On support measures and complex dimensions of fractals

Goran Radunović,

University of Zagreb

FGS7, Chemnitz, 23rd-27th September 2024

Joint work with: Steffen Winter, KIT Supported by the Croatian Science Foundation.

under the project IP-2022-10-9820.

How to distinguish sets with same fractal dimension?

▶ Possible to find some new parameters which detect/quantify geometric differences between the sets?

 \triangleright Define a geometric function on the parallel set A_{ϵ} and investigate behavior as $\varepsilon \to 0^+$

- ▶ For instance: Minkowski dimension and content.
- \blacktriangleright Also:
	- **F** fractal curvature measures and associated scaling exponents
	- complex dimensions via fractal zeta functions

Approximation by parallel sets

\n- For
$$
A \subset \mathbb{R}^d
$$
 and $\varepsilon > 0$ let
\n- $A_{\varepsilon} := \{x \in \mathbb{R}^n : \text{dist}(x, A) \leq \varepsilon\}$
\n- be the ε -parallel set of A .
\n

upper *s*-dimensional outer Minkowski content of $A \subset \mathbb{R}^d$: $\overline{\mathcal M}^{\mathrm{out},\mathrm{s}}(A):= \limsup \varepsilon^{s-d}\, V_d(A_\varepsilon\setminus A)$ ε \setminus 0

■ (outer) Minkowski dimension:

$$
\overline{\dim}_{M}^{\text{out}} A := \inf \{ s \ge 0 : \overline{M}^{\text{out}, \text{s}}(A) = 0 \}
$$

$$
= \sup \{ s \ge 0 : \overline{M}^{\text{out}, \text{s}}(A) = \infty \}
$$

Steiner formulas

► Classical: \forall convex $K\subset\mathbb{R}^d\;\exists\; \mathcal{C}_0(K),\ldots,\mathcal{C}_{d-1}(K)$, s.t. $\forall\;\varepsilon\geq 0$,

$$
V_d(K_{\varepsilon}\setminus K)=\sum_{i=0}^{d-1}\kappa_{d-i}\varepsilon^{d-i}C_i(K).
$$

▶ General Steiner formula [Hug, Last, Weil 04]: For any compact $A\subset\mathbb{R}^d$, \exists signed measures $\mu_0(A;\cdot),\ldots,\mu_{d-1}(A;\cdot)$ s.t. \forall $\varepsilon>0$

$$
V_d(A_{\varepsilon}\backslash A)=\sum_{i=0}^{d-1}\frac{\kappa_{d-i}}{d-i}\int_0^{\varepsilon}t^{d-i-1}\int_{N(A)}\mathbb{1}_{\{t<\delta(A,x,u)\}}\,\mu_i(A;{\rm d}(x,u)){\rm d}t.
$$

▶ fractal tube formulas [Lapidus, Radunovic, Zubrinic 17]: For certain compact sets $A \subset \mathbb{R}^d$

$$
V_d(A_\varepsilon\setminus A)=\sum_{w\in \mathcal{P}(\zeta_A)}\frac{\varepsilon^{d-w}}{d-w}\operatorname{res}\left(\zeta_A(s),w\right),
$$

where $\mathcal{P}(\zeta_A)$ is the set of complex dimensions of A.

Questions

- Can we compute the Minkowski content using the general Steiner formula?
- Can we obtain more refined information on how the parallel volume of fractals grows from support measures?
- How are support measures related to complex dimensions and fractal tube formulas?
- What is the relation between support measures and fractal curvatures?

(s-dimensional) k -th fractal curvature of F :

$$
\mathcal{C}^s_k(A):=\operatornamewithlimits{esslim}_{\varepsilon\searrow 0}\varepsilon^{s-k}C_k(A_\varepsilon)
$$

where $C_k(F_{\varepsilon})$ are the total curvatures of F_{ε} (additive generalizations of the coefficients in the Steiner formula)

■ Most basic question: How are the associated scaling exponents related?

