

Inverse and scattering problems on extension domains

Anna Rozanova-Pierrat

with G. Claret (CS), M. Hinz (Bielefeld), A. Teplyaev (Connecticut)

26 September 2024

Laboratoire MICS, Fédération de Mathèmatiques, **CentraleSupélec**, **Université Paris-Saclay**, France

[Roughness, fractals](#page-3-0)

[When fractals could appear](#page-4-0)

[Bounded case: functional framework](#page-12-0)

[Trace operator as an isometry](#page-13-0)

[Poincaré-Steklov operator in the isometry framework](#page-23-0)

[Calderón's problem](#page-31-0)

[Transmission problems](#page-33-0)

[Well-posedness](#page-39-0)

[Neumann-Poincaré operator](#page-47-0)

[Imaging](#page-51-0)

• G. Claret, M. Hinz, A. Rozanova-Pierrat, A. Teplyaev, Layer potential operators for transmission problems on extension domains, submitted, [https://](https://arxiv.org/pdf/2403.11601.pdf) arxiv.org/pdf/2403.11601.pdf

[Roughness, fractals](#page-3-0)

[When fractals could appear](#page-4-0)

[Bounded case: functional framework](#page-12-0)

[Trace operator as an isometry](#page-13-0)

[Poincaré-Steklov operator in the isometry framework](#page-23-0)

[Calderón's problem](#page-31-0)

[Transmission problems](#page-33-0)

[Well-posedness](#page-39-0)

[Neumann-Poincaré operator](#page-47-0)

[Imaging](#page-51-0)

Nature complexity and their models

Porous materials

Traffic noise absorbing wall

"Fractal wall" TM, porous material is the cement-wood (acoustic absorbent), Patent Ecole Polytechnique-Colas, Canadian and US patent

Acoustic anechoic chambers

Test anechoic chamber

Microsoft anechoic chamber -20db noise level, the quietest place on earth

Test semi-anechoic chamber

 $\overline{1\mu m}$

Antigiogenesis of cancerous tumours

Examples of self-similar fractal boundaries

[Roughness, fractals](#page-3-0) [When fractals could appear](#page-4-0)

[Bounded case: functional framework](#page-12-0)

[Trace operator as an isometry](#page-13-0)

[Poincaré-Steklov operator in the isometry framework](#page-23-0)

[Calderón's problem](#page-31-0)

[Transmission problems](#page-33-0)

[Well-posedness](#page-39-0)

[Neumann-Poincaré operator](#page-47-0)

[Imaging](#page-51-0)

(One-sided-)extension and admissible domains

Definition

A domain Ω ⊂ R *n is called a H* 1 *-extension domain if there exists a bounded linear* $extension operator E_{\Omega}: H^{1}(\Omega) \rightarrow H^{1}(\mathbb{R}^{n})$:

$$
\forall u \in H^{1}(\Omega) \quad \exists v = E_{\Omega} u \in H^{1}(\mathbb{R}^{n}) \text{ with } v|_{\Omega} = u \text{ and } C(\Omega) > 0:
$$

 $||v||_{H^1(\mathbb{R}^n)} \leq C||u||_{H^1(\Omega)}.$

H 1 *-extension domain* Ω *is called H* 1 *-admissible if its boundary* ∂Ω *has positive capacity.*

Jones [1981]: If Ω is an uniform (or (ε,∞)-) domain, then it is Sobolev extension domain.

Hajłasz, Koskela and Tuominen [2008]: $\Omega \subset \mathbb{R}^n$ is a H¹-extension domain $\Longleftrightarrow \Omega$ is an *n*-set and $H^1(\Omega) = C^{1,2}(\Omega)$ (space of the fractional sharp maximal functions) with norms' equivalence.

Examples, remarks

Domains with boundaries ∂Ω as

 \cdot *d*-sets: dim_H $\partial \Omega = d > 0$ \exists *C*₁, *C*₂ $>$ 0,

$$
c_1 r^d \leq \mu(\partial \Omega \cap \overline{B_r(x)}) \leq c_2 r^d, \quad \text{ for } \forall \ x \in \partial \Omega, \ 0 < r \leq 1,
$$

- Lipschitz and more regular boundaries
- bounded dimension boundaries

 $n - 2 <$ dim_{*H*} ∂Ω $<$ *n*

Trace operator

Proposition *For* a **H**¹-admissible domain Ω of \mathbb{R}^n , given $u \in H^1(\Omega)$, let

 $Tr_i u := (E_\Omega u)^\sim|_{\partial\Omega}$

be the restriction of any quasi continuous representative (*E*Ω*u*) [∼] *of E*Ω*u. Then the (interior) trace operator*

 $\text{Tr}_i: H^1(\Omega) \to \mathcal{B}(\partial \Omega)$

is a well-defined linear surjection.

Consequently, q. e.

$$
x \in \partial \Omega \qquad \text{Tr}_i u(x) = \lim_{r \to 0} \frac{1}{\lambda^n(\Omega \cap B_r(x))} \int_{\Omega \cap B_r(x)} u(y) dy.
$$

M. Biegert, 2009, Theorem 6.1, Remark 6.2 and Corollary 6.3

Trace theorem

Let $\Omega \subset \mathbb{R}^n$ be an H^1 -admissible bounded domain.

$$
H^1(\Omega)=H^1_0(\Omega)\oplus V_1(\Omega),\quad V_1(\Omega)=\{u\in H^1(\Omega)|\; -\Delta u+u=\text{o weakly}\}
$$

(i) The space $H_0^1(\Omega) := \overline{C_c^{\infty}(\Omega)}^{\|\cdot\|_{H^1(\Omega)}}$ is the kernel of Tr_i, that is, $H_0^1(\Omega) = \ker \text{Tr}_i$. (ii) Endowed with the norm

$$
||f||_{\mathcal{B}(\partial\Omega)} := \min\{||v||_{H^1(\Omega)} \mid v \in H^1(\Omega) \text{ and } \text{Tr}_i \ v = f\},\tag{1}
$$

the space $\mathcal{B}(\partial \Omega)$ is a Hilbert space.

