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Overview

I will talk about these “generalized” Assouad-like dimensions,
but I decided to mostly talk about the context in which we
stumbled upon them.

This will hopefully show one natural context in which they
provide useful information.

The talk is deliberately not highly technical.



Franklin
Mendivil

Rearrange-
ments of linear
sets

Dimensions of
rearrange-
ments

Assouad
dimension

Random rear-
rangements

Φ-dimensions

Linear compact sets

Let E ⊂ R be infinite, compact, and of Lebesgue measure zero.

For simplicity we assume that E ⊂ [0, 1] with 0, 1 ∈ E .

[0, 1] \ E =
⋃

i Oi (a union of open intervals – the gaps).

Let ai = |Oi |; these are the gap lengths. We usually assume
that a1 ≥ a2 ≥ a3 ≥ a4 ≥ · · · .

By our assumptions,
∑

i ai = 1.
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Rearrangements

Clearly E is determined by both the gap lengths {ai} and the
locations of the Oi .

Let Ca be the set of all such sets E with gap lengths {ai}.

Any two elements of Ca are rearrangements of each other (that
is, we have rearranged the gaps to construct one from the
other).
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How to specify E ∈ Ca

There are (at least) two useful ways of specifying E ∈ Ca.

The first is to label the nodes of a binary tree by the lengths an
(or use 0 to remove the node) and arrange the gaps accordingly.
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The “Cantor” arrangement – Ca

a1

a2 a3

a4 a5 a6 a7

a1a2a4 a5 a3a6 a7
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The “Cantor” arrangement – Ca

a1

a2 a3

a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14 a15

a1a2a4 a5 a3a6 a7
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The “Cantor” arrangement – Ca

a1

a2 a3

a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14 a15

This makes a perfect set which is as “balanced” and
homogeneous as possible (given an).
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Another arrangement which yields a perfect set

a10389

a21 a138

a41 a17 a6 a7

a12 a73 a11 a15 a27 a13 a33 a101

a10389a21a41 a17 a138a6 a7
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An arrangement with isolated points

A

B a3

a4 C a6 a7

a8 a9 a12 a13 a14 a15

Some set Some other set
B C A
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The “decreasing” arrangement – Da

a2 a4 a6 a8 a10 a12 a14

a1 a3 a5 a7 a9 a11 a13

a1 a2 a3 a4 a5 a6a7a8
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It is perhaps worth mentioning that the mapping from labeled
tree to compact set E is not injective, though this won’t matter
to us.
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How to specify E ∈ Ca

There are (at least) two useful ways of specifying E ∈ Ca.

The first is to label the nodes of a binary tree by the lengths an
and arrange the gaps accordingly.

The second is to see that any arrangement of the Oi induces a
linear order on N.
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Arrangement via total order on N

Every E ∈ Ca defines a total order on N by i ≺ j iff x < y for
all x ∈ Oi and y ∈ Oj .

Conversely given a total order ≺ on N and the lengths {ai}, we
can construct a rearrangement set E ∈ Ca by

E = {
∑
i∈L

ai : L,R a cut of N}.

The location of this point is defined by the gaps which are to the left of it.
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Arrangement via total order on N

Da corresponds to the order 1 ≺ 2 ≺ 3 · · · , the natural order
on N.

Ca corresponds to the order (given in binary)
1ω0α ≺ 1ω ≺ 1ω1β where ω, α, β are finite binary words.

No element of N has an immediate successor or predecessor
under this order.
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Something to think about if you need a distraction

What is a nice/useful/convenient way of specifying a compact
E ⊂ [0, 1] of positive Lebesgue measure?

That is, what is a nice way to encode the additional
information needed to specify the mass distribution.
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Box dimensions and Ca

Both the upper and lower box dimensions are constant on Ca.

This is a consequence of the relation between dimB E and Eε.

