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How to distinguish sets with same fractal
dimension?

» Possible to find some new parameters which detect/quantify
geometric differences between the sets?
» Define a geometric function on the parallel set A. and
investigate behavior as ¢ — 0T
» For instance: Minkowski dimension and content.
» Also:
m fractal curvature measures and associated scaling exponents
m complex dimensions via fractal zeta functions



Approximation by parallel sets

m For ACRY and £ > 0 let
Ac = {x € R" . dist(x,A) < ¢}
be the e-parallel set of A.

—=

m upper s-dimensional outer Minkowski content of A C RY:
ﬂout’s(A) = limsupe* 9 Vy(A: \ A)
N0

€

m (outer) Minkowski dimension:
dim,\;,ltA =inf{s >0:

=sup{s>0:

(A) =0}

mout,s
mout,s(A) _ OO}



Steiner formulas
» Classical: V convex K ¢ R? 3 Go(K),..., Cy_1(K), s.t. Ve >0,

d—1
Va(K\ K) =) ka—ie? ' Gi(K).
i=0

» General Steiner formula [Hug, Last, Weil 04]: For any compact
A C RY, 3 signed measures jig(A; ), ..., ug—1(A;-) st. Ve >0

d-1

Rd—j € —j—
Va(ANA) = 32200 [0t [y il )
i—0 0 N(A)

» fractal tube formulas [Lapidus, Radunovic, Zubrinic 17]: For certain
compact sets A C RY

V(A \A) =

weP(Ca)

d—w

— res(Ca(s), W),

where P(Ca) is the set of complex dimensions of A.



Questions

m Can we compute the Minkowski content using the general
Steiner formula?

m Can we obtain more refined information on how the parallel
volume of fractals grows from support measures?

m How are support measures related to complex dimensions and
fractal tube formulas?

m What is the relation between support measures and fractal
curvatures?
(s-dimensional) k-th fractal curvature of F:

*(A) := esslime* K Ci (A
Ci(A) esslime K(A:)

where Ci(F.) are the total curvatures of F. (additive
generalizations of the coefficients in the Steiner formula)

m Most basic question: How are the associated scaling exponents
related?



Generalized normal bundle and local reach

m 7x: R?\ exo(K) — K metric projection:
maps x to its nearest point p € K

m generalized normal bundle
N(K) = { (mk(x), 5o8) } € Kxs1

=Nk (x)
m local reach 6(K, p, u) :=sup{t > 0 : mx(p + tu) = p}

m reach(K) := inf {&(K, p,u) : (p,u) € N(K)}

m K convex = reach(K) = 0o, C2-manifold reach(K) > 0



Support measures [Hug, Last, Weil’ 03]

» i-th support measure of a closed set A ¢ R?
(wg := Area(S971)):

1

A = = [ Ha (At d e ),
Wd—i JN(AN.

» #7971 .. (d — 1)-Hausdorff measure on N(A) C R x §9-1,
» H; ... symmetrical functions of generalized principal curvatures:

d—1

Hi(A, x,u) := H (1+ ki(A, x, u)z)_l/2 Z H ki(A, x, u)

i=1 |l|=j,1C{1,....d—1} I€l

» relation with curvature measures: u;(A;-) = G(A N(A)N-)
whenever C;(A, ) is defined



General Steiner-type formula [Hug, Last, Weil '03]

(A\A) = de ,/ ¢d==1 /N(A)]l{t<5(A,x,u)}:ui(A;d(X7 u))dt.

=:Bi(At)

The support measure p;(A,-) is
m a signed measure (only pg—1(A, ) is always nonnegative);

m motion covariant and homogeneous of degree i:
,LL,'()\A, )‘()) = )\i,u,-(A, '))
m locally defined: if A; N U = Ay N U for some U open, then

1i(A1, D) = pi(Az, D) for all D ¢ U x $971,



Introducing the basic functions for compact sets

Definition (Basic functions [RadWin24+])

Define the i-th basic function of A as
Bi(t) :== Bi(Ait) == / Lircs(Ax,upii(A; d(x, v)),
N(A)

fori=0,...,d—1and t > 0.
We also denote by 57*"(t) the total variation analog of f;(t).