 (iii) $||$ Tr_{*i*} $||_{\mathcal{L}(H^1(\Omega),\mathcal{B}(\partial\Omega))} = 1.$ Its restriction tr*ⁱ* : *V*1(Ω) → B(∂Ω) to *V*1(Ω) is an isometry and onto.

Green formula

Let $\Omega \subset \mathbb{R}^n$ be H^1 -admissible.

$$
H^1_{\Delta}(\Omega) := \left\{ u \in H^1(\Omega) \mid \Delta u \in L^2(\Omega) \right\}
$$

Given $u \in H^1_\Delta(Ω)$, there is a unique element g of $\mathcal{B}'(∂Ω)$ such that

$$
\langle g, \text{Tr}_i v \rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)} = \int_{\Omega} (\Delta u) v \, \mathrm{d} x + \int_{\Omega} \nabla u \nabla v \, \mathrm{d} x, \quad v \in H^1(\Omega).
$$

We call this element *g* the *weak interior normal derivative* of *u* (with respect to Ω) and denote it by $\frac{\partial_i u}{\partial \nu} := g$.

 $\frac{\partial_i}{\partial \nu} : H_{\Delta}^1(\Omega) \rightarrow \mathcal{B}'(\partial \Omega)$ is linear and bounded:

$$
\left\|\frac{\partial_i u}{\partial \nu}\right\|_{\mathcal{B}'(\partial\Omega)} \leq \|u\|_{H^1(\Omega)} + \|\Delta u\|_{L^2(\Omega)}.
$$

(thanks to multiple works of M. R. Lancia (*d*-sets, Jonsson measures))

Some important corollaries

1. $\forall f \in \mathcal{B}(\partial \Omega)$ the assigment

$$
\iota(f)(h):=\langle f,h\rangle_{\mathcal{B}(\partial\Omega)},\quad h\in\mathcal{B}(\partial\Omega),
$$

defines an isometric isomorphism ι from $\mathcal{B}(\partial\Omega)$ onto $\mathcal{B}'(\partial\Omega).$ The dual pairing is defined by

$$
\langle g, f \rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)} := \langle \iota^{-1}(g), f \rangle_{\mathcal{B}(\partial \Omega)} = \langle g, \iota(f) \rangle_{\mathcal{B}'(\partial \Omega)}, \ f \in \mathcal{B}(\partial \Omega), \ g \in \mathcal{B}'(\partial \Omega).
$$

We may identify $\mathcal{B}(\partial\Omega)$ with its image $\iota(\mathcal{B}(\partial\Omega))\subset\mathcal{B}'(\partial\Omega)$ under $\iota.$

2. **Gelfand triple:**

$$
B(\partial\Omega)\hookrightarrow L^2(\partial\Omega,\mu)=(L^2(\partial\Omega,\mu))'\hookrightarrow B'(\partial\Omega),\quad B''(\partial\Omega)=B(\partial\Omega)
$$

Some important corollaries

1. $\forall f \in \mathcal{B}(\partial \Omega)$ the assigment

$$
\iota(f)(h):=\langle f,h\rangle_{\mathcal{B}(\partial\Omega)},\quad h\in\mathcal{B}(\partial\Omega),
$$

defines an isometric isomorphism ι from $\mathcal{B}(\partial\Omega)$ onto $\mathcal{B}'(\partial\Omega).$ The dual pairing is defined by

$$
\langle g, f \rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)} := \langle \iota^{-1}(g), f \rangle_{\mathcal{B}(\partial \Omega)} = \langle g, \iota(f) \rangle_{\mathcal{B}'(\partial \Omega)}, \ f \in \mathcal{B}(\partial \Omega), \ g \in \mathcal{B}'(\partial \Omega).
$$

We may identify $\mathcal{B}(\partial\Omega)$ with its image $\iota(\mathcal{B}(\partial\Omega))\subset\mathcal{B}'(\partial\Omega)$ under $\iota.$

2. **Gelfand triple:**

 $B(\partial\Omega) \hookrightarrow L^2(\partial\Omega,\mu) = (L^2(\partial\Omega,\mu))' \hookrightarrow B'(\partial\Omega), \quad B''(\partial\Omega) = B(\partial\Omega)$

The adjoint trace operator $\mathrm{Tr}_{i}^{*}:\mathcal{B}'(\partial \Omega) \rightarrow (\mathrm{H}^{1}(\Omega))'$, is defined:

 \forall *v* \in *H*¹(Ω), \forall *g* \in *B'*($\partial\Omega$), \langle *g*, Tr_i *v*) $_{\mathcal{B}'(\partial\Omega),\mathcal{B}(\partial\Omega)} = \langle \text{Tr}_i^* g, v \rangle_{(H^1(\Omega))', H^1(\Omega)}.$

Dirichlet type or harmonic extensions for −∆ + 1 **on admissible domains**

*V*1(Ω) is also the space of weak solutions of the **Dirichlet boundary-value problem**

$$
\begin{cases}\n-\Delta u + u = 0 \quad \text{in } \Omega \\
u|_{\partial \Omega} = f \in \mathcal{B}(\partial \Omega)\n\end{cases}
$$

$$
E^{D}: \mathcal{B}(\partial \Omega) \to E^{D}(\mathcal{B}(\partial \Omega)) = V_{1}(\Omega) \subset H^{1}(\Omega)
$$

$$
f \mapsto u^{f} = E^{D}(f),
$$

where *u f* is the unique weak solution to the Dirichlet boundary problem

Proposition

 $E^D: \mathcal{B}(\partial\Omega) \to V_1(\Omega)$ *is an isometry:* $\forall f \in \mathcal{B}(\partial\Omega)$ $||f||_{\mathcal{B}(\partial\Omega)} = ||E^Df||_{H^1(\Omega)}.$ *In this sense* $E^D = \text{tr}_i^{-1}$.