It turns out that dimBE = lim logm
− log am

.

and that dimBE = lim logm
− log 1

m
∑

j≥m aj
.
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Hausdorff dimension of rearrangements

In 1954 Besicovitch and Taylor proved:

Hs(E) ≤ 4Hs(Ca) for any E ∈ Ca and 0 ≤ s ≤ 1

⇒ dimH(E) ≤ dimH(Ca) = lim logm
− log 1

m
∑

j≥m aj
for any E ∈ Ca

If
1 0 < s < dimH(Ca) and 0 ≤ γ ≤ ∞, or
2 s = dimH(Ca) and 0 ≤ γ ≤ Hs(Ca)

then there is E ∈ Ca with Hs(E) = γ.

Thus {dimH(E) : E ∈ Ca} = [0, dimH(Ca)]
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{dimH(E) : E ∈ Ca} = [0, dimH(Ca)]

Their proof of this quite nice.

From general results, there exists F ⊂ Ca with Hs(F ) = γ.

The “gaps” of F are “unions of Oi ’s”. We add points to F in a
decreasing order to get the missing gaps so that E ∈ Ca.

set set

set setmore pts
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Hausdorff dimension of Ca

When C ⊂ R is a central Cantor set, dimBC = dimH C .

This can be used to show dimBCa = dimH Ca, which is how we
got the previous formula for dimBE .
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Packing dimension of rearrangements

Ps
0(E) ≤ 2Ps

0(Da) and dimP(E) ≤ dimP(Ca) for all E ∈ Ca.

If 0 < s < dimP(Ca) and 0 ≤ γ ≤ ∞ then there is some
E ∈ Ca with Ps(E) = γ.

Thus, again, {dimP(E) : E ∈ Ca} = [0, dimP(Ca)] (and with a
similar proof).

In fact, dimP(Ca) = dimB(Ca) = lim logm
− log am

.
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Assouad dimensions

The Assouad dimensions are related to the extreme local
behaviour of the box-counting dimensions.

The upper dimension was defined by Assouad to study the
problem of embedding metric spaces in Rn.

They have been the subject of intensive study recently in the
fractals literature (in particular by Fraser and his
collaborators/students; see his recent book Assouad dimension
and fractal geometry).
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Assouad dimensions: “localize” in space and scale

Choose x and 0 < r < R
Cover B(x ,R) ∩ F with B(xi , r)
Compare N(x , r ,R) to (R/r)d

Extremize d over r , x ,R as R → 0
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Assouad dimensions

Let Nr (S) be the minimal number of balls of radius r > 0
which cover S.

(Upper) Assouad dimension

dimA(F ) = inf{α > 0 :∃C , ρ > 0,∀0 < r < R ≤ ρ,

sup
x∈F

Nr (B(x ,R) ∩ F ) ≤ C
(

R
r

)α

}.

dimA(F ) gives the largest local growth rate of Nr between any
two scales.
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Assouad dimensions

Let Nr (S) be the minimal number of balls of radius r > 0
which cover S.

dimL(F ) gives the smallest local growth rate for Nr between
any two scales.

Lower (Assouad) dimension

dimL(F ) = sup{α > 0 :∃C , ρ > 0,∀0 < r < R ≤ ρ,

inf
x∈F

Nr (B(x ,R) ∩ F ) ≥ C
(

R
r

)α

}.
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Assouad dimensions

Let Nr (S) be the minimal number of balls of radius r > 0
which cover S.
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Assouad cousin – the quasi-Assouad dimension

The quasi-Assouad dimension is a refinement of the Assouad
dimension and is preserved under quasi-Lipschitz mappings
(unlike dimA).

dimqA F = limδ→0 hδ(F ) where hδ is defined like dimA but with
0 < r < R1+δ.

dimqA F measures the largest local growth rate of Nr but only
between two scales which are “far enough” apart.
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Assouad cousin – the quasi-Assouad dimension

The quasi-Assouad dimension is a refinement of the Assouad
dimension and is preserved under quasi-Lipschitz mappings
(unlike dimA).

dimqA F = limδ→0 hδ(F ) where hδ is defined like dimA but with
0 < r < R1+δ.

There is also a dual lower version, dimqL F .

dimL(F ) ≤ dimqL(F ) ≤ dimH(F ) ≤ dimB(F ) ≤

dimB(F ) ≤ dimqA(F ) ≤ dimA(F )
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Assouad cousin – the quasi-Assouad dimension

If R ≈ sn then R1+δ ≈ sn+δn.

