s.t. $\|u^f\|_{\dot{H}^1(\mathbb{R}^n \setminus \partial\Omega)} \leq \|f\|_{\dot{\mathcal{B}}(\partial\Omega)}$. Double layer potential operator:

$$\dot{\mathcal{D}}:\dot{\mathcal{B}}(\partial\Omega)\to\dot{V}_{o,\dot{\mathcal{D}}}(\mathbb{R}^n\backslash\partial\Omega),\quad\dot{\mathcal{D}}f:=u^f$$

is linear bounded bijective, and its inverse is $\dot{\mathcal{D}}^{-1} = - [[\dot{t}r]]$.

Transmission problem:

$$\begin{cases} -\Delta u = \mathbf{0} \quad \text{on } \mathbb{R}^{n} \setminus \partial \Omega \\ u_{i}|_{\partial\Omega} - u_{e}|_{\partial\Omega} = -f \in \dot{\mathcal{B}}(\partial\Omega) \\ \frac{\partial_{i}u_{i}}{\partial\nu}|_{\partial\Omega} - \frac{\partial_{e}u_{e}}{\partial\nu}|_{\partial\Omega} = g \in \dot{\mathcal{B}}'(\partial\Omega) \end{cases}$$
(3)

For f = 0:

Lemma

Let $\Omega \subset \mathbb{R}^n$ be two-sided \dot{H}^1 -admissible. For all $g \in \dot{\mathcal{B}}'(\partial \Omega)$, $\exists !$ weak solution $u_g \in \dot{V}_{o,\dot{\mathcal{S}}}(\mathbb{R}^n \setminus \partial \Omega)$ of (3) in the \dot{H}^1 -sense s.t. $\|u_g\|_{\dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)} \leq \|g\|_{\dot{\mathcal{B}}'(\partial \Omega)}$. Single layer potential operator:

$$\dot{\mathcal{S}}:\dot{\mathcal{B}}'(\partial\Omega)
ightarrow\dot{V}_{\mathsf{o},\dot{\mathcal{S}}}(\mathbb{R}^nackslash\partial\Omega),\quad\dot{\mathcal{S}}g:=u_g$$

is linear bounded bijective, and its inverse is $\dot{S}^{-1} = \begin{bmatrix} \dot{\partial} \\ \partial \nu \end{bmatrix}$.

Transmission problem:

$$\begin{cases} -\Delta u = \mathbf{0} \quad \text{on } \mathbb{R}^{n} \setminus \partial \Omega \\ u_{i}|_{\partial\Omega} - u_{e}|_{\partial\Omega} = -f \in \dot{\mathcal{B}}(\partial\Omega) \\ \frac{\partial_{i}u_{i}}{\partial\nu}|_{\partial\Omega} - \frac{\partial_{e}u_{e}}{\partial\nu}|_{\partial\Omega} = g \in \dot{\mathcal{B}}'(\partial\Omega) \end{cases}$$
(3)

Corollary

Let Ω be two-sided \dot{H}^1 -admissible.

$$\forall f \in \dot{\mathcal{B}}(\partial \Omega) \text{ and } \forall g \in \dot{\mathcal{B}}'(\partial \Omega), \quad \exists ! u \in \dot{V}_{o}(\mathbb{R}^{n} \setminus \partial \Omega)$$

in the \dot{H}^1 -sense of (3) is given by **Green's third identity:**

$$u = \dot{\mathcal{S}}g - \dot{\mathcal{D}}f$$

and satisfies

$$\|u\|_{\dot{H}^{1}(\mathbb{R}^{n}\setminus\partial\Omega)}\leq \|f\|_{\dot{\mathcal{B}}(\partial\Omega)}+\|g\|_{\dot{\mathcal{B}}'(\partial\Omega)}.$$

Representations of layer potentials

Let *K* denote the fundamental solution (or Green's function) to Δ on \mathbb{R}^n . Given a finite signed Borel measure ν , $K * \nu := K * \nu^+ - K * \nu^-$ on $\mathbb{R}^n \setminus \partial \Omega$.

$$K * \nu(\mathbf{x}) := \int_{\mathbb{R}^n} K(\mathbf{x} - \mathbf{y}) \nu(\mathrm{d}\mathbf{y}), \quad \mathbf{x} \in \mathbb{R}^n$$

We call ν centered if $\nu(\mathbb{R}^n) = \mathbf{0}$. The measure ν is of finite energy if $\exists \mathbf{c} > \mathbf{0}$ such that

$$\int_{\partial\Omega} |\mathbf{v}| \, \mathrm{d}|\nu| \le c \, \|\mathbf{v}\|_{H^1(\mathbb{R}^n)}, \quad \mathbf{v} \in H^1(\mathbb{R}^n) \cap C_c(\mathbb{R}^n). \tag{4}$$

Proposition

Let $n\geq 2$ and let Ω be a two-sided $\dot{H}^1\text{-}admissible$ domain in $\mathbb{R}^n.$ Then

 $1. \ \overline{\mathcal{S}} = \mathcal{I} \circ \overline{\mathsf{tr}}^*,$

where the Newton potential operator $\mathbf{u} \mapsto \mathcal{I}\mathbf{u} = (|\xi|^{-2}\hat{\mathbf{u}})^{\vee}$ extended to an isometric isomorphism $\dot{H}^{-1}(\mathbb{R}^n) \to \dot{H}^{1}(\mathbb{R}^n)$ ($\mathcal{I}\nu = K * \nu$).