Generalized normal bundle and local reach

Support measures [Hug, Last, Weil' 03]

 \blacktriangleright *i-th support measure* of a closed set $A \subset \mathbb{R}^d$ $(\omega_d := \text{Area}(\mathbb{S}^{d-1}))$:

$$
\mu_i(A; \cdot) = \frac{1}{\omega_{d-i}} \int_{N(A) \cap \cdot} H_{d-1-i}(A, x, u) \mathcal{H}^{d-1}(\mathrm{d}(x, u)),
$$

 $\blacktriangleright \mathscr{H}^{d-1}.\,.\,.$ $(d-1)$ -Hausdorff measure on $\mathcal{N}(A) \subseteq \mathbb{R}^d \times \mathbb{S}^{d-1}$, \blacktriangleright H_j ... symmetrical functions of generalized principal curvatures:

$$
H_j(A, x, u) := \prod_{i=1}^{d-1} (1 + k_i(A, x, u)^2)^{-1/2} \sum_{|I|=j, I \subseteq \{1, ..., d-1\}} \prod_{I \in I} k_I(A, x, u)
$$

► relation with curvature measures: $\mu_i(A; \cdot) = C_i(A; N(A) \cap \cdot)$ whenever $C_i(A, \cdot)$ is defined

General Steiner-type formula [Hug, Last, Weil '03]

$$
\mathscr{L}^{d}(A_{\varepsilon}\backslash A)=\sum_{i=0}^{d-1}\omega_{d-i}\int_{0}^{\varepsilon}t^{d-i-1}\underbrace{\int_{N(A)}\mathbb{1}_{\{t<\delta(A,x,u)\}}\mu_{i}(A;\mathrm{d}(x,u))\,\mathrm{d}t}_{=: \beta_{i}(A;t)}.
$$

The support measure $\mu_i(A, \cdot)$ is

- a signed measure (only $\mu_{d-1}(A, \cdot)$ is always nonnegative);
- \blacksquare motion covariant and homogeneous of degree *i*:

$$
\mu_i(\lambda A,\lambda(\cdot))=\lambda^i\mu_i(A,\cdot),
$$

■ locally defined: if $A_1 \cap U = A_2 \cap U$ for some U open, then

$$
\mu_i(A_1, D) = \mu_i(A_2, D) \text{ for all } D \subset U \times \mathbb{S}^{d-1}.
$$

Definition (Basic functions [RadWin24+])

Define the i-th basic function of A as

$$
\beta_i(t) := \beta_i(A;t) := \int_{N(A)} \mathbb{1}_{\{t < \delta(A,x,u)\}} \mu_i(A; \mathrm{d}(x,u)),
$$

for $i = 0, ..., d - 1$ and $t > 0$. We also denote by $\beta^{\rm var}_i(t)$ the total variation analog of $\beta_i(t).$

The general Steiner formulas then becomes:

$$
\mathscr{L}^{d}(A_{\varepsilon})=\mathscr{L}^{d}(A)+\sum_{i=0}^{d-1}\omega_{d-i}\int_{0}^{\varepsilon}t^{d-i-1}\beta_{i}(t)\mathrm{d}t
$$

 $\forall i \in \{0,1,\ldots,d-1\}$ and $t > 0$, $\beta_i(t)$ and $\beta^{\text{var}}_i(t)$ are finite $\beta_i^{\mathrm{var}}(t)$, is nonincreasing and right continuous in $t>0$ need not be left continuous $\lim_{t\to 0^+}\beta_i^{\text{var}}(t)=$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 0, $\Leftrightarrow \beta_i \equiv 0$ $const > 0$, or $+\infty$

Strategy: define new quantities corresponding to β_i^{var} and explore their connection to complex dimensions and fractal curvature measures

Introducing basic contents and exponents

Definition (Basic contents and exponents [RadWin24+])

Let $\emptyset \neq A \subseteq \mathbb{R}^d$ compact and $q \in \mathbb{R}$. We define the (q -dimensional) upper *i*-th basic content of A by

$$
\overline{\mathcal{M}}_i^q(A):=\limsup_{t\to 0^+}t^{q-i}\beta_i(t),
$$

by analogy, also $\underline{\mathcal{M}}^q_i(A)$ and $\underline{\mathcal{M}}^{\mathrm{var},q}_i(A).$ We also introduce the upper *i*-th basic scaling exponent

$$
\overline{\mathfrak{m}}_i(A) = \overline{\mathfrak{m}}_i := \inf \{ q \in \mathbb{R} : \overline{\mathcal{M}}_i^{\text{var},q}(A) = 0 \} \n= \sup \{ q \in \mathbb{R} : \overline{\mathcal{M}}_i^{\text{var},q}(A) = +\infty \},
$$

