Assouad-like Φ -dimensions and Cantor sets

Franklin Mendivil

Department of Mathematics and Statistics, Acadia University, Canada

Those I have had the great pleasure to work with on this: Cabrelli, Molter, Shonkwiler, Hare, Zubermann, García

Overview

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

⊅-dimensions

I will talk about these "generalized" Assouad-like dimensions, but I decided to mostly talk about the context in which we stumbled upon them.

This will hopefully show one natural context in which they provide useful information.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The talk is deliberately not highly technical.

Linear compact sets

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Let $E \subset \mathbb{R}$ be infinite, compact, and of Lebesgue measure zero. For simplicity we assume that $E \subset [0, 1]$ with $0, 1 \in E$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear compact sets

Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Let $E \subset \mathbb{R}$ be infinite, compact, and of Lebesgue measure zero. For simplicity we assume that $E \subset [0, 1]$ with $0, 1 \in E$. $[0, 1] \setminus E = \bigcup_i \mathcal{O}_i$ (a union of open intervals – the *gaps*).

Let $a_i = |\mathcal{O}_i|$; these are the *gap lengths*. We usually assume that $a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Linear compact sets

Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Let $E \subset \mathbb{R}$ be infinite, compact, and of Lebesgue measure zero. For simplicity we assume that $E \subset [0, 1]$ with $0, 1 \in E$. $[0, 1] \setminus E = \bigcup_i \mathcal{O}_i$ (a union of open intervals – the *gaps*).

Let $a_i = |\mathcal{O}_i|$; these are the *gap lengths*. We usually assume that $a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

By our assumptions, $\sum_i a_i = 1$.

Rearrangements

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

⊅-dimensions

Clearly *E* is determined by both the gap lengths $\{a_i\}$ and the locations of the O_i .

Let \mathscr{C}_a be the set of all such sets *E* with gap lengths $\{a_i\}$.

Any two elements of C_a are *rearrangements* of each other (that is, we have rearranged the gaps to construct one from the other).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to specify $E \in \mathscr{C}_a$

Franklin Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

There are (at least) two useful ways of specifying $E \in \mathscr{C}_a$.

The first is to label the nodes of a binary tree by the lengths a_n (or use 0 to remove the node) and arrange the gaps accordingly.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

This makes a perfect set which is as "balanced" and homogeneous as possible (given a_n).

Another arrangement which yields a perfect set

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

An arrangement with isolated points

Rearrangements of linear sets

- Dimensions or rearrangements
- Assouad dimensior
- Random rearrangements
- Φ-dimensions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

The "decreasing" arrangement – \mathcal{D}_a

Rearrangements of linear sets

- Dimensions o rearrangements
- Assouad dimension
- Random rearrangements
- Φ-dimensions

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

It is perhaps worth mentioning that the mapping from labeled tree to compact set E is not injective, though this won't matter to us.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to specify $E \in \mathscr{C}_a$

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

There are (at least) two useful ways of specifying $E \in \mathscr{C}_a$.

The first is to label the nodes of a binary tree by the lengths a_n and arrange the gaps accordingly.

The second is to see that any arrangement of the \mathcal{O}_i induces a linear order on \mathbb{N} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Every $E \in \mathscr{C}_a$ defines a total order on \mathbb{N} by $i \prec j$ iff x < y for all $x \in \mathcal{O}_i$ and $y \in \mathcal{O}_j$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Franklin Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimensior

Random rearrangements

Φ-dimensions

Every $E \in \mathscr{C}_a$ defines a total order on \mathbb{N} by $i \prec j$ iff x < y for all $x \in \mathcal{O}_i$ and $y \in \mathcal{O}_j$.

Conversely given a total order \prec on \mathbb{N} and the lengths $\{a_i\}$, we can construct a rearrangement set $E \in \mathscr{C}_a$ by

$$E = \{\sum_{i \in L} a_i : L, R \text{ a } cut \text{ of } \mathbb{N}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The location of this point is defined by the gaps which are to the left of it.

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

 \mathcal{D}_{a} corresponds to the order $1\prec 2\prec 3\cdots$, the natural order on $\mathbb{N}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

 \mathcal{D}_{a} corresponds to the order $1\prec 2\prec 3\cdots$, the natural order on $\mathbb{N}.$

 C_a corresponds to the order (given in binary) $1\omega 0\alpha \prec 1\omega \prec 1\omega 1\beta$ where ω, α, β are finite binary words.