Representations of layer potentials

Let *K* denote the fundamental solution (or Green's function) to Δ on \mathbb{R}^n . Given a finite signed Borel measure ν , $K * \nu := K * \nu^+ - K * \nu^-$ on $\mathbb{R}^n \setminus \partial \Omega$.

$$K * \nu(\mathbf{x}) := \int_{\mathbb{R}^n} K(\mathbf{x} - \mathbf{y}) \nu(\mathrm{d}\mathbf{y}), \quad \mathbf{x} \in \mathbb{R}^n$$

We call ν centered if $\nu(\mathbb{R}^n) = 0$. The measure ν is of finite energy if $\exists c > 0$ such that

$$\int_{\partial\Omega} |\mathbf{v}| \, \mathrm{d}|\nu| \le \mathbf{c} \, \|\mathbf{v}\|_{H^1(\mathbb{R}^n)}, \quad \mathbf{v} \in H^1(\mathbb{R}^n) \cap C_{\mathbf{c}}(\mathbb{R}^n).$$
(4)

Proposition

Let $n\geq 2$ and let Ω be a two-sided $\dot{H}^1\text{-}admissible$ domain in $\mathbb{R}^n.$ Then

Let ν be a centered finite signed Borel measure on ∂Ω of finite energy. Then sets of zero capacity have zero ν-measure, and ν defines an element of B'(∂Ω) by

$$\langle \nu, f \rangle_{\dot{\mathcal{B}}'(\partial\Omega), \dot{\mathcal{B}}(\partial\Omega)} := \int_{\partial\Omega} f \, \mathrm{d}\nu, \quad f \in \dot{\mathcal{B}}(\partial\Omega).$$
 (5)

Some properties of the generalized layer potentials

The operators $S_{\partial\Omega}$: $\dot{\mathcal{B}}'(\partial\Omega) \to \dot{H}^1(\mathbb{R}^n \setminus \partial\Omega)$ and $\mathcal{D}_{\partial\Omega}$: $\dot{\mathcal{B}}(\partial\Omega) \to \dot{H}^1(\mathbb{R}^n \setminus \partial\Omega)$ are **linear and continuous**.

Green's third identity: the unique weak solution $u \in \dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)$ to (3) is

$$u := u_{\mathcal{S}} - u_{\mathcal{D}} = \mathcal{S}_{\partial\Omega}g - \mathcal{D}_{\partial\Omega}f.$$

Some properties of the generalized layer potentials

The operators $S_{\partial\Omega}$: $\dot{\mathcal{B}}'(\partial\Omega) \to \dot{H}^1(\mathbb{R}^n \setminus \partial\Omega)$ and $\mathcal{D}_{\partial\Omega}$: $\dot{\mathcal{B}}(\partial\Omega) \to \dot{H}^1(\mathbb{R}^n \setminus \partial\Omega)$ are **linear and continuous**.

Green's third identity: the unique weak solution $u \in \dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)$ to (3) is

 $u := u_{\mathcal{S}} - u_{\mathcal{D}} = \mathcal{S}_{\partial\Omega}g - \mathcal{D}_{\partial\Omega}f.$

It holds:

$$\forall g \in \dot{\mathcal{B}}'(\partial \Omega), \quad \mathcal{S}_{\partial \Omega}g = G *_{\mathbb{R}^n} \operatorname{tr}^* g.$$

In particular, if μ is a *d*-upper regular measure on $\partial\Omega$ and if $g \in L^2(\partial\Omega, \mu)$:

$$\mathcal{S}_{\partial\Omega}g(x) := \int_{\partial\Omega} G(x-y)g(y)\,\mu(\mathrm{d} y), \quad x\in\mathbb{R}^n.$$

Neumann-Poincaré operator for
$$-\Delta$$
 with $[[tr u]] = -f$ and $\left\| \frac{\partial u}{\partial \nu} \right\| = 0$

Definition

If Ω is a bounded two-sided-admissible domain of \mathbb{R}^n , let us define:

