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Introduction When fractals could appear

Traffic noise absorbing wall

“Fractal wall” TM, porous material is the cement-wood (acoustic absorbent),
Patent Ecole Polytechnique-Colas, Canadian and US patent
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Introduction When fractals could appear

Acoustic anechoic chambers
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the quietest place on earth
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Introduction When fractals could appear

Irregularity of boundaries
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Irregularity of boundaries
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Irregularity of boundaries

Antigiogenesis of cancerous tumours
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Examples of self-similar fractal boundaries
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

(One-sided-)extension and admissible domains

Definition
A domain Q c R" is called a H'-extension domain if there exists a bounded linear

extension operator Eq : H'(Q2) — H'(R"):
VYue H'(Q) 3v=Eque H'(R") withv|g=uandC(Q)>o0:

[VIIHrny < CllUllm()-

H'-extension domain Q is called H'-admissible if its boundary ©Q has positive
capacity.

Jones [1981]: If Q is an uniform (or (g, >)-) domain, then it is Sobolev extension
domain.
Hajtasz, Koskela and Tuominen [2008]): O c R" is a H'-extension domain <= Q
is an n-set and H'(Q) = C"2(Q) (space of the fractional sharp maximal functions)
with norms’ equivalence.
1/



Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Examples, remarks

Domains with boundaries 99 as

- d-sets: dimy o2 =d >0
dcq, ¢ > 0,

cir? < (02N By(x)) < rf,  for VxedQ, o<r<n,

- Lipschitz and more regular boundaries

- bounded dimension boundaries

n—2<dmyoQ2 <n
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Trace operator

Proposition
For a H'-admissible domain Q of R", given u € H'(Q), let

Tr,- u:.= (EQU)N’89

be the restriction of any quasi continuous representative (Equ)™~ of Equ. Then the
(interior) trace operator
Tr; - HY(Q) — B(0Q)

Is a well-defined linear surjection.

Consequently, g. e.

. 1

M. Biegert, 2009, Theorem 6.1, Remark 6.2 and Corollary 6.3
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Trace theorem

Let Q ¢ R" be an H'-admissible bounded domain.

H'(Q) = Hy(Q) & Va(R), V4(Q) = {u € H'(Q)| — Au + u = o weakly}

(i) The space HL(Q) := C;_?O(Q)”'H””Q) is the kernel of Tr;, that is, H3(Q2) = ker Tr;.
(ii) Endowed with the norm

Ifllsag) == min{[IV]l4q)| v € H'(Q2) and Tr; v =f}, (1)

the space B(0R) is a Hilbert space.

(i) N Tri lzne).B0) = 1-
Its restriction tr; : V4(Q) — B(9Q) to V4(Q2) is an isometry and onto.
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Green formula

Let @ C R" be H'-admissible.
HA(Q) = {u e H'(Q) | Au € L(Q)}
Given u € H)(Q2), there is a unique element g of B/(0R2) such that
(g,Tr,- V>B’(8Q), B(OQ) = / (AU)VdX +/ VuVvdx, ve H1(Q)
Q Q

We call this element g the weak interior normal derivative of u (with respect to Q)
and denote it by % =g.

% : H)\(Q) — B'(02) is linear and bounded:

(thanks to multiple works of M. R. Lancia (d-sets, Jonsson measures))

8,‘U
- < ullwe) + 1AU]2(q)-
5 | om @ @
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Some important corollaries

1. Vf € B(0R) the assigment

Uf)(h) = (f, h) oy, h e B(OR),

defines an isometric isomorphism ¢ from B(92) onto B'(9Q).
The dual pairing is defined by

(9.1)5r00),8000) = (¢ (9):Fsaa) = (9: () gon) - f € B(OQ), g € B'(99).

We may identify B(9Q2) with its image +(B(92)) C B'(02) under .
2. Gelfand triple:

B(9Q) — L2, p) = (L2(89, 1)) — B(9Q), B"(99) = B(99Q)

16 [ ¢



Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Some important corollaries

1. Vf € B(0R) the assigment

Uf)(h) = (f, h) oy, h e B(OR),

defines an isometric isomorphism ¢ from B(92) onto B'(9Q).
The dual pairing is defined by

(9.1)5r00),8000) = (¢ (9):Fsaa) = (9: () gon) - f € B(OQ), g € B'(99).