No element of $\ensuremath{\mathbb{N}}$ has an immediate successor or predecessor under this order.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Something to think about if you need a distraction

Franklin Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

What is a nice/useful/convenient way of specifying a compact $E \subset [0, 1]$ of positive Lebesgue measure?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

That is, what is a nice way to encode the additional information needed to specify the mass distribution.

Box dimensions and \mathscr{C}_a

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Both the upper and lower box dimensions are constant on \mathscr{C}_a . This is a consequence of the relation between dim_B E and E_{ϵ} .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Box dimensions and \mathscr{C}_a

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Both the upper and lower box dimensions are constant on \mathscr{C}_a . This is a consequence of the relation between dim_B E and E_{ϵ} .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

It turns out that $\overline{\dim}_B E = \overline{\lim} \frac{\log m}{-\log a_m}$.

Box dimensions and \mathscr{C}_a

Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Both the upper and lower box dimensions are constant on \mathscr{C}_a . This is a consequence of the relation between dim_B E and E_{ϵ} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It turns out that $\overline{\dim}_B E = \overline{\lim} \frac{\log m}{-\log a_m}$.

and that $\underline{\dim}_B E = \underline{\lim}_{-\log \frac{1}{m}\sum_{j \ge m} a_j}$.

Hausdorff dimension of rearrangements

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

In 1954 Besicovitch and Taylor proved:

 $\mathcal{H}^{s}(E) \leq 4\mathcal{H}^{s}(\mathcal{C}_{a})$ for any $E \in \mathscr{C}_{a}$ and $0 \leq s \leq 1$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hausdorff dimension of rearrangements

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

In 1954 Besicovitch and Taylor proved:

$$\mathcal{H}^{s}(E) \leq 4\mathcal{H}^{s}(\mathcal{C}_{a})$$
 for any $E \in \mathscr{C}_{a}$ and $0 \leq s \leq 1$

$$\Rightarrow \dim_{H}(E) \leq \dim_{H}(\mathcal{C}_{a}) = \underline{\lim}_{-\log \frac{1}{m}\sum_{j>m} a_{j}} \text{ for any } E \in \mathscr{C}_{a}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hausdorff dimension of rearrangements

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimensior

Random rear rangements

Φ-dimensions

In 1954 Besicovitch and Taylor proved:

$$\mathcal{H}^{s}(E) \leq 4\mathcal{H}^{s}(\mathcal{C}_{a}) \text{ for any } E \in \mathscr{C}_{a} \text{ and } 0 \leq s \leq 1$$

 $\Rightarrow \dim_{H}(E) \leq \dim_{H}(\mathcal{C}_{a}) = \underline{\lim}_{-\log \frac{1}{m}\sum_{j \geq m} a_{j}} \text{ for any } E \in \mathscr{C}_{a}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

lf

1 $0 < s < \dim_H(\mathcal{C}_a)$ and $0 \le \gamma \le \infty$, or 2 $s = \dim_H(\mathcal{C}_a)$ and $0 \le \gamma \le \mathcal{H}^s(\mathcal{C}_a)$ then there is $E \in \mathscr{C}_a$ with $\mathcal{H}^s(E) = \gamma$.

Thus $\{\dim_H(E) : E \in \mathscr{C}_a\} = [0, \dim_H(\mathcal{C}_a)]$

${\dim_H(E): E \in \mathscr{C}_a} = [0, \dim_H(\mathcal{C}_a)]$

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Their proof of this quite nice.

From general results, there exists $F \subset C_a$ with $\mathcal{H}^s(F) = \gamma$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

${\dim_H(E): E \in \mathscr{C}_a} = [0, \dim_H(\mathcal{C}_a)]$

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Their proof of this quite nice.

From general results, there exists $F \subset C_a$ with $\mathcal{H}^s(F) = \gamma$.

The "gaps" of F are "unions of \mathcal{O}_i 's". We add points to F in a decreasing order to get the missing gaps so that $E \in C_a$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hausdorff dimension of C_a

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

When $C \subset \mathbb{R}$ is a *central* Cantor set, $\underline{\dim}_B C = \dim_H C$.

This can be used to show $\underline{\dim}_B C_a = \dim_H C_a$, which is how we got the previous formula for $\underline{\dim}_B E$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Packing dimension of rearrangements

Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

 $\mathcal{P}_0^s(E) \leq 2\mathcal{P}_0^s(\mathcal{D}_a)$ and $\dim_P(E) \leq \dim_P(\mathcal{C}_a)$ for all $E \in \mathscr{C}_a$.