The general Steiner formulas then becomes:

d—1 .
ZL9A) = Z9A) + de_,-/ t9==16,(t)dt
i=0 0



Some immediate properties

mVie{0,1,...,d -1} and t > 0, §i(t) and BY**(t) are finite
m [37%(t), is nonincreasing and right continuous in t > 0

m need not be left continuous

0, & 6i=0
m lim 37 (t) =< const >0, or
t—0+
400

» Strategy: define new quantities corresponding to Y and
explore their connection to complex dimensions and fractal
curvature measures



Introducing basic contents and exponents

Definition (Basic contents and exponents [RadWin24+])

Let ) # A C RY compact and g € R. We define the
(g-dimensional) upper i-th basic content of A by

MI(A) == limsup t9778;(t),

t—0+
by analogy, also M7(A) and M*"9(A).
We also introduce the upper i-th basic scaling exponent
0}
(A) = +oo},

m;(A) =m; =inf{ge R: M: "I(A)

=sup{geR: M7
as well as its lower counterpart m;(A).

» contents: homogeneous of degree g and motion invariant
» exponents: scaling invariant and motion invariant



Example: Circle of Radius R in R?

» S ... circle of radius R
» N(S)T ... outer normals; k; = R~1
> N(S)* ... inner normals; k; = —R~1

pi(t fN(S)]l{t<5(Axu)},ul(5 d(x, u))

> (0= [ mlSA0eu) + Leary [ (S dCx,w)

=1- Il{t<R}
> Bo"(t) =1+ lcry
> MJ(S) =0, MP*°(S) =2, and so mg =0
> Bi(t) = (1 + Lery) R = 7% (1),
> MI(S) = M (S) =2Rm and so my = 1 =dimy S



Example: Sierpinski gasket

For any t > 0, Bo(A; t) = 1. Hence
mo = 0 and MJ(5G) = 1.

Set D := log, 3 and vy := D + 1%,
k €.

Then, for any t > 0 sufficiently small,

27ik

1-p OV3 g~ (4V3) e kE | 3V3

Bl(SG; t) =t Vk(Vk — 1) + 2

-~

=:G(t)

2log?2 s

where G is strictly positive, bounded and multipicatively periodic.
Hence m; = D = dimy, SG and MP(SG) does not exist.
(But M?(SG) and MP(SG) can be computed explicitly.)



Properties of the basic exponents

Theorem ([RadWin24+])

Let ) # A C RY be a compact set. For eachi € {0,...,d —1} one
of the following is true:

(a) wi(A;-) =0 (and then we set m;(A) := m;(A) ;== —o0).

(b) i <m;(A) <mi(A) < dimy A.

Furthermore, one always has po(A;-) # 0, and

dimpy A = max{m;(A) : i € {0,...,d — 1}}. (1)

m As a consequence, for all i > dimy; A, assertion (a) holds
m (a) is possible for each i # 0, and the bounds in (b) are
attained for some sets A.

m Any basic exponent can be the largest and can thus determine
dimpy A.



Example: fractal window

m Is it possible to have
mi SmozdimMA? Yes!
] fra.nctal window" with scaling
ratio r € (0,1/2)

» inhomogeneous self-similar: A= Ji_, ®;(A)J B, where B = [J
» &; are the 4 similarity contraction mappings.

» mo =my =dimy A= max{1,log;/, 4} and can be anything in
[1,2).

» on the Figure: r =1/3, dimy A = logs 4.



Example: Enclosed fractal dust

Is it possible to have

m; < mg = dimy A?

Yes!

m family of sets with two parameters o € (3, %] and meN
m sidelengths of squares given by ¢; = j7%, j € N
[ nf equidistant points inside the j-th square with n; :== j" — 1
Then
1+4m 1+2m

l<m = < =mg = di A <2
! a—+m a+m 0 'mm

dimp; A = mg can be any number € [1.8,2)



Comparing the three examples

» 0=mpy<my =log,3 = dim/\/](SG)

» geomatically: 1-dim features dominate the
fractal behavior and give raise to the
Minkowski dimension

> mp=m; =dimyAc][l?2)
» geomatically: 1-dim segments and 0-dim

A BB corners contribute to the fractal behavior
B8 BB

> 1 <m <mg=dimpy(A)

» geomatically: 0-dim points dominate the
fractal behavior but 1-dim segments feature
“subdominant” fractality




Distance Zeta Function of a cpt. set [LaRaZu'17]