Neumann problem for −∆ + 1 **on admissible domains**

Let $\Omega \subset \mathbb{R}^n$ be an H^1 -admissible bounded domain.

$$
\begin{cases}\n-\Delta u + u = 0 \quad \text{in } \Omega \\
\frac{\partial u}{\partial \nu}|_{\partial \Omega} = g \in \mathcal{B}'(\partial \Omega)\n\end{cases}
$$

$$
\forall v \in H^1(\Omega) \quad \exists! u \in H^1(\Omega) \quad \langle u, v \rangle_{H^1(\Omega)} = \langle g, \text{Tr}_i v \rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)}.
$$

 $V_1(\Omega)$ is the space of the weak solutions of the **Neumann boundary value problem**.

$$
E^N: \frac{\partial_i u}{\partial \nu} \in \mathcal{B}'(\partial \Omega) \mapsto u \in V_1(\Omega) \subset H^1(\Omega)
$$

where *u* is the unique weak solution of the Neumann boundary value problem for $-\Delta$ + **1**, is an isometry, $(F^N)^{-1} = \frac{\partial}{\partial x}$ $\frac{\partial}{\partial \nu_i}$ on $V_1(\Omega)$

$$
\forall g \in \mathcal{B}'(\partial \Omega) \quad \|E^N g\|_{H^1(\Omega)} = \|\operatorname{tr}_i^* g\|_{(H^1(\Omega))'} = \|g\|_{\mathcal{B}'(\partial \Omega)}.
$$

Corollary

Corollary

Let Ω *be H* 1 *-admissible.*

- (i) *Both* **E^N** : $\mathcal{B}'(\partial\Omega) \to V_1(\Omega)$ and $\frac{\partial_i}{\partial \nu}$: $V_1(\Omega) \to \mathcal{B}'(\partial\Omega)$ are isometries and onto, *and we have* $\frac{\partial_i}{\partial \nu} = (E^N)^{-1}$ *on* $V_1(\Omega)$ *.*
- (ii) *For* $u, v \in V_1(\Omega)$ *we have*

$$
\left\langle \frac{\partial_i u}{\partial \nu}, \text{tr}_i v \right\rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)} = \left\langle u, v \right\rangle_{H^1(\Omega)} = \left\langle \frac{\partial_i v}{\partial \nu}, \text{tr}_i u \right\rangle_{\mathcal{B}'(\partial \Omega), \mathcal{B}(\partial \Omega)}.
$$

 (iii) *The dual* $\left(\frac{\partial_i}{\partial \nu}\right)^* : \mathcal{B}(\partial \Omega) \to (V_1(\Omega))'$ of $\frac{\partial_i}{\partial \nu}$ on $V_1(\Omega)$ is an isometry and onto.

Poincaré-Steklov operator for admissible domains

Theorem

 L et $Ω$ be $α$ H ¹- ad missible $bounded$ $domain$ and $k ∈ ℝ ∖ σ(−Δ_D)$. Then the *Poincaré-Steklov operator*

$$
A: B(\partial\Omega) \to B'(\partial\Omega)
$$

$$
\text{Tr}\,u \mapsto \left.\frac{\partial u}{\partial \nu}\right|_{\partial\Omega}
$$

associated with the weak solutions from

$$
u \in H_{\Delta}^{1}(\Omega) := \{ v \in H^{1}(\Omega) \mid \Delta v \in L^{2}(\Omega) \}
$$

$$
(-\Delta + k)u = 0 \text{ on } \Omega \quad \text{with} \quad \text{Tr } u|_{\partial\Omega} = f \in \mathcal{B}(\partial\Omega), \tag{2}
$$

is a linear bounded operator with Ker $A \neq \{0\}$ *and it coincides with its adjoint.*

d-sets K. Arfi, A.R.-P. 2019, A.R.-P. 2020, Lipschitz case by W. Arendt, A. F. M. ter Elst 2011, 2015

Poincaré-Steklov operator as an isometry for admissible domains

Lemma

Let Ω *be a bounded H* 1 *-admissible domain.*

- (i) *For any* $k \in \mathbb{R} \setminus \sigma(\Delta_D)$ *the Poincaré-Steklov operator* $A_k : \mathcal{B}(\partial \Omega) \to \mathcal{B}'(\partial \Omega)$ *is injective if and only if k is not an eigenvalue of the self-adjoint Neumann Laplacian for* Ω*.*
- (ii) *The Poincaré-Steklov operator A*¹ : B(∂Ω) → B′ (∂Ω) *is an isometry and*

$$
A_1=\frac{\partial_i}{\partial \nu}\circ(\text{tr}_i)^{-1}.
$$

Different isometries

 $\forall \boldsymbol{g} \in \mathcal{B}'(\partial \Omega) \quad \|\boldsymbol{g}\|_{\mathcal{B}'(\partial \Omega)} = \|\operatorname{tr}_i^*\boldsymbol{g}\|_{(H^1(\Omega))'},$ $\forall u \in V_1(\Omega)$ $||u||_{H^1(\Omega)} = ||\operatorname{tr}_i u||_{\mathcal{B}(\partial\Omega)}$.

in complement to S. N. Chandler Wilde, D. P. Hewett, A. Moiola, 2017-... **22 / 41**

Framework of harmonic problems for −∆

Definition

 $H^{1}(\Omega) = \{ u \in L^{2}_{loc}(\Omega) | \nabla u \in L^{2}(\Omega, \mathbb{R}^{n}) \text{ modulo locally constant functions} \}$

 i *is the Hilbert space, endowed with the scalar product* $\langle u, v \rangle_{\dot{H}^1(\Omega)} = \int_{\Omega} \nabla u \nabla v \ \mathrm{d}x.$

• A domain Ω ⊂ R *n* is an *H*˙ ¹ *-extension domain* if there is a bounded linear extension operator $\dot{\mathsf{E}}_\Omega : \dot{H}^1(\Omega) \to \dot{H}^1(\mathbb{R}^n).$

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985

Framework of harmonic problems for −∆

Definition

 $H^{1}(\Omega) = \{ u \in L^{2}_{loc}(\Omega) | \nabla u \in L^{2}(\Omega, \mathbb{R}^{n}) \text{ modulo locally constant functions} \}$

 i *is the Hilbert space, endowed with the scalar product* $\langle u, v \rangle_{\dot{H}^1(\Omega)} = \int_{\Omega} \nabla u \nabla v \ \mathrm{d}x.$

- A domain Ω ⊂ R *n* is an *H*˙ ¹ *-extension domain* if there is a bounded linear extension operator $\dot{\mathsf{E}}_\Omega : \dot{H}^1(\Omega) \to \dot{H}^1(\mathbb{R}^n).$
- Ω is *H*˙ ¹ *-admissible* if 1) Ω is an *H*˙ ¹ -extension domain and 2) $\partial\Omega$ is compact and of positive capacity.