If $0 < s < \dim_P(\mathcal{C}_a)$ and $0 \le \gamma \le \infty$ then there is some $E \in \mathscr{C}_a$ with $\mathcal{P}^s(E) = \gamma$.

Thus, again, $\{\dim_P(E) : E \in \mathscr{C}_a\} = [0, \dim_P(\mathcal{C}_a)]$ (and with a similar proof).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

$$\mathsf{In} \; \mathsf{fact}, \; \mathsf{dim}_P(\mathcal{C}_{\mathsf{a}}) = \overline{\mathsf{dim}}_B(\mathcal{C}_{\mathsf{a}}) = \overline{\mathsf{lim}} \frac{\log m}{-\log a_m}.$$

Assouad dimensions

Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

The Assouad dimensions are related to the extreme local behaviour of the box-counting dimensions.

The upper dimension was defined by Assouad to study the problem of embedding metric spaces in \mathbb{R}^n .

They have been the subject of intensive study recently in the fractals literature (in particular by Fraser and his collaborators/students; see his recent book *Assouad dimension and fractal geometry*).

Assouad dimensions: "localize" in space and scale

Franklin Mendivil

Rearrangements of linea sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

⊅-dimensions

Choose x and 0 < r < RCover $B(x, R) \cap F$ with $B(x_i, r)$ Compare N(x, r, R) to $(R/r)^d$

Extremize d over r, x, R as $R \rightarrow 0$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Assouad dimensions

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Let $N_r(S)$ be the minimal number of balls of radius r > 0 which cover S.

(Upper) Assouad dimension

$$\dim_{\mathcal{A}}(F) = \inf\{\alpha > 0 : \exists C, \rho > 0, \forall 0 < r < R \le \rho,$$
$$\sup_{x \in F} N_r(B(x, R) \cap F) \le C\left(\frac{R}{r}\right)^{\alpha}\}.$$

 $\dim_A(F)$ gives the largest local growth rate of N_r between any two scales.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
Assouad dimensions

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Let $N_r(S)$ be the minimal number of balls of radius r > 0 which cover S.

 $\dim_L(F)$ gives the smallest local growth rate for N_r between any two scales.

Lower (Assouad) dimension

$$\dim_{L}(F) = \sup\{\alpha > 0 : \exists C, \rho > 0, \forall 0 < r < R \le \rho,$$
$$\inf_{x \in F} N_{r}(B(x, R) \cap F) \ge C\left(\frac{R}{r}\right)^{\alpha}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assouad dimensions

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Let $N_r(S)$ be the minimal number of balls of radius r > 0 which cover S.

(Upper) Assouad dimension

$$\dim_{\mathcal{A}}(F) = \inf\{\alpha > 0 : \exists C, \rho > 0, \forall 0 < r < R \le \rho,$$
$$\sup_{x \in F} N_r(B(x, R) \cap F) \le C\left(\frac{R}{r}\right)^{\alpha}\}.$$

Lower (Assouad) dimension

$$\dim_{L}(F) = \sup\{\alpha > 0 : \exists C, \rho > 0, \forall 0 < r < R \le \rho,$$
$$\inf_{x \in F} N_{r}(B(x, R) \cap F) \ge C\left(\frac{R}{r}\right)^{\alpha}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assouad cousin - the quasi-Assouad dimension

Franklin Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

The quasi-Assouad dimension is a refinement of the Assouad dimension and is preserved under quasi-Lipschitz mappings (unlike \dim_A).

 $\dim_{qA} F = \lim_{\delta \to 0} h_{\delta}(F)$ where h_{δ} is defined like \dim_A but with $0 < r < R^{1+\delta}$.

 $\dim_{qA} F$ measures the largest local growth rate of N_r but only between two scales which are "far enough" apart.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Assouad cousin - the quasi-Assouad dimension

Franklin Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

The quasi-Assouad dimension is a refinement of the Assouad dimension and is preserved under quasi-Lipschitz mappings (unlike \dim_A).