Ca(s) := /A \Adist(x,A)s’d dx

Ca(s) is holomorphic on {Res > dimy A}
diverges if s € (—oo,dimpyA)
set of complex dimensions of A: poles of (4

generalization of (, for fractal strings [Lapidus, van
Frankenhuijsen, Pomerance, Maier|
m Under additional assumptions, a fractal tube formula holds:

2,:_dfw
Va(A\A) = > ———res(Ca(s), w) + R(e).

weP(Ca W)

It allows to compute the (upper/lower/average) Minkowski
content and to obtain higher order asymptotic terms.
Geometric interpr. of coeffs.? res(Ca, D) = (d— D)MP(A)



Basic zeta function decomposition

Theorem (Basic zeta functions for compact sets [RadWin])

Let ) # A C RY be compact and fixe > 0. Then for all s € C such
that Res > dimyy A the following functional equation holds:

d-1
Cals) = wa—iCai(s),
i=0

where the i-th basic zeta function of A, (a;, fori € {0,...,d — 1}
is defined as

Cai(s) = / ) 5718 (t)d e

0

Furthermore, the integral defining fA?,- is absolutely convergent, and
hence, holomorphic, in the open half-plane {Res > m;}.



The Window and the Screen

Im ;
° Window W
.
[ ] ® :
o . 3 initial half plane {Res > m;}
Screen S 3
T m; Re
[ ] [ J 3
[ ] [ ] 3
e
° |




Reconstructing ; from their basic zeta functions

Theorem (Pointwise formula [RadWin+])

Let ) # A C RY be compact and let EA,,-(-; £) satisfy appropriate
growth conditions on some window W C C with screen S. Then,
for every t € (0,¢):

BI(A§ t) = Z res (t"_SEAﬁ,-(s; £), w) 4L O(ti—S“PS)_

weP(Ca,i(-i€),W)




Refined fractal tube formula

for nice sets this provides a refined tube formula:

wa—j | t7Bi(t)de
e [

d—1

Wd—i d—w X 5
2 d—; Z t res (CAJ(S)7 W) + R(t)
=0 weP(Ca,i W)
Hence, it is useful to find functional equations for the basic zeta

functions

m advantage: possible reconstruction of (complex) basic

exponents from poles of 5A,i without explicit knowledge of the
basic functions f3;

m reconstruction of complex dimensions from poles of (4 ;



Functional equations for basic zeta functions

Theorem (2nd functional equation for basic zeta functions)

A C R cpt. and fixe > 0. Then for all s € C such that Res > m;:

Cai(s) = / dist(z, A)* "7 K;(z) dz,
A\A

d—1

y 1 1
ko) =5 L g A ma@)

m=1

> k(A NA)

IC{1,....d—1} Il
[l|=d—1—i

> Ma(z) = <7rA(z), j;;{;‘(jg) ... directional metric projection



Example: going back to the Sierpinski gasket

» A = Sierpinski gasket; B the initial unit triangle; ¢ fixed.

oo, if ma(z) is a vertex of B

ki(A,Na(z)) = { (2)

0, otherwise.

2me®

Eao(s) = / dist(z, A)* LRo(z)dz = 275
AE\A woS

Saas) = | s AR ()

_ 355—1 6(\@)1—5 .D—s
Cwi(s—1)  wis(s—1)(25s —3)’

t

= my=0, m;=log,3=dimy, A

= Ca(s) = walao(s) +wila(s)



Reconstruction of basic functions for the
Sierpinski gasket

» we now have for all ¢t € (0, g) that

BO(A; t) = res(t_sz70(5)7 0)=—

and

Bi(At)= Y res (tl_sgAg, W)

WGP(EA.]_,(C)
_ 2mik
_ fl-log, 3 6v/3 3 (4v/3) et os2 +3\/§t
w1 log 2 wi(wg — 1) wy

kEZ

G(log; t)

» wy = log, 3+ fcfrg“g for all k € Z




Further research directions

m Obtain existence criteria for the basic contents in terms of the
basic zeta functions

m Applying the theory to problems from dynamical systems and
fractal geometry

m What can be said about special kinds of sets? - self-similar,
self-affine, etc..

m Further connections to the theory of fractal curvatures via the
newly defined support contents and support zeta functions
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Support functions and scaling exponents

Let A C RY be a compact set and i € I;. We are interested in
E /,l/i(Aa)

and its behavior as ¢ — 07.