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985

Framework of harmonic problems for −∆

Definition

 $H^{1}(\Omega) = \{ u \in L^{2}_{loc}(\Omega) | \nabla u \in L^{2}(\Omega, \mathbb{R}^{n}) \text{ modulo locally constant functions} \}$

 i *is the Hilbert space, endowed with the scalar product* $\langle u, v \rangle_{\dot{H}^1(\Omega)} = \int_{\Omega} \nabla u \nabla v \ \mathrm{d}x.$

- A domain Ω ⊂ R *n* is an *H*˙ ¹ *-extension domain* if there is a bounded linear extension operator $\dot{\mathsf{E}}_\Omega : \dot{H}^1(\Omega) \to \dot{H}^1(\mathbb{R}^n).$
- Ω is *H*˙ ¹ *-admissible* if 1) Ω is an *H*˙ ¹ -extension domain and 2) $\partial\Omega$ is compact and of positive capacity.
- If so, $\dot{\mathcal{B}}(\partial\Omega)$ is the vector space modulo constants of all q.e. equivalence classes of pointwise restrictions \tilde{w} _{∂} of quasi continuous representatives \tilde{w} of classes $u \in H^1(\mathbb{R}^n)$.

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985

$\bm{\mathsf{Precision}}$ on $\dot{H}^1(\Omega)$ and $\dot{\mathcal{B}}(\partial\Omega)$

(i) Let Ω be a bounded *H* 1 -extension domain. Then

$$
\dot{H}^1(\Omega) \approx \{u \in H^1(\Omega) | \int_{\Omega} u(x) dx = 0 \}
$$

$$
H^1(\Omega) \approx \dot{H}^1(\Omega) \oplus \mathbb{R}
$$

(ii) Let Ω be a bounded *H* 1 - and *H*˙ ¹ -admissible domain. Then

 $\mathcal{B}(\partial\Omega) \approx \dot{\mathcal{B}}(\partial\Omega) \oplus \mathbb{R}$

Several Examples

For $n > 2$:

- (i) **by JONES-1981:** Any (ε,δ)-domain Ω ⊂ \mathbb{R}^n is an H^1 -domain; any (ε,∞) -domain is \dot{H}^1 -extension domain.
- (ii) Any (ε,∞) -domain $\Omega\subset \mathbb{R}^n$ with $\mathbb{R}^n\backslash\overline{\Omega}\neq\varnothing$ is H^1 -admissible, and if one of the two open sets is bounded, it is also \dot{H}^1 -admissible.
- (iii) $Ω = ℝⁿ \setminus {o}$ is not *H*¹-admissible.

For $n = 1$ **:**

- (a) (a, b) with a or b finite is H^1 -admissible;
- (b) if a and b finite, (a, b) also H^1 -admissible.

Conductivity problem

Let Ω be a bounded *H*¹-admissible domain. $\gamma \in L^{\infty}_{\gg}(\Omega)$ continuous near ∂Ω.

$$
\begin{cases} \nabla \cdot (\gamma \nabla u) = \mathsf{o} & \text{on } \Omega, \\ \gamma \frac{\partial_i}{\partial \nu} u = g \in \dot{\mathcal{B}}'(\partial \Omega). \end{cases}
$$

 $\textsf{Variational formulation:} \,\, \forall \nu \in \dot{H}^1(\Omega), \quad (\gamma \nabla u, \nabla \nu)_{L^2(\Omega)} = \langle g, \text{tr}_I \, \nu \rangle_{\dot{B}'(\partial \Omega), \dot{\mathcal{B}}(\partial \Omega)}.$

$$
A_{\gamma}: \operatorname{Tr} u|_{\partial\Omega} \mapsto \gamma \frac{\partial_i}{\partial \nu} u\bigg|_{\partial\Omega}
$$

Calderón's problem

Knowing $A_γ$, can we recover $γ$?

Theorem *Let* Ω *be a bounded H*˙ ¹ *-admissible domain of* R *n such that*

$$
\exists \delta, \rho > 0, \ \forall x_0 \in \partial \Omega, \ \forall r < \rho, \ \exists z \in \Omega^c, \quad \delta r < d(z, \partial \Omega) \leq |z - x_0| < r.
$$

Let ℓ , $L > 0$ *. Let* $\gamma_1, \gamma_2 \in W^{1,\infty}(\Omega)$ *be such that* $\ell \leq \gamma_{1,2}$ *and* $\|\gamma_{1,2}\|_{W^{1,\infty}(\Omega)} \leq L$ *. Then, it holds*

$$
\|\gamma_1-\gamma_2\|_{L^\infty(\partial\Omega)}\leq c\,\|A_{\gamma_1}-A_{\gamma_2}\|_{\mathcal{L}(\dot{\mathcal{B}}(\partial\Omega),\dot{\mathcal{B}}'(\partial\Omega))},
$$

 w *here* $c > 0$ depends on ℓ , **L**, **n**, **diam** (Ω) and c_n^{Ω} , where

$$
\forall x \in \Omega, \ \forall r \in]0,1], \quad \lambda^{n}(B_{r}(x) \cap \Omega) \geq c_{n}^{\Omega} r^{n}.
$$

Generalization of: Alessandrini, *Singular solutions of elliptic equations and the determination of conductivity by boundary measurements*, 1991. **27 / 41**

[Roughness, fractals](#page-3-0)

[When fractals could appear](#page-4-0)

[Bounded case: functional framework](#page-12-0)

[Trace operator as an isometry](#page-13-0)

[Poincaré-Steklov operator in the isometry framework](#page-23-0)

[Calderón's problem](#page-31-0)

[Transmission problems](#page-33-0)

[Well-posedness](#page-39-0)

[Neumann-Poincaré operator](#page-47-0)

[Imaging](#page-51-0)

Classical case: Lipschitz boundaries

Transmission problem:

$$
\begin{cases}\n-\Delta u = 0 & \text{on } \mathbb{R}^n \setminus \partial \Omega, \\
\[\text{tr } u\] = f \in L_0^2(\partial \Omega, \lambda^{(n-1)}), \\
\[\frac{\partial u}{\partial \nu}\] = g \in L_0^2(\partial \Omega, \lambda^{(n-1)}).\n\]
$$