We may identify B(9Q2) with its image +(B(92)) C B'(02) under .
2. Gelfand triple:

B(9Q) — L2, p) = (L2(89, 1)) — B(9Q), B"(99) = B(99Q)

The adjoint trace operator Tr; : B'(9Q2) — (H'(Q))', is defined:

YW e H'(Q), VgeB(99), (g,TrV)soa).s00 = (Tr 9,V)H@) .H(@Q)-

16 [ 1



Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Dirichlet type or harmonic extensions for —A + 1 on admissible domains

V4(2) is also the space of weak solutions of the Dirichlet boundary-value
problem

—-Au+u =0 InQ
U‘aQ :fEB(aQ)

EP . B(0Q) — EP(B(0Q)) = V4(Q) c H'(Q)
f ool = E°(f),
where uf is the unique weak solution to the Dirichlet boundary problem

Proposition _ _
EP - B(9Q) — V4(Q) is an isometry:  Vf € B(0Q) |Ifllso) = IE°fllm@)-

In this sense EP = tr: .
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Neumann problem for —A + 1 on admissible domains

Let Q ¢ R" be an H'-admissible bounded domain.

—Au+u =0 inQ
g—g‘ag ZQGB’(ﬁQ)

YWe HY(Q) 3lueH(Q) (u,Vimq) = (9, TriV)s(oa),8069)-

V4(Q) is the space of the weak solutions of the Neumann boundary value
problem.

[ % € B(09) — u e V,(Q) c H'(Q)
where u is the unique weak solution of the Neumann boundary value problem for

—A +1,is an isometry, (EV) ™" = - on V4(Q)

Vg € B'(09) HEN9HH1(Q) = |1 tr; llwr)y = 11915 (00)-
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Corollary

Corollary
Let Q be H'-admissible.

(i) Both EN : B'(02) — V4() and % : V4(Q) — B'(092) are isometries and onto,
and we have - = (EV)~" on V4(Q).

(i) Foru,v e V4(Q) we have

9y _ _/ov
<8u i V>B'(aQ),B(aQ) = (U Vi) = <8u’tr' u>6/(89)78(89)'

(iii) The dual (%)* : B(OQ) — (V4(Q)) of% on V4(Q) is an isometry and onto.

19/



Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Poincaré-Steklov operator for admissible domains

Theorem
Let Q be a H'-admissible bounded domain and k € R\ o(—Ap). Then the

Poincareé-Steklov operator
A B(0Q) — B(0Q)

Tru— —
v |gq

associated with the weak solutions from
ueHA(Q):={veH (Q)|AveL*Q)}
(-A+Ru=00nQ with Trulsq =7Ff € B(0Q), (2)

is a linear bounded operator with Ker A # {0} and it coincides with its adjoint.

d-sets K. Arfi, AR-P. 2019, AR-P. 2020, Lipschitz case by W. Arendt, A. F. M. ter Elst 2011, 2015
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Poincaré-Steklov operator as an isometry for admissible domains

Lemma
Let Q be a bounded H-admissible domain.

(i) Forany k € R\ o(Ap) the Poincaré-Steklov operator Ay : B(0Q) — B'(09) is
injective if and only if R is not an eigenvalue of the self-adjoint Neumann
Laplacian for Q.

(ii) The Poincare-Steklov operator A, : B(0Q2) — B'(9Q) is an isometry and

A‘IZa

a0 () ™.

21/



Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Different isometries

=
B
[
L
B
-

> Tr,(HY()) = B(Q)

HAi1=t

V(@) = (Hy()7) ————= (Try(H'(2)))" = (B(OQ))’

Vg € B'(0Q) gz oa) = It} gl @)y
Vu e Vo(Q)  [lullpie) = |l triullpaq)-

in complement to S. N. Chandler Wilde, D. P. Hewett, A. Moiola, 2017-...
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Framework of harmonic problems for —A

Definition
H'(Q) = {u € L2 (Q)| Vu € L3(Q,R") modulo locally constant functions}

loc

is the Hilbert space, endowed with the scalar product (U, V). q) = Jo VUVV dx.

- A domain Q ¢ R" is an H'-extension domain if
there is a bounded linear extension operator Eq : H'(Q) — H'(R").

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985
23/



Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Framework of harmonic problems for —A

Definition
H'(Q) = {u € L2 (Q)| Vu € L3(Q,R") modulo locally constant functions}

loc

is the Hilbert space, endowed with the scalar product (U, V). q) = Jo VUVV dx.

- Adomain Q c R" is an H'-extension domain if
there is a bounded linear extension operator Eq : H'(Q) — H'(R").
- Qis H'-admissible if 1) Q is an H'-extension domain and
2) 00 is compact and of positive capacity.