as well as its lower counterpart $\underline{\mathfrak{m}}_i(A).$

contents: homogeneous of degree q and motion invariant

exponents: scaling invariant and motion invariant

Example: Circle of Radius R in \mathbb{R}^2

► S ... circle of radius R
\n►
$$
N(S)^+
$$
 ... outer normals; $k_1 = R^{-1}$
\n► $N(S)^-$... inner normals; $k_1 = -R^{-1}$
\n $\beta_i(t) = \int_{N(S)} 1\!\!\!1_{\{t < \delta(A, x, u)\}} \mu_i(S; d(x, u))$

$$
\begin{aligned}\n\blacktriangleright \ \beta_0(t) &= \int_{N(S)^+} \mu_0(S, \mathrm{d}(x, u)) + \mathbb{1}_{\{t < R\}} \int_{N(S)^-} \mu_0(S, \mathrm{d}(x, u)) \\
&= 1 - \mathbb{1}_{\{t < R\}} \\
\blacktriangleright \ \beta_0^{\text{var}}(t) &= 1 + \mathbb{1}_{\{t < R\}} \\
&\blacktriangleright \ \mathcal{M}_0^0(S) = 0, \ \mathcal{M}_0^{\text{var},0}(S) = 2, \text{ and so } \mathfrak{m}_0 = 0 \\
\blacktriangleright \ \beta_1(t) &= (1 + \mathbb{1}_{\{t < R\}})R\pi = \beta_1^{\text{var}}(t), \\
&\blacktriangleright \ \mathcal{M}_1^1(S) &= \mathcal{M}_1^{\text{var},1}(S) = 2R\pi \text{ and so } \mathfrak{m}_1 = 1 = \dim_M S\n\end{aligned}
$$

Example: Sierpinski gasket

For any
$$
t > 0
$$
, $\beta_0(A; t) = 1$. Hence
\n $m_0 = 0$ and $\mathcal{M}_0^0(SG) = 1$.

Set
$$
D := \log_2 3
$$
 and $\nu_k := D + \frac{2\pi ik}{\log 2}$,
 $k \in \mathbb{Z}$.

Then, for any $t > 0$ sufficiently small,

$$
\beta_1(SG;t) = t^{1-D} \underbrace{\frac{6\sqrt{3}}{2\log 2} \sum_{k\in\mathbb{Z}} \frac{(4\sqrt{3})^{-\nu_k} t^{-\frac{2\pi ik}{\log 2}}}{\nu_k(\nu_k-1)} + \frac{3\sqrt{3}}{2}t}_{=:G(t)},
$$

where G is strictly positive, bounded and multipicatively periodic. Hence $\mathfrak{m}_{\underline{1}}=D=\dim_{M}SG$ and $\mathcal{M}_{1}^{D}(SG)$ does not exist. (But $\overline{\mathcal{M}}^D_1(\mathit{SG})$ and $\underline{\mathcal{M}}^D_1(\mathit{SG})$ can be computed explicitly.)

Properties of the basic exponents

Theorem ([RadWin24+])

Let $\emptyset \neq A \subseteq \mathbb{R}^d$ be a compact set. For each $i \in \{0, \ldots, d-1\}$ one of the following is true: (a) $\mu_i(A; \cdot) \equiv 0$ (and then we set $\underline{\mathfrak{m}}_i(A) := \overline{\mathfrak{m}}_i(A) := -\infty$). (b) $i \leq m_i(A) \leq \overline{m}_i(A) \leq \overline{\dim}_M^{\text{out}} A$. Furthermore, one always has $\mu_0(A; \cdot) \not\equiv 0$, and

$$
\overline{\dim}_{M}^{\text{out}} A = \max{\{\overline{\mathfrak{m}}_{i}(A): i \in \{0, \ldots, d-1\}\}}.
$$
 (1)

- As a consequence, for all $i>\overline{\dim}_M^{\rm out}$ A, assertion (a) holds
- (a) is possible for each $i \neq 0$, and the bounds in (b) are attained for some sets A.
- Any basic exponent can be the largest and can thus determine $dim_{M} A$.

Example: fractal window

- \blacksquare Is it possible to have $m_1 < m_0 = \dim_M A$? Yes!
- **"** "fractal window" with scaling ratio *r* ∈ (0, 1/2)

- \blacktriangleright inhomogeneous self-similar: $A = \bigcup_{i=1}^4 \Phi_i(A) \bigcup B$, where $B = \Box$
- Φ_i are the 4 similarity contraction mappings.

 \blacktriangleright $m_0 = m_1 = \dim_M A = \max\{1, \log_{1/r} 4\}$ and can be anything in $[1, 2)$.