 $\dim_{qA} F = \lim_{\delta \to 0} h_{\delta}(F) \text{ where } h_{\delta} \text{ is defined like } \dim_{A} \text{ but with } 0 < r < R^{1+\delta}.$

There is also a dual lower version, $\dim_{qL} F$.

$$\dim_{L}(F) \leq \dim_{qL}(F) \leq \dim_{H}(F) \leq \underline{\dim}_{B}(F) \leq \overline{\dim}_{B}(F) \leq \dim_{A}(F)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Assouad cousin - the quasi-Assouad dimension

Franklin Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

If $R \approx s^n$ then $R^{1+\delta} \approx s^{n+\delta n}$.

So $\dim_{qA} F$ "reaches deep into the tree" for its comparisons.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Assouad dimensions of rearrangements

Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

$\dim_{A} \mathcal{C}_{a} \leq \dim_{A} E \leq \dim_{A} \mathcal{D}_{a} \in \{0,1\}, \text{ for all } E \in \mathscr{C}_{a}.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Assouad dimensions of rearrangements

Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

$$\dim_A \mathcal{C}_a \leq \dim_A E \leq \dim_A \mathcal{D}_a \in \{0,1\}, \text{ for all } E \in \mathscr{C}_a$$
$$\{\dim_A(E) : E \in \mathscr{C}_a\} = [\dim_A \mathcal{C}_a, \dim_A \mathcal{D}_a] \ (= \{0\} \text{ if } \dim_A \mathcal{D}_a = 0).$$

The proof is constructive and works by building "approximate" discrete central Cantor sets of the appropriate dimension.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This requires a_n to be *doubling*: $a_n \leq \kappa a_{2n}$.

Rearrangements of linea sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Random rearrangements

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Random rearrangements: probability model (Hawkes, 84)

Franklin Mendivil

Rearrangements of linea sets

Dimensions c rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Take $oldsymbol{\omega}=(\omega_n)\in [0,1]^{\mathbb{N}}$ with Lebesgue measure on each factor.

 ω defines a random total order \prec_{ω} on \mathbb{N} by $i \preceq_{\omega} j$ iff $\omega_i \le \omega_j$. $\omega_5 \qquad \omega_7 \qquad \omega_3 \qquad \omega_{10} \qquad \omega_1 \qquad \omega_8 \qquad \omega_4 \qquad \omega_2 \qquad \omega_6 \qquad \omega_9$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This gives a "uniformly" random choice of sets from \mathscr{C}_a .

Random rearrangements: probability model (Hawkes, 84)

Franklin Mendivil

Rearrangements of linea sets

Dimensions c rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

Take $\boldsymbol{\omega} = (\omega_n) \in [0,1]^{\mathbb{N}}$ with Lebesgue measure on each factor.

 ω defines a random total order \prec_{ω} on \mathbb{N} by $i \preceq_{\omega} j$ iff $\omega_i \leq \omega_j$. $\omega_5 \qquad \omega_7 \qquad \omega_3 \qquad \omega_{10} \qquad \omega_1 \qquad \omega_8 \qquad \omega_4 \qquad \omega_2 \qquad \omega_6 \qquad \omega_9$

This gives a "uniformly" random choice of sets from \mathscr{C}_a .

The random rearrangement will almost surely be a perfect set.

Since dimensional calculations are permutable events (only depend on very fine scales), each dimension will have a constant value almost surely.

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

$\dim_{H}(E) = \dim_{H}(\mathcal{C}_{a}) \text{ a.s. (Hawkes 84)}.$

The proof uses potential theoretic methods.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

$\dim_H(E) = \dim_H(\mathcal{C}_a) \text{ a.s. (Hawkes 84)}.$

The proof uses potential theoretic methods.

```
\dim_P(E) = \dim_P(\mathcal{C}_a) \text{ a.s. (Hu 1992)}
```

This requires some regularity of a_n (doubling is fine).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

 $\dim_H(E) = \dim_H(\mathcal{C}_a) \text{ a.s. (Hawkes 84)}.$

The proof uses potential theoretic methods.

```
\dim_P(E) = \dim_P(\mathcal{C}_a) \text{ a.s. (Hu 1992)}
```

This requires some regularity of a_n (doubling is fine).

In fact, (Hu 1995) proved that for $a_n = 1/3, 1/9, 1/9, 1/27, \ldots$, and $d = \log 2/\log 3$, the function $\varphi(x) = x^d (\log \log(1/x))^{1-d}$ is the a.s. exact Hausdorff dimension function.