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Framework of harmonic problems for —A

Definition
H'(Q) = {u € L2 (Q)| Vu € L2(Q,R™) modulo locally constant functions}

is the Hilbert space, endowed with the scalar product (U, V). q) = Jo VUVV dx.

- A domain Q ¢ R" is an H'-extension domain if
there is @ bounded linear extension operator Eq : H'(Q2) — H'(R").
- Qs H'-admissible if 1) Q is an H'-extension domain and
2) 00 is compact and of positive capacity.
- If s0, B(9RQ) is the vector space modulo constants of all g.e. equivalence

classes of pointwise restrictions W|gq of quasi continuous representatives w
of classes u € H'(R").

Chen, Fukushima 2012; Deny-Lions 1954; Mazja 1985
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Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Precisions on H'(Q) and B(99)

(i) Let Q be a bounded H'-extension domain. Then
H'(Q) ~ {u € H'(Q)| / u(x) dx = o}
Q

H'(Q) ~ H'(Q) & R
(i) Let Q be a bounded H'- and H'-admissible domain. Then

B(0Q) ~ B(0Q) & R

24/



Bounded case Trace Poincaré-Steklov operator Calderon’s problem

Several Examples

Forn > 2:

(i) by JONES-1981: Any (g,d)-domain Q c R" is an H'-domain;
any (e, 00)-domain is H'-extension domain.

(i) Any (e,00)-domain Q c R" with R™\Q # @ is H'-admissible, and if one of the
two open sets is bounded, it is also H'-admissible.

(iii) @ =R™\{o} is not H'-admissible.
Forn =1

(a) (a,b) with a or b finite is H'-admissible;
(b) if a and b finite, (a, b) also H'-admissible.

25/



Bounded case Trace Poincaré-Steklov operator Calderén’s problem

Conductivity problem

Let Q be a bounded H'-admissible domain. v € LI (€2) continuous near 0Q.

V-(nVu)=o0 on Q,
vy =g e B(0Q).

Variational formulation: Vv € H'(Q),  (YVu, VV)iz(@) = (9, 1Y) g (a0 B00)-

0;
A TrU’aQHWa

26 [



Bounded case Trace Poincaré-Steklov operator Calderén’s problem

Calderon’s problem

Knowing A,, can we recover ~?
Theorem _
Let Q be a bounded H'-admissible domain of R" such that
30, p > 0, VX0 € O, Vr < p, 32 € Q°, dr < d(z,0Q) < |z—Xo| <.

Let ¢,L > 0. Let vq,v, € W"°(Q) be such that ¢ < ~4, and \|71’2||W1m(9) < L. Then,
it holds

171 = 2l (o) < CllAv = Al 500), 8 00)

where ¢ > 0 depends on ¢, L, n, diam(Q) and ci}, where

vx € Q, vrelo,1, A"(B/(x)NQ)>cr

Generalization of: Alessandrini, Singular solutions of elliptic equations and the determination of
conductivity by boundary measurements, 1991. 27/
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Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Classical case: Lipschitz boundaries

—Au=0 on RM0Q,

Transmission problem: [tru] = f € L3(0Q, A("=1),
@ — 2 (n—1)
H&/ﬂ =g € L0, A" V).

Solution given by u = Syag — Dgaf where:

S5p09(x) = /d 6= )gW) A" (y), xR

is the single layer potential operator, and

Donf(x) = /d ) S—fy(x CYF) AT (dy), x € BMoQ

is the double layer potential operator, with G the fundamental solution to —A on
mhn
Verchota, 1984.
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Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Two-sided H'-admissible domains

—Au =0 onR"\9Q
Uilog — Uelo = —f € B(09Q)
Biloa = %Biklon =9 € B(09)

QC
Definition

Q c R" s a two-sided H'-admissible domain if
1. Q # @ and Q° # @ are H'-extension domains

2. the Lebesgue measure of 92 is zero.

= dimy(0Q2) > n — 1, hence its capacity is positive.

30/



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Two-sided H'-admissible domains

—Au =0 onR"\9Q
Uilog — Uelo = —f € B(09Q)
Biloa = %Biklon =9 € B(09)

QC

H'(RMOQ) = H'(Q) & H'(Q°) = HL(R™\0Q) & Vo(R™\09)
ue H'(RMNIQ), [Tru]:=Trju—Treu
Tri - H'(Q) — B(9Q), Tre : H'(QS) — B(6Q)

B(09) is the Hilbert space with norm

Fllsonye = (1 om; + FIBon o)

30/m



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Weak exterior normal derivative

Q is a two-sided H'-admissible domain.

vv e H'(Q), <?,Tr,—v> :/(Au)vdx+/Vu-Vvdx,
v BB Q Q

where u € H'(Q) with Au € L2(Q). Then, g';;’ € B'(09).