R ≈ sn

r ≈ sn+δn

δn “levels”

So dimqA F “reaches deep into the tree” for its comparisons.
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Assouad dimensions of rearrangements

dimA Ca ≤ dimA E ≤ dimA Da ∈ {0, 1}, for all E ∈ Ca.

{dimA(E) : E ∈ Ca} = [dimA Ca, dimA Da] (= {0} if
dimA Da = 0).

The proof is constructive and works by building “approximate”
discrete central Cantor sets of the appropriate dimension.

This requires an to be doubling: an ≤ κa2n.
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Random rearrangements
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Random rearrangements: probability model
(Hawkes, 84)

Take ω = (ωn) ∈ [0, 1]N with Lebesgue measure on each factor.

ω defines a random total order ≺ω on N by i �ω j iff ωi ≤ ωj .
ω5 ω7 ω3 ω10 ω1 ω8 ω4 ω2 ω6 ω9

This gives a “uniformly” random choice of sets from Ca.

The random rearrangement will almost surely be a perfect set.

Since dimensional calculations are permutable events (only
depend on very fine scales), each dimension will have a
constant value almost surely.
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Random rearrangements

dimH(E) = dimH(Ca) a.s. (Hawkes 84).

The proof uses potential theoretic methods.

dimP(E) = dimP(Ca) a.s. (Hu 1992)
This requires some regularity of an (doubling is fine).

In fact, (Hu 1995) proved that for an = 1/3, 1/9, 1/9, 1/27, . . .,
and d = log 2/ log 3, the function ϕ(x) = xd(log log(1/x))1−d

is the a.s. exact Hausdorff dimension function.
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Random rearrangements for doubling {an}

dimA(E) = dimA(Da)

dimqA(E) = dimqA(Ca)
a.s. (Garcia, Hare, M)

To show this, we used an equivalent model of the randomness,
where the “levels” are more explicit.

The key is that in Hawkes’ model the restriction of ≺ω to
{1, 2, . . . ,N} gives each permutation equally likely.

We build the order on N in stages, randomly “inserting” the
“new” elements {n + 1, n + 2, . . . , n + m} between the already
ordered {1, 2, . . . , n}.
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Random rearrangements for doubling {an}

1

We build the order on N in stages, randomly “inserting” the
“new” elements {n + 1, n + 2, . . . , n + m} between the already
ordered {1, 2, . . . , n}.
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Random rearrangements for doubling {an}
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The “places” (between old ones) where we insert the new
elements turns out to be more important than their order and
follow a sequence of independent multinomial random variables.
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The behaviour of this process depends heavily on how many
“levels” one is considering at once (the number of points to
insert).

If it is a small number of levels (= inserting only a few new
points), then extreme things can happen.

If it is a large number of levels (= inserting a very large
number of new points), then the behaviour is close to the
“average” and thus (roughly) the CLT takes over.



Franklin
Mendivil

Rearrange-
ments of linear
sets

Dimensions of
rearrange-
ments

Assouad
dimension

Random rear-
rangements

Φ-dimensions

Random rearrangements for doubling {an}

The behaviour of this process depends heavily on how many
“levels” one is considering at once (the number of points to
insert).

If it is a small number of levels (= inserting only a few new
points), then extreme things can happen.

If it is a large number of levels (= inserting a very large
number of new points), then the behaviour is close to the
“average” and thus (roughly) the CLT takes over.



Franklin
Mendivil

Rearrange-
ments of linear
sets

Dimensions of
rearrange-
ments

Assouad
dimension

Random rear-
rangements

Φ-dimensions

Random rearrangements for doubling {an}

The behaviour of this process depends heavily on how many
“levels” one is considering at once (the number of points to
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Φ-dimensions – (finally we get there!)

The idea for dimΦ F is to have fine control of how “deep” you
look into the tree.

In particular, we were interested in the “shallow depths”
between the Assouad dimension and quasi-Assouad.