Franklin Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

$$\begin{split} \dim_A(E) &= \dim_A(\mathcal{D}_a) \\ \dim_{qA}(E) &= \dim_{qA}(\mathcal{C}_a) \end{split} \ \text{a.s. (Garcia, Hare, M)} \end{split}$$

To show this, we used an equivalent model of the randomness, where the "levels" are more explicit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

$$\begin{split} \dim_A(E) &= \dim_A(\mathcal{D}_a) \\ \dim_{qA}(E) &= \dim_{qA}(\mathcal{C}_a) \end{split} \text{ a.s. (Garcia, Hare, M)}$$

To show this, we used an equivalent model of the randomness, where the "levels" are more explicit.

The key is that in Hawkes' model the restriction of \prec_{ω} to $\{1, 2, \dots, N\}$ gives each permutation equally likely.

We build the order on \mathbb{N} in stages, randomly "inserting" the "new" elements $\{n + 1, n + 2, ..., n + m\}$ between the already ordered $\{1, 2, ..., n\}$.

Mendivil

Rearrangements of linear sets

Dimensions c rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We build the order on \mathbb{N} in stages, randomly "inserting" the "new" elements $\{n + 1, n + 2, ..., n + m\}$ between the already ordered $\{1, 2, ..., n\}$.

Rearrangements of linea sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

We build the order on \mathbb{N} in stages, randomly "inserting" the "new" elements $\{n + 1, n + 2, ..., n + m\}$ between the already ordered $\{1, 2, ..., n\}$.

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

We build the order on \mathbb{N} in stages, randomly "inserting" the "new" elements $\{n + 1, n + 2, ..., n + m\}$ between the already ordered $\{1, 2, ..., n\}$.

We build the order on \mathbb{N} in stages, randomly "inserting" the "new" elements $\{n + 1, n + 2, ..., n + m\}$ between the already ordered $\{1, 2, ..., n\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The "places" (between **old ones**) where we insert the new elements turns out to be more important than their order and follow a sequence of independent multinomial random variables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

The behaviour of this process depends heavily on how many "levels" one is considering at once (the number of points to insert).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

The behaviour of this process depends heavily on how many "levels" one is considering at once (the number of points to insert).

If it is a small number of levels (= inserting only a few new points), then extreme things can happen.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

Φ-dimensions

The behaviour of this process depends heavily on how many "levels" one is considering at once (the number of points to insert).

If it is a small number of levels (= inserting only a few new points), then extreme things can happen.

If it is a large number of levels (= inserting a very large number of new points), then the behaviour is close to the "average" and thus (roughly) the CLT takes over.

Φ -dimensions – (finally we get there!)

Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

The idea for $\dim_{\Phi} F$ is to have fine control of how "deep" you look into the tree.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Φ -dimensions – (finally we get there!)

Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

The idea for $\dim_{\Phi} F$ is to have fine control of how "deep" you look into the tree.

In particular, we were interested in the "shallow depths" between the Assouad dimension and quasi-Assouad.

This arose for us exactly in this problem of the a.s. dimension of random rearrangements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It was also suggested by Fraser and co-authors.

Φ-dimensions: "localize" in space and deep enough scale

Mendivil

Rearrangements of linea sets

Dimensions o rearrangements

Assouad dimensior

Random rearrangements

 $\Phi\text{-dimensions}$

Choose x and $0 < r < R^{1+\Phi(R)}$ Cover $B(x, R) \cap F$ with $B(x_i, r)$ Compare N(x, r, R) to $(R/r)^d$

Extremize d over r, x, R as $R \rightarrow 0$

(日)

Φ-dimensions

Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

We call $\Phi : (0,1) \rightarrow (0,\infty)$ a dimension function if $x^{1+\Phi(x)}$ decreases as $x \searrow 0$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Examples include
$$\Phi(x) = \delta$$
, $\Phi(x) = 1/|\log x|$, and $\Phi(x) = \log |\log(x)|/|\log(x)|$.

Φ-dimensions

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

 Φ -dimensions

Let $N_r(S)$ be the minimal number of balls of radius r > 0 which cover S.