Yv e H'(Q°), <%,Tr9 v> = —/ (Au)vdx — | Vu-Vvdx,
ov L Qc Qc
BB
where u € H'(Q°) with Au € L2(Q°). Then, %4 ¢ B/(0Q).

We denote [94] := % — e,

Proposition _
9 AL (Q) = B(89Q) and & : HL(QF) — B/(8Q) are continuous.
M.R. Lancia,A Transmission Problem with a Fractal Interface, 2002.
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Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Jump trace properties

Suppose that Q ¢ R" is a two-sided H'-admissible domain.
V, (RMNOR) = {u € Vo(RM0Q) | [tru] = 0}

and

auH o

VO,D(Rn\aQ) = {u € Vo(R™N0Q) | [{5

Lemma
(i) tr: Vy (RMIQ) — B(9Q), is a linear isometry and onto.

(i) 2.V «(RMNAQ) — B(dQ , defined as 0 ._ 0 _ % s g linear isometry
ov 0,D ov ov ov

and onto.
(iil) Vo(R™M0Q) =V, s(R™IQ) & V, 5(RMIQ).

32/,



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Case of two-sided H' admissible domains

—Au =0 onR"\9Q
Transmission problem: Uilaa — Uelon = —f € B(0Q) (3)

Siu: - .
Bilon — Stlon =g € B'(09)

Weak formulation:
Yv € H'(R™\0RQ) with [trv] = o,
u € H'(R"\09Q) a weak solution in the H'-sense if

<uav>H1(Rn\aQ) =0 VYve C?O(R”\(?Q),
(U V)i o) = (91 V) g 0a) pony 7V € Vo s(RM\OQ) and
dv

(U V) i m og) = <[$H’f>8’(89),8(89) W € Vo 5(RM\0Q).

33/m



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Case of two-sided H' admissible domains

—Au =0 onR"\9Q
Transmission problem: Uilaa — Uelon = —f € B(0Q) (3)
Bilon — %ielon =g B(09)
Forg = o:
Lemma

Let Q ¢ R" be two-sided H'-admissible. For all f € B(dQ), 3! weak solution
U €V, 5(RMIQ) of (3) in the H'-sense st. W] 1mm a0y < Il 500)-
Double layer potential operator:

D : B(0Q) = V, p(R"\0Q), Df :=uf

is linear bounded bijective, and its inverse is D=1 = —[tr].

33/m



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Case of two-sided H' admissible domains

—Au =0 onR"\9Q
Transmission problem: Uilaa — Uelon = —f € B(0Q) (3)
Bilon — %ielon =g B(09)
Forf =o0:
Lemma

Let Q ¢ R" be two-sided H'-admissible. For all g € B/(9Q), 3! weak solution
ug €V, s(R™0Q) of (3) in the H'-sense st. [lug]| g gn\ sy < 1911 5/(a0)-
Single layer potential operator:

S: B'(09) = V, s(RMNIQ), 8¢ :=ug

is linear bounded bijective, and its inverse is S~1 = [[%]]
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Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Case of two-sided H' admissible domains

—Au =0 onR"\9Q
Transmission problem: Uilaa — Uelon = —f € B(0Q) (3)

o:u . .
Dhilgg — %le|yg =g € B(0Q)

Corollary _
Let Q be two-sided H'-admissible.

Vf € B(0Q) and ¥g € B'(9Q), 3lu € Vo(R™M Q)
in the H'-sense of (3) is given by Green’s third identity:
u=_8g—-Df

and satisfies

HU”H1(Rn\aQ) < ”f”zé(a(z) + HgHBf(aQ)'

33/m



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Representations of layer potentials

Let K denote the fundamental solution (or Green'’s function) to A on R".
Given a finite signed Borel measure v, K v := K v — K v~ on RM0Q.

K v(x) := /n K(x —y)v(dy), xe€R"

We call v centered if v(R") = 0. The measure v is of finite energy if 3¢ > 0 such
that

/ vldv| < c||V[[m@n, VE H'(R™) N Cc(R™). (4)
[2}9

Proposition _
Let n > 2 and let Q be a two-sided H'-admissible domain in R". Then

1. S=Totr,
where the Newton potential operator u — Zu = (|£|720)" extended to an isometric
isomorphism H(R") — H'(R") (Zv = K * v).