Solution given by $u = S_{\partial\Omega}q - \mathcal{D}_{\partial\Omega}f$ where:

$$
\mathcal{S}_{\partial\Omega} g(x):=\int_{\partial\Omega} G(x-y)g(y)\,\lambda^{(n-1)}(\mathrm{d}y),\quad x\in\mathbb{R}^n
$$

is the **single layer potential operator**, and

$$
\mathcal{D}_{\partial \Omega} f(x):=\int_{\partial \Omega}\frac{\partial G}{\partial \nu_y}(x-y)f(y)\,\lambda^{(n-1)}(\textup{d} y),\quad x\in\mathbb{R}^n\backslash\partial\Omega
$$

is the **double layer potential operator**, with *G* the fundamental solution to −∆ on

R *n*

<u>n</u>
Verchota, 1984.

Two-sided *H*˙ ¹ **-admissible domains**

Ω *c* Ω

$$
\begin{cases}\n-\Delta u &= \mathbf{0} \text{ on } \mathbb{R}^n \setminus \partial \Omega \\
u_i|_{\partial \Omega} - u_e|_{\partial \Omega} &= -f \in \dot{\mathcal{B}}(\partial \Omega) \\
\frac{\partial_i u_i}{\partial \nu}|_{\partial \Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial \Omega} &= g \in \dot{\mathcal{B}}'(\partial \Omega)\n\end{cases}
$$

Definition

 $Ω ⊂ ℝⁿ$ is a **two-sided** H **¹-admissible domain** if

- 1. Ω 6= ∅ *and* Ω *^c* 6= ∅ *are H*˙ ¹ *-extension domains*
- 2. *the Lebesgue measure of* ∂Ω *is zero.*

 \Rightarrow dim₄($\partial\Omega$) > n – 1, hence its capacity is positive.

Two-sided *H*˙ ¹ **-admissible domains**

Ω *c* Ω

$$
\begin{cases}\n-\Delta u &= \mathbf{0} \text{ on } \mathbb{R}^n \setminus \partial \Omega \\
u_i|_{\partial \Omega} - u_e|_{\partial \Omega} &= -f \in \dot{\mathcal{B}}(\partial \Omega) \\
\frac{\partial_i u_i}{\partial \nu}|_{\partial \Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial \Omega} &= g \in \dot{\mathcal{B}}'(\partial \Omega)\n\end{cases}
$$

$$
\dot{H}^{1}(\mathbb{R}^{n}\backslash\partial\Omega) = \dot{H}^{1}(\Omega) \oplus \dot{H}^{1}(\Omega^{c}) = \dot{H}_{0}^{1}(\mathbb{R}^{n}\backslash\partial\Omega) \oplus \dot{V}_{0}(\mathbb{R}^{n}\backslash\partial\Omega)
$$

$$
u \in \dot{H}^{1}(\mathbb{R}^{n}\backslash\partial\Omega), \quad \llbracket \text{Tr } u \rrbracket := \text{Tr}_{i} u - \text{Tr}_{e} u
$$

$$
\text{Tr}_{i} : \dot{H}^{1}(\Omega) \to \dot{\mathcal{B}}(\partial\Omega), \quad \text{Tr}_{e} : \dot{H}^{1}(\Omega^{c}) \to \dot{\mathcal{B}}(\partial\Omega)
$$

 $\dot{\mathcal{B}}(\partial\Omega)$ is the Hilbert space with norm

$$
||f||_{\dot{B}(\partial\Omega),t} := (||f||^2_{\dot{B}(\partial\Omega),i} + ||f||^2_{\dot{B}(\partial\Omega),e})^{1/2}
$$

Weak exterior normal derivative

Ω *is a two-sided H*˙ ¹ *-admissible domain.*

$$
\forall v \in \dot{H}^1(\Omega), \quad \left\langle \frac{\partial_i u}{\partial \nu}, \dot{\mathsf T} \mathsf r_i v \right\rangle_{\dot{\mathcal B}', \dot{\mathcal B}} = \int_\Omega (\Delta u) v \,\mathrm{d} x + \int_\Omega \nabla u \cdot \nabla v \,\mathrm{d} x,
$$

 $\text{where } u \in \dot{H}^1(\Omega) \text{ with } \Delta u \in L^2(\Omega). \text{ Then, } \frac{\partial_i u}{\partial \nu} \in \dot{\mathcal{B}}'(\partial \Omega).$

$$
\forall v \in \dot{H}^1(\Omega^c), \quad \left\langle \frac{\partial_e u}{\partial \nu}, \dot{\mathsf T} \mathsf{r}_e v \right\rangle_{\dot{\mathcal{B}}', \dot{\mathcal{B}}} = - \int_{\Omega^c} (\Delta u) v \, \mathrm{d}x - \int_{\Omega^c} \nabla u \cdot \nabla v \, \mathrm{d}x,
$$

 $\text{where } u \in H^1(\Omega^c) \text{ with } \Delta u \in L^2(\Omega^c). \text{ Then, } \frac{\partial_e u}{\partial \nu} \in \mathcal{B}'(\partial \Omega).$ $\text{We denote } \llbracket \frac{\partial u}{\partial \nu} \rrbracket := \frac{\partial_i u}{\partial \nu} - \frac{\partial_e u}{\partial \nu}.$

Proposition

 $\frac{\partial_i}{\partial \nu}:\dot{H}^1_\Delta(\Omega)\to\dot{\mathcal{B}}'(\partial\Omega)$ and $\frac{\partial_e}{\partial \nu}:\dot{H}^1_\Delta(\Omega^c)\to\dot{\mathcal{B}}'(\partial\Omega)$ are continuous.

M.R. Lancia,*A Transmission Problem with a Fractal Interface*, 2002.