Remark ([HuglLasWei’'04])

td—1(Ac) is a positive measure essentially equal to half of the
surface area of A., i.e., we have

1
pd—1(Ac) = 5%(1_1(8’48)

where the last equality holds for almost every € > 0.

» we define now support scaling exponents s; analogously as m;.



Support contents and support exponents

Observe that, for any € > 0, the total mass u;(A:) of wi(Ae, ) is
finite, similarly the total mass of |u;|(A:) of |uil(Ae,-)-

Definition

Let A C RY be a compact set, g € R and i € I;. We define the
(g-dimensional) upper i-th support content of A by

37(A) = limsup €q_iﬂi(AE)v

e—0t

as well as its total variation analog

Svarq(A) = limsupe9™ ’|u,|( c)-

e—0t

We also introduce the upper/lower i-th support scaling exponent of
A as
. =5,(A) = inf{g e R: 5" (A) =0},

1

[



Support vs. basic exponents

Theorem [RW24+]

Let A C R? be a nonempty compact set. For each i € I; and each
e >0, pi(As-) #0, and

0 < 5;(A) <5;(A) <dimy, A

Furthermore,

5i(A) < max{m;(A) :j < i}
and also

m;(A) < max{s;(A) :j <i}.
Moreover,

———out

dimy, (A) = max{s;(A) : i < d}.



Support vs. basic contents

Theorem [Rw24+]

Let AC RY be a compact set, g >0and i€ {0,...,d — 1}.
Assume also that the g-dimensional j-th basic content exists (in
RU{+o0}) for j=0,...,i. Then,

SH(A) =D ciiMI(A).
j=0
In particular, if i =d —1 and g = dimy A = D, then

d—1
PMP(A) =SP4 (A) =D ca1;MP(A).
j=0



Remarks:

m The last statement is due to the relation
2ug_1(Ac) = S#97H(DA.), which holds for all £ > 0 except
countably many and a result in [Rataj, w. 10].

m In general,

T
D)

%MD(A) < 35—1(/\) <Y cg-1jM,; (A)

-,
Il
o

and all inequalities can be strict.



Fractal grills - basic type of direct product formula

Proposition (RadWin)
Let ) # A C RY be cpt. Then for any i € {0,..

., d} we have that

x [0, L]; ) = L- B (A £) + B TH(A x {0 1),

where we let ﬁ[_% =0 for all d > 0.

Bl

Corollary (RadWin)

Let A C RY be cpt, and B C R¥ a hyperrectangle of side-lengths
Ly,...,Lg; K:={1... k}. ThenVie€ {0,...,d+ k—1}:

k

5/[d+k](A x B;t) = Z Ck—1(B) - 5[d+1:] p(Ax {0}; 1),
I=max{0,k—i}

where C;(B) are the Steiner functionals of B.



Embedings into higher dimensional space

Proposition (RadWin)

Let A C RY be compact. Then, for any i € {0,...,d} we have that
B ax 0k )= 2 [ g i B, @)
Wd+1—i

where we let 6Ld](A; t) ;== Z9(A) and wg =1, i.e.,
Al (A x {0}; 1) = Z9(A).

= Basic exponents and basic zeta functions are invariant to the
ambient space.



Support zeta functions

Theorem (Support zeta functions for compact sets)

Let A C RY be a compact set, € > 0 fixed and i € {0,...,d — 1}
fixed. Then,

&
eail9) = [ ¢ (A
0
is called the i-th fractal support zeta function and is holomorpic in
{Res >5;} as an absolutely convergent integral.

Furthermore, the following decomposition into the basic zeta
functions Ca j is valid for Res > max{m; : j =0,...,i}:

CA: ZQ,}CA,](S



Functional equations for support zeta functions

Theorem (Functional equation for support zeta functions

[RadWin])

A CRY cpt. such that dimy, A < d and fix ¢ > 0. Then for all
s € C such that Res > s;:

Cai(s) = / dist(z, A)* " 71K;(z) dz,
A\A

5 1 ki(A,Ma(2))
Ki(z) .=
(2) Wd—j IC{1Zd 1}/11 1+ dist(z, A)k)(A, Ma(2))

|[l|l=d—1—i

> Ma(z) = (WA(Z), j;;{;‘%) ... directional metric projection