34/,



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Representations of layer potentials

Let K denote the fundamental solution (or Green'’s function) to A on R".
Given a finite signed Borel measure v, K v := K v — K v~ on RM0Q.

K v(x) := /n K(x —y)v(dy), xe€R"

We call v centered if v(R") = 0. The measure v is of finite energy if 3¢ > 0 such
that

/ vldv| < c||V[[m@n, VE H'(R™) N Cc(R™). (4)
[2}9

Proposition _
Let n > 2 and let Q be a two-sided H'-admissible domain in R". Then

2. Let v be a centered finite signed Borel measure on 992 of finite energy. Then sets of
zero capacity have zero v-measure, and v defines an element of B/(9Q) by

) i on).Bo) = /{mf dv, f e B(09). (5)
34/m



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Some properties of the generalized layer potentials

The operators Syq : B/(9Q) — H'(RM\0Q) and Dyq : B(Q) — H'(R"\IQ) are
linear and continuous.

Green'’s third identity: the unique weak solution u € H'(R™99Q) to (3) is

u:=us—up = Ssag — Doaf.

35/ 41



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Some properties of the generalized layer potentials

The operators Syq : B/(9Q) — H'(RM\0Q) and Dyq : B(Q) — H'(R"\IQ) are
linear and continuous.

Green'’s third identity: the unique weak solution u € H'(R™99Q) to (3) is

u:=us—up = Ssag — Doaf.

It holds:
Vg € B’(&Q), San = G *pn tr* g.

In particular, if  is a d-upper regular measure on 9Q and if g € L?(09, u):

Sog(X) = /a o G(x —y)g(y) m(dy), xeR"

35/ 41



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Neumann-Poincaré operator for — A with [[tr u]] = —f and

Definition
If Q is a bounded two-sided-admissible domain of R", let us define:

K : B(0Q) — B(dQ), defined by
K= %(fr,' +1tre) o D,
is the Neumann-Poincaré operator for the problem associated to —A:

K : B(0Q) — B(6Q)

—f = [frul] = (b + fre)u = (b + re) o BF.

36 /11



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Adjoint Neumann-Poincaré operator for —A withg = || — || and [tr(u)] =0

K* . B'(8Q) — B'(9Q) denotes the adjoint operator to K : B(9Q) — B(dRQ).
Theorem
Let Q be two-sided H'-admissible. Then
(i) trjoD = -1+ K and tre oD = 11 + K.
(i) & o8 =2+K"and & o8 =—11+K* In particular
Moreover, K : B(0Q) — B(0Q) and K* : B'(9Q) — B'(0Q) are linear and

continuous.

37/



Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Spectral properties of the Neumann-Poincaré operator on 5(9)

Lipschitz case on L? of G. Verchota 1984

Theorem

Let Q be two-sided H'-admissible.

Forxe C, if [A\— 3| >10r |+ ]| > 1, then
the operators M + K and Al + K* are invertible on B(0Q) and B'(9Q) respectively.

In particular, their real spectra are included in (-1, 3).

38/



Transmission problems Neumann-Poincaré operator

Spectral properties of the Neumann-Poincaré operator on 3(95)

Lipschitz case on L? of G. Verchota 1984

Im(\)

NI
N [

N W
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Transmission problems Well-posedness Neumann-Poincaré operator Imaging

TWO'phased transmiSSion prOblem Lipschitz case of H. Ammari, H. Kang 2004

Let (2, 1) and (D, n) be two-sided-admissible domains of R",
D cc Q, k €]o,1[U]1, +o0l.

((1 + (kR — 1)]lD)Vu) =0 onqQ,

=g e B'(09)

V.
o
oV |9q

(6)
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Transmission problems Well-posedness Neumann-Poincaré operator Imaging

Subdomain identification: uniqueness with one measurement in the monotone

case

Theorem

Let D, € D, cC Q be tree bounded two-sided-admissible domains of R". Let

k €]o,1[U]1, +o0[ and

u, and u, be the solutions to the two-phased transmission problem, respectively
associated to D, and D,.

If. for some Neumann condition g € B'(8Q)\{0}, tr% uy = tr?? u,, then D; = D..

40 [ i



Conclusion

Conclusion

Results independent on the boundary measure

Poincaré-Steklov and layer potentials on such boundaries

Transmission problem and imagery application by the Neumann-Poincaré
operator

Thank you very much for your attention!
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