This arose for us exactly in this problem of the a.s. dimension
of random rearrangements.

It was also suggested by Fraser and co-authors.
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Φ-dimensions: “localize” in space and deep
enough scale

Choose x and 0 < r < R1+Φ(R)

Cover B(x ,R) ∩ F with B(xi , r)
Compare N(x , r ,R) to (R/r)d

Extremize d over r , x ,R as R → 0
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Φ-dimensions

We call Φ : (0, 1) → (0,∞) a dimension function if x1+Φ(x)

decreases as x ↘ 0.

Examples include Φ(x) = δ, Φ(x) = 1/| log x |, and
Φ(x) = log | log(x)|/| log(x)|.
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Φ-dimensions

Let Nr (S) be the minimal number of balls of radius r > 0
which cover S.

Upper Φ-dimension:

dimΦ(F ) = inf{α > 0 :∃C , ρ > 0, ∀0 < r < R1+Φ(R) ≤ R ≤ ρ,

sup
x∈F

Nr (B(x ,R) ∩ F ) ≤ C
(

R
r

)α

}.

Lower Φ-dimension:

dimΦ(F ) = sup{α > 0 :∃C , ρ > 0,∀0 < r < R1+Φ(R) ≤ R ≤ ρ,

inf
x∈F

Nr (B(x ,R) ∩ F ) ≥ C
(

R
r

)α

}.
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“Depth function” for Φ

If R = sn then R1+Φ(R) = sn+ϕ(n).

R = sn

r = sn+ϕ(n)

ϕ(n) “levels”

So dimΦ “reaches ϕ(n)-deep into the tree” for its comparisons.
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Examples of the depth function ϕ(n) for R = sn

Φ(x) = δ results in ϕ(n) ∼ δn, like the Assouad spectrum.

Φ(x) = c/| log(x)| results in ϕ(n) ∼ C , like the Assouad
dimension.

Φ(x) = log | log(x)|/| log(x)| results in ϕ(n) ∼ c log(n).

(This is the cut-off depth for a phase change in the behaviour
of iid random “1-variable” constructions and for the random
rearrangement problem.)
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Comparing dimensions

dimL E ≤ dimΦE ≤ dimBE ≤ dimBE ≤ dimΦE ≤ dimA E .

If Φ(x) ≤ Ψ(x) =⇒ dimΨE ≤ dimΦE larger Φ are closer
to box dim

dimA dimB
Φ(x)

smaller larger
(shallower) (deeper)

dimqA
Φ → ∞

ϕ(n)/n → ∞

Φ → 0
Φ ≤ c/| log x |
ϕ bounded

supΦ < ∞

cut-off
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quasi-Assouad dimension is a Φ-dimension

Given E , there is a Φ, Φ(x) x→0−−−→ 0, with dimqA E = dimΦE .

However, Φ depends on E .
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Different Φ are different

Suppose Φ1(x) ≥ (1 + δ)Φ2(x) for small x .

Also suppose Φ2(x)| log(x)| → ∞ (so that Φ2 is “deeper” than
the Assouad, in particular that ϕ(n) → ∞).

Then there is a Cantor set F so that dimΦ1F < dimΦ2F .



Franklin
Mendivil

Rearrange-
ments of linear
sets

Dimensions of
rearrange-
ments

Assouad
dimension

Random rear-
rangements

Φ-dimensions

Central Cantor set with a continuum of different
Φ-dimensions

By varying the scaling ratios in the construction of a central
Cantor set one can precisely control the Φ-dimensions of the
set.

With very careful control, we can specify dimΦ C for a
continuous family of Φ.

Take d : (0, 1) → [α, β] ⊂ (0, 1) continuous and decreasing and
Φp , p ∈ (0, 1), be a “continuous increasing” family.

Then there is a central Cantor set C with dimΦpC = d(p) for all
p ∈ (0, 1).
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Back to random rearrangements

If Φ is a “small” (shallow) dimension function, then almost
surely

dimΦE = dimA Da = 1.

If Φ is a “large” (deep) dimension function, then almost surely

dimΦE = dimΦ Ca.
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Thank you for listening!

Questions?
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