Upper Φ-dimension:

$$\overline{\dim}_{\Phi}(F) = \inf\{\alpha > 0 : \exists C, \rho > 0, \forall 0 < r < R^{1+\Phi(R)} \le R \le \rho, \\ \sup_{x \in F} N_r(B(x, R) \cap F) \le C\left(\frac{R}{r}\right)^{\alpha}\}.$$

Lower Φ -dimension:

 $\underline{\dim}_{\Phi}(F) = \sup\{\alpha > 0 : \exists C, \rho > 0, \forall 0 < r < R^{1+\Phi(R)} \le R \le \rho, \\ \inf_{x \in F} N_r(B(x, R) \cap F) \ge C\left(\frac{R}{r}\right)^{\alpha}\}.$

"Depth function" for Φ

If $R = s^n$ then $R^{1+\Phi(R)} = s^{n+\varphi(n)}$.

Franklin Mendivil

Dimensions or rearrangements

Assouad dimension

Random rearrangements

 Φ -dimensions

So dim $_{\Phi}$ "reaches $\varphi(n)$ -deep into the tree" for its comparisons.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Examples of the depth function $\varphi(n)$ for $R = s^n$

Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

 $\Phi(x) = \delta$ results in $\varphi(n) \sim \delta n$, like the Assouad spectrum.

 $\Phi(x) = c/|\log(x)|$ results in $\varphi(n) \sim C$, like the Assouad dimension.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Examples of the depth function $\varphi(n)$ for $R = s^n$

Franklin Mendivil

- Rearrangements of linear sets
- Dimensions or rearrangements
- Assouad dimension
- Random rearrangements
- $\Phi\text{-dimensions}$

 $\Phi(x) = \delta$ results in $\varphi(n) \sim \delta n$, like the Assouad spectrum.

 $\Phi(x) = c/|\log(x)|$ results in $\varphi(n) \sim C$, like the Assouad dimension.

$$\Phi(x) = \log |\log(x)| / |\log(x)| \text{ results in } \varphi(n) \sim c \log(n).$$

(*This is the cut-off depth for a phase change in the behaviour of iid random "1-variable" constructions and for the random rearrangement problem.*)

Comparing dimensions

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

quasi-Assouad dimension is a Φ-dimension

Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

Given *E*, there is a Φ , $\Phi(x) \xrightarrow{x \to 0} 0$, with $\dim_{qA} E = \overline{\dim}_{\Phi} E$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

However, Φ depends on *E*.

Different Φ are different

Mendivil

Rearrangements of linear sets

Dimensions or rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

Suppose $\Phi_1(x) \ge (1+\delta)\Phi_2(x)$ for small x.

Also suppose $\Phi_2(x)|\log(x)| \to \infty$ (so that Φ_2 is "deeper" than the Assouad, in particular that $\varphi(n) \to \infty$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Then there is a Cantor set F so that $\overline{\dim}_{\Phi_1} F < \overline{\dim}_{\Phi_2} F$.

Central Cantor set with a continuum of different Φ -dimensions

Franklin Mendivil

Rearrangements of linear sets

Dimensions of rearrangements

Assouad dimensior

Random rearrangements

 Φ -dimensions

By varying the scaling ratios in the construction of a central Cantor set one can precisely control the $\Phi\text{-dimensions}$ of the set.

With very careful control, we can specify $\dim_\Phi \mathcal{C}$ for a continuous family of $\Phi.$

Take $d: (0,1) \rightarrow [\alpha,\beta] \subset (0,1)$ continuous and decreasing and Φ_p , $p \in (0,1)$, be a "continuous increasing" family.

Then there is a central Cantor set C with $\overline{\dim}_{\Phi_p} C = d(p)$ for all $p \in (0, 1)$.

Back to random rearrangements

Franklin Mendivil

Rearrangements of linear sets

Dimensions o rearrangements

Assouad dimension

Random rear rangements

 $\Phi\text{-dimensions}$

If Φ is a "small" (shallow) dimension function, then almost surely

$$\overline{\dim}_{\Phi} E = \dim_{A} \mathcal{D}_{a} = 1.$$

If Φ is a "large" (deep) dimension function, then almost surely

 $\overline{\dim}_{\Phi} E = \dim_{\Phi} \mathcal{C}_a.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ
Franklin Mendivil

Rearrangements of linea sets

Dimensions o rearrangements

Assouad dimensior

Random rearrangements

 $\Phi\text{-dimensions}$

Thank you for listening!

◆□ > ◆□ > ◆□ > ◆□ > ● □

Franklin Mendivil

Rearrangements of linea sets

Dimensions o rearrangements

Assouad dimension

Random rearrangements

 $\Phi\text{-dimensions}$

Thank you for listening! Questions?

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