Jump trace properties

Suppose that $\Omega \subset \mathbb{R}^n$ is a two-sided \dot{H} ¹-admissible domain.

$$
V_{\mathsf{O},\hat{\mathcal{S}}}(\mathbb{R}^n\backslash\partial\Omega):=\{u\in V_{\mathsf{O}}(\mathbb{R}^n\backslash\partial\Omega)\mid \llbracket \mathsf{tr}\, u\rrbracket=\mathsf{O}\}
$$

and

$$
\dot{V}_{o,\dot{\mathcal{D}}}(\mathbb{R}^n\backslash\partial\Omega):=\{u\in \dot{V}_o(\mathbb{R}^n\backslash\partial\Omega)\mid \left[\frac{\partial u}{\partial\nu}\right]=o\}.
$$

Lemma

- $\mathcal{O}(\mathfrak{f})$ tr : $\mathcal{V}_{\mathsf{O},\mathcal{S}}(\mathbb{R}^n\backslash\partial\Omega)\rightarrow\mathcal{B}(\partial\Omega),$ is a linear isometry and onto.
- $\tilde{\partial}_{\omega} : \dot{V}_{\mathsf{O},\dot{\mathcal{D}}}(\mathbb{R}^n\backslash\partial\Omega) \to \mathcal{B}'(\partial\Omega),$ defined as $\frac{\dot{\partial}}{\partial\nu} := \frac{\dot{\partial}_i}{\partial\nu} = \frac{\dot{\partial}_e}{\partial\nu}$, is a linear isometry *and onto.*
- (iii) $V_0(\mathbb{R}^n \setminus \partial \Omega) = V_{0, \dot{S}}(\mathbb{R}^n \setminus \partial \Omega) \oplus V_{0, \dot{\mathcal{D}}}(\mathbb{R}^n \setminus \partial \Omega).$

Transmission problem:

$$
\begin{cases}\n-\Delta u &= \mathbf{0} \quad \text{on } \mathbb{R}^n \setminus \partial \Omega \\
u_i|_{\partial \Omega} - u_e|_{\partial \Omega} &= -f \in \dot{\mathcal{B}}(\partial \Omega) \\
\frac{\partial_i u_i}{\partial \nu}|_{\partial \Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial \Omega} &= g \in \dot{\mathcal{B}}'(\partial \Omega)\n\end{cases} (3)
$$

Weak formulation:

∀ν ∈ *H*¹(ℝⁿ\∂Ω) with [tr *v*] = 0, *u* ∈ *H*¹(ℝⁿ\∂Ω) a *weαk solution* in the *H*¹-sense if

$$
\langle u, v \rangle_{\dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)} = o \quad \forall v \in C_c^{\infty}(\mathbb{R}^n \setminus \partial \Omega),
$$

$$
\langle u, v \rangle_{\dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)} = \langle g, \text{tr } v \rangle_{\dot{B}^{\prime}(\partial \Omega), \dot{B}(\partial \Omega)} \quad \forall v \in \dot{V}_{o, \dot{S}}(\mathbb{R}^n \setminus \partial \Omega) \text{ and}
$$

$$
\langle u, v \rangle_{\dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)} = \langle \llbracket \frac{\partial v}{\partial \nu} \rrbracket, f \rangle_{\dot{B}^{\prime}(\partial \Omega), \dot{B}(\partial \Omega)} \quad \forall v \in \dot{V}_{o, \dot{\mathcal{D}}}(\mathbb{R}^n \setminus \partial \Omega).
$$

Transmission problem:

$$
\begin{cases}\n-\Delta u &= \mathbf{0} \quad \text{on } \mathbb{R}^n \setminus \partial \Omega \\
u_i|_{\partial \Omega} - u_e|_{\partial \Omega} &= -f \in \dot{\mathcal{B}}(\partial \Omega) \\
\frac{\partial_i u_i}{\partial \nu}|_{\partial \Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial \Omega} &= g \in \dot{\mathcal{B}}'(\partial \Omega)\n\end{cases} (3)
$$

For $q = 0$ **:**

Lemma

Let Ω ⊂ R *ⁿ be two-sided H*˙ ¹ *-admissible. For all f* ∈ B˙(∂Ω)*,* ∃! *weak solution u*^f ∈ $\dot{V}_{o, \dot{\mathcal{D}}}(\mathbb{R}^n \setminus \partial \Omega)$ of [\(3\)](#page-39-1) in the \dot{H} ¹-sense s.t. $||u^f||_{\dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)} \leq ||f||_{\dot{\mathcal{B}}(\partial \Omega)}.$ *Double layer potential operator:*

$$
\dot{\mathcal{D}} : \dot{\mathcal{B}}(\partial \Omega) \to \dot{V}_{0,\dot{\mathcal{D}}}(\mathbb{R}^n \backslash \partial \Omega), \quad \dot{\mathcal{D}}f := u^f
$$

is linear bounded bijective, and its inverse is $\mathcal{D}^{-1} = -\|\mathbf{tr}\|$.

Transmission problem:

$$
\begin{cases}\n-\Delta u & = \mathbf{0} \quad \text{on } \mathbb{R}^n \setminus \partial \Omega \\
u_i|_{\partial \Omega} - u_e|_{\partial \Omega} & = -f \in \dot{\mathcal{B}}(\partial \Omega) \\
\frac{\partial_i u_i}{\partial \nu}|_{\partial \Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial \Omega} & = g \in \dot{\mathcal{B}}'(\partial \Omega)\n\end{cases}
$$
\n(3)

For $f = 0$:

Lemma

Let Ω ⊂ R *ⁿ be two-sided H*˙ ¹ *-admissible. For all g* ∈ B˙′ (∂Ω)*,* ∃! *weak solution* $u_g \in V_{\mathsf{o},\mathcal{S}}(\mathbb{R}^n \setminus \partial \Omega)$ of [\(3\)](#page-39-1) in the H ¹-sense s.t. $\|u_g\|_{\dot{H}^1(\mathbb{R}^n \setminus \partial \Omega)} \leq \|g\|_{\dot{\mathcal{B}}'(\partial \Omega)}.$ *Single layer potential operator:*

$$
\dot{\mathcal{S}}:\dot{\mathcal{B}}'(\partial\Omega)\to\dot{V}_{\textsf{o},\dot{\mathcal{S}}}(\mathbb{R}^n\backslash\partial\Omega),\quad\dot{\mathcal{S}}g:=u_g
$$

is linear bounded bijective, and its inverse is $\dot{\mathcal{S}}^{-1} = \begin{bmatrix} \dot{\partial}\end{bmatrix}$.