 $\dot{\mathcal{K}}:\dot{\mathcal{B}}(\partial\Omega)
ightarrow\dot{\mathcal{B}}(\partial\Omega)$, defined by

$$\dot{\mathcal{K}} := \frac{1}{2} (\dot{\mathrm{tr}}_i + \dot{\mathrm{tr}}_e) \circ \dot{\mathcal{D}},$$

is the Neumann-Poincaré operator for the problem associated to $-\Delta$:

$$\dot{\mathcal{K}} : \dot{\mathcal{B}}(\partial\Omega) \to \dot{\mathcal{B}}(\partial\Omega)$$
$$-f = [[\dot{\mathrm{tr}} u]] \mapsto \frac{1}{2}(\dot{\mathrm{tr}}_i + \dot{\mathrm{tr}}_e)u = \frac{1}{2}(\dot{\mathrm{tr}}_i + \dot{\mathrm{tr}}_e) \circ \dot{\mathcal{D}}f$$

Adjoint Neumann-Poincaré operator for $-\Delta$ with $g = \begin{bmatrix} \frac{\partial u}{\partial v} \end{bmatrix}$ and $\llbracket tr(u) \rrbracket = 0$

 $\dot{\mathcal{K}}^*: \dot{\mathcal{B}}'(\partial\Omega) \to \dot{\mathcal{B}}'(\partial\Omega)$ denotes the adjoint operator to $\dot{\mathcal{K}}: \dot{\mathcal{B}}(\partial\Omega) \to \dot{\mathcal{B}}(\partial\Omega)$.

Theorem

Let Ω be two-sided $\dot{H}^{1}\text{-}admissible.$ Then

(i)
$$\dot{t}r_i \circ \dot{D} = -\frac{1}{2}I + \dot{K}$$
 and $\dot{t}r_e \circ \dot{D} = \frac{1}{2}I + \dot{K}$.
(ii) $\frac{\dot{\partial}_i}{\partial \nu} \circ \dot{S} = \frac{1}{2}I + \dot{K}^*$ and $\frac{\dot{\partial}_e}{\partial \nu} \circ \dot{S} = -\frac{1}{2}I + \dot{K}^*$. In particular,
 $\dot{K}^* = \frac{1}{2} \left(\frac{\dot{\partial}_i}{\partial \nu} + \frac{\dot{\partial}_e}{\partial \nu} \right) \circ \dot{S}$

Moreover, $\dot{\mathcal{K}}$: $\dot{\mathcal{B}}(\partial\Omega) \rightarrow \dot{\mathcal{B}}(\partial\Omega)$ and $\dot{\mathcal{K}}^*$: $\dot{\mathcal{B}}'(\partial\Omega) \rightarrow \dot{\mathcal{B}}'(\partial\Omega)$ are linear and continuous.

Spectral properties of the Neumann-Poincaré operator on $\dot{\mathcal{B}}(\partial\Omega)$

Lipschitz case on L² of G. Verchota 1984

Theorem

Let Ω be two-sided \dot{H}^1 -admissible.

For $\lambda \in \mathbb{C}$, if $|\lambda - \frac{1}{2}| \ge 1$ or $|\lambda + \frac{1}{2}| \ge 1$, then the operators $\lambda \mathbf{I} + \dot{\mathcal{K}}$ and $\lambda \mathbf{I} + \dot{\mathcal{K}}^*$ are invertible on $\dot{\mathcal{B}}(\partial\Omega)$ and $\dot{\mathcal{B}}'(\partial\Omega)$ respectively.

In particular, their real spectra are included in $\left(-\frac{1}{2},\frac{1}{2}\right)$.

Spectral properties of the Neumann-Poincaré operator on $\dot{\mathcal{B}}(\partial\Omega)$

Lipschitz case on L² of G. Verchota 1984

Two-phased transmission problem Lipschitz case of H. Ammari, H. Kang 2004

Let (Ω, μ) and (D, η) be two-sided-admissible domains of \mathbb{R}^n , $D \subset \subset \Omega$, $k \in]0, 1[\cup]1, +\infty[$.

$$\begin{cases} \nabla \cdot \left((1 + (k - 1) \mathbb{1}_D) \nabla u \right) = 0 \quad \text{on } \Omega, \\ \frac{\partial_i u}{\partial \nu} \bigg|_{\partial \Omega} = g \in \dot{\mathcal{B}}'(\partial \Omega) \end{cases}$$
(6)

Subdomain identification: uniqueness with one measurement in the monotone case

Theorem

Let $D_1 \subset D_2 \subset \Omega$ be tree bounded two-sided-admissible domains of \mathbb{R}^n . Let $k \in]0, 1[\cup]1, +\infty[$ and u_1 and u_2 be the solutions to the two-phased transmission problem, respectively associated to D_1 and D_2 .

If, for some Neumann condition $g \in \dot{\mathcal{B}}'(\partial \Omega) \setminus \{0\}$, $\operatorname{tr}_{i}^{\partial \Omega} u_{1} = \operatorname{tr}_{i}^{\partial \Omega} u_{2}$, then $D_{1} = D_{2}$.

Conclusion

Results independent on the boundary measure

Poincaré-Steklov and layer potentials on such boundaries

Transmission problem and imagery application by the Neumann-Poincaré operator

Thank you very much for your attention!