Transmission problem:

$$
\begin{cases}\n-\Delta u &= \mathbf{0} \quad \text{on } \mathbb{R}^n \setminus \partial \Omega \\
u_i|_{\partial \Omega} - u_e|_{\partial \Omega} &= -f \in \dot{\mathcal{B}}(\partial \Omega) \\
\frac{\partial_i u_i}{\partial \nu}|_{\partial \Omega} - \frac{\partial_e u_e}{\partial \nu}|_{\partial \Omega} &= g \in \dot{\mathcal{B}}'(\partial \Omega)\n\end{cases} (3)
$$

Corollary

Let Ω *be two-sided H*˙ ¹ *-admissible.*

$$
\forall f \in \dot{\mathcal{B}}(\partial \Omega) \text{ and } \forall g \in \dot{\mathcal{B}}'(\partial \Omega), \quad \exists! u \in \dot{V}_o(\mathbb{R}^n \backslash \partial \Omega)
$$

in the H˙ ¹ *-sense of* [\(3\)](#page-39-1) *is given by Green's third identity:*

$$
u=\dot{S}g-\dot{\mathcal{D}}f
$$

and satisfies

$$
||u||_{\dot{H}^{1}(\mathbb{R}^{n}\setminus\partial\Omega)}\leq ||f||_{\dot{\mathcal{B}}(\partial\Omega)}+||g||_{\dot{\mathcal{B}}'(\partial\Omega)}.
$$

Representations of layer potentials

Let **K** denote the fundamental solution (or Green's function) to Δ on \mathbb{R}^n . Given a finite signed Borel measure $ν$, $K * ν := K * ν⁺ - K * ν⁻$ on $\mathbb{R}^n\setminus\partial\Omega$.

$$
K*\nu(x):=\int_{\mathbb{R}^n}K(x-y)\nu(\mathrm{d}y),\quad x\in\mathbb{R}^n
$$

We call ν *centered* if $\nu(\mathbb{R}^n) = \mathsf{o}$. The measure ν is of *finite energy* if $\exists \mathsf{c} > \mathsf{o}$ such that

$$
\int_{\partial\Omega} |v| \, \mathrm{d}|\nu| \leq c \, \|v\|_{H^1(\mathbb{R}^n)}, \quad v \in H^1(\mathbb{R}^n) \cap C_c(\mathbb{R}^n). \tag{4}
$$

Proposition

Let n ≥ 2 *and let* Ω *be a two-sided H*˙ ¹ *-admissible domain in* R *n . Then*

1. $\overline{S} = \mathcal{I} \circ \overline{\text{tr}}^*,$

where the Newton potential operator $u \mapsto \mathcal{I}u = (|\xi|^{-2} \hat{u})^{\vee}$ *extended to an isometric* $\mathsf{isomorphism}\; \mathsf{H}^{-1}(\mathbb{R}^n) \to \mathsf{H}^1(\mathbb{R}^n)\; (\mathcal{I}\nu = \mathsf{K} * \nu).$

Representations of layer potentials

Let **K** denote the fundamental solution (or Green's function) to Δ on \mathbb{R}^n . Given a finite signed Borel measure $ν$, $K * ν := K * ν⁺ - K * ν⁻$ on $\mathbb{R}^n\setminus\partial\Omega$.

$$
K*\nu(x):=\int_{\mathbb{R}^n}K(x-y)\nu(\mathrm{d}y),\quad x\in\mathbb{R}^n
$$

We call ν *centered* if $\nu(\mathbb{R}^n) = \mathsf{o}$. The measure ν is of *finite energy* if $\exists \mathsf{c} > \mathsf{o}$ such that

$$
\int_{\partial\Omega} |v| \, \mathrm{d}|\nu| \leq c \, \|v\|_{H^1(\mathbb{R}^n)}, \quad v \in H^1(\mathbb{R}^n) \cap C_c(\mathbb{R}^n). \tag{4}
$$

Proposition

Let n ≥ 2 *and let* Ω *be a two-sided H*˙ ¹ *-admissible domain in* R *n . Then*

2. *Let* ν *be a centered finite signed Borel measure on* ∂Ω *of finite energy. Then sets of zero capacity have zero* ν*-measure, and* ν *defines an element of* B˙′ (∂Ω) *by*

$$
\langle \nu, f \rangle_{\dot{B}'(\partial \Omega), \dot{B}(\partial \Omega)} := \int_{\partial \Omega} f \, \mathrm{d}\nu, \quad f \in \dot{B}(\partial \Omega). \tag{5}
$$

Some properties of the generalized layer potentials

The operators $\mathcal{S}_{\partial\Omega}:\dot{\mathcal{B}}'(\partial\Omega)\to\dot{H}^1(\mathbb{R}^n\backslash\partial\Omega)$ and $\mathcal{D}_{\partial\Omega}:\dot{\mathcal{B}}(\partial\Omega)\to\dot{H}^1(\mathbb{R}^n\backslash\partial\Omega)$ are **linear and continuous**.

Green's third identity: the unique weak solution *u* ∈ *H*˙ ¹ (R *ⁿ*\∂Ω) to [\(3\)](#page-39-1) is

$$
u:=u_{\mathcal{S}}-u_{\mathcal{D}}=\mathcal{S}_{\partial\Omega}g-\mathcal{D}_{\partial\Omega}f.
$$

Some properties of the generalized layer potentials

The operators $\mathcal{S}_{\partial\Omega}:\dot{\mathcal{B}}'(\partial\Omega)\to\dot{H}^1(\mathbb{R}^n\backslash\partial\Omega)$ and $\mathcal{D}_{\partial\Omega}:\dot{\mathcal{B}}(\partial\Omega)\to\dot{H}^1(\mathbb{R}^n\backslash\partial\Omega)$ are **linear and continuous**.

Green's third identity: the unique weak solution *u* ∈ *H*˙ ¹ (R *ⁿ*\∂Ω) to [\(3\)](#page-39-1) is

 $u := u_s - u_p = S_{\partial\Omega}q - \mathcal{D}_{\partial\Omega}f$.

It holds:

$$
\forall g \in \dot{\mathcal{B}}'(\partial \Omega), \quad \mathcal{S}_{\partial \Omega} g = \mathsf{G} \ast_{\mathbb{R}^n} \operatorname{tr}^* g.
$$

In particular, if µ is a *d***-upper regular measure** on ∂Ω and if *g* ∈ *L* 2 (∂Ω, µ):

$$
\mathcal{S}_{\partial\Omega} g(x) := \int_{\partial\Omega} G(x-y)g(y)\,\mu(\mathrm{d}y), \quad x \in \mathbb{R}^n.
$$

Neumann-Poincaré operator for
$$
-\Delta
$$
 with $[[\mathrm{tr}\, u]]= -f$ and $\left\lceil\frac{\partial u}{\partial \nu}\right\rceil\!\right\rceil = \mathrm{o}$

Definition

If Ω is a bounded two-sided-admissible domain of \mathbb{R}^n , let us define:

 $\dot{\mathcal{K}}: \dot{\mathcal{B}}(\partial\Omega)\rightarrow\dot{\mathcal{B}}(\partial\Omega)$, defined by

$$
\dot{\mathcal{K}}:=\frac{1}{2}(\mathsf{tr}_i+\mathsf{tr}_e)\circ\dot{\mathcal{D}},
$$

is the Neumann-Poincaré operator for the problem associated to −∆*:*

$$
\dot{\mathcal{K}} : \dot{\mathcal{B}}(\partial \Omega) \to \dot{\mathcal{B}}(\partial \Omega)
$$

-f = [[$\text{tr } u$]] $\mapsto \frac{1}{2} (\dot{\text{tr}}_i + \dot{\text{tr}}_e) u = \frac{1}{2} (\dot{\text{tr}}_i + \dot{\text{tr}}_e) \circ \dot{\mathcal{D}} f.$

and $[\![tr(u)]\!] = 0$

Adjoint Neumann-Poincaré operator for −∆ **with** *g* = $\left[\frac{\partial u}{\partial u}\right]$

 $\dot{\mathcal{K}}^*:\dot{\mathcal{B}}'(\partial\Omega)\to\dot{\mathcal{B}}'(\partial\Omega)$ denotes the adjoint operator to $\dot{\mathcal{K}}:\dot{\mathcal{B}}(\partial\Omega)\to\dot{\mathcal{B}}(\partial\Omega).$

Theorem

Let Ω *be two-sided H*˙ ¹ *-admissible. Then*

(i)
$$
\text{tr}_i \circ \mathcal{D} = -\frac{1}{2}I + \mathcal{K}
$$
 and $\text{tr}_e \circ \mathcal{D} = \frac{1}{2}I + \mathcal{K}$.
\n(ii) $\frac{\partial_i}{\partial \nu} \circ \mathcal{S} = \frac{1}{2}I + \mathcal{K}^*$ and $\frac{\partial_e}{\partial \nu} \circ \mathcal{S} = -\frac{1}{2}I + \mathcal{K}^*$. In particular,
\n
$$
\mathcal{K}^* = \frac{1}{2} \Big(\frac{\partial_i}{\partial \nu} + \frac{\partial_e}{\partial \nu} \Big) \circ \mathcal{S}
$$

 \mathcal{M} oreover, $\mathcal{K}:\mathcal{B}(\partial\Omega)\to\mathcal{B}(\partial\Omega)$ and $\mathcal{K}^*:\mathcal{B}'(\partial\Omega)\to\mathcal{B}'(\partial\Omega)$ are linear and *continuous.*

Spectral properties of the Neumann-Poincaré operator on B˙(∂Ω)

Lipschitz case on *L* ² **of G. Verchota 1984**

Theorem

Let Ω be two-sided H¹-admissible.

For $\lambda \in \mathbb{C}$ *, if* $|\lambda - \frac{1}{2}\rangle$ $\frac{1}{2}$ | \geq 1 or $\left|\lambda+\frac{1}{2}\right|$ 2 | ≥ 1*, then the operators* $\lambda I + \dot{\mathcal{K}}$ *and* $\lambda I + \dot{\mathcal{K}}^*$ *are invertible on* $\dot{\mathcal{B}}(\partial \Omega)$ *and* $\dot{\mathcal{B}}'(\partial \Omega)$ *respectively.*

In particular, their real spectra are included in (−1, 1 $\frac{1}{2}$).

Spectral properties of the Neumann-Poincaré operator on $\dot{\mathcal{B}}(\partial\Omega)$

Lipschitz case on *L* ² **of G. Verchota 1984**

Two-phased transmission problem Lipschitz case of H. Ammari, H. Kang 2004

Let $(Ω, μ)$ and $(D, η)$ be two-sided-admissible domains of \mathbb{R}^n , $D \subset\subset \Omega$, $k \in]0, 1[\cup]1, +\infty[$.

$$
\begin{cases}\n\nabla \cdot \left(\left(1 + (k-1) \mathbb{1}_D \right) \nabla u \right) = \mathsf{o} & \text{on } \Omega, \\
\left. \frac{\partial_i u}{\partial \nu} \right|_{\partial \Omega} = g \in \dot{\mathcal{B}}'(\partial \Omega)\n\end{cases} \tag{6}
$$

Subdomain identification: uniqueness with one measurement in the monotone case

Theorem

Let $D_1 ⊂ D_2 ⊂ ⊂ Ω$ *be tree bounded two-sided-admissible domains of* \mathbb{R}^n *. Let k* ∈]0, 1[∪]1, +∞[*and u*₁ and *u*₂ *be the solutions to the two-phased transmission problem, respectively associated to* D_1 *and* D_2 *.*

If, for some Neumann condition $g \in \dot{\mathcal{B}}'(\partial\Omega)\backslash\{{\bf 0}\}$ *,* $\mathrm{tr}_{i}^{\partial\Omega}\,u_1 = \mathrm{tr}_{i}^{\partial\Omega}\,u_2$ *, then* $D_1 = D_2$ *.*

Conclusion

Results independent on the boundary measure

Poincaré-Steklov and layer potentials on such boundaries

Transmission problem and imagery application by the Neumann-Poincaré operator

Thank you very much for your attention!