• on the Figure: $r = 1/3$, dim_M $A = \log_3 4$.

Example: Enclosed fractal dust

Is it possible to have

$$
\mathfrak{m}_1<\mathfrak{m}_0=\mathsf{dim}_{\mathsf{M}}\,\mathsf{A}?
$$

Yes!

family of sets with two parameters $\alpha \in (\frac{1}{2})$ $\frac{1}{2}$, $\frac{2}{3}$ $\frac{2}{3}$] and $m \in \mathbb{N}$ sidelengths of squares given by $\ell_j = j^{-\alpha}, \, j \in \mathbb{N}$ n_j^2 equidistant points inside the *j*-th square with $n_j := j^m - 1$ Then

$$
1<\mathfrak{m}_{1}=\frac{1+m}{\alpha+m}<\frac{1+2m}{\alpha+m}=\mathfrak{m}_{0}=\dim_{M}A<2.
$$

 $\dim_M A = \mathfrak{m}_0$ can be any number $\in [1.8, 2)$

Comparing the three examples

 \triangleright 0 = m₀ < m₁ = log₂ 3 = dim_M(SG) \blacktriangleright geomatically: 1-dim features dominate the fractal behavior and give raise to the Minkowski dimension

- \blacktriangleright m₀ = m₁ = dim_M A \in [1, 2)
- ▶ geomatically: 1-dim segments and 0-dim corners contribute to the fractal behavior
- \blacktriangleright 1 $<$ m_1 $<$ m_0 $=$ dim_M(A) \triangleright geomatically: 0-dim points dominate the fractal behavior but 1-dim segments feature "subdominant" fractality

Distance Zeta Function of a cpt. set [LaRaZu'17]

$$
\zeta_A(s):=\int_{A_\varepsilon\setminus A} \text{dist}(x,A)^{s-d}\,dx
$$

- \Box $\zeta_A(s)$ is holomorphic on $\{ \text{Re } s > \overline{\dim}_M A \}$
- diverges if $s \in (-\infty, \overline{\dim}_M A)$
- set of complex dimensions of A: poles of ζ_A
- generalization of ζ_L for fractal strings [Lapidus, van Frankenhuijsen, Pomerance, Maier]
- Under additional assumptions, a fractal tube formula holds:

$$
V_d(A_{\varepsilon}\setminus A)=\sum_{w\in \mathcal{P}(\zeta_A,W)}\frac{\varepsilon^{d-w}}{d-w}\operatorname{res}\left(\zeta_A(s),w\right)+R(\varepsilon).
$$

It allows to compute the (upper/lower/average) Minkowski content and to obtain higher order asymptotic terms. Geometric interpr. of coeffs.? res $(\zeta_A, D) = (d-D)\mathcal{M}^D(A)$

Basic zeta function decomposition

Theorem (Basic zeta functions for compact sets [RadWin])

Let $\emptyset \neq A \subseteq \mathbb{R}^d$ be compact and fix $\varepsilon > 0$. Then for all $s \in \mathbb{C}$ such that $\mathsf{Re}\, s > \overline{\mathsf{dim}}_{\mathsf{M}}^{\mathrm{out}}$ A the following functional equation holds:

$$
\zeta_A(s)=\sum_{i=0}^{d-1}\omega_{d-i}\check{\zeta}_{A,i}(s),
$$

where the i-th basic zeta function of A, $\breve{\zeta}_{A,i}$, for $i \in \{0,\ldots,d-1\}$ is defined as

$$
\check{\zeta}_{A,i}(s)=\int_0^\varepsilon t^{s-i-1}\beta_i(t)\mathrm{d}\,t.
$$

Furthermore, the integral defining $\breve{\zeta}_{A,i}$ is absolutely convergent, and hence, holomorphic, in the open half-plane $\{ \text{Re } s > \overline{\mathfrak{m}}_i \}$.

The Window and the Screen

Reconstructing β_i from their basic zeta functions

Theorem (Pointwise formula [RadWin+])

Let $\emptyset \neq \mathcal{A} \subseteq \mathbb{R}^d$ be compact and let $\breve{\zeta}_{\mathcal{A},i}(\cdot;\varepsilon)$ satisfy appropriate growth conditions on some window $W \subseteq \mathbb{C}$ with screen S. Then, for every $t \in (0, \varepsilon)$:

$$
\hat{\beta}_i(A; t) = \sum_{w \in \mathcal{P}(\check{\zeta}_{A,i}(\cdot;\varepsilon), W)} \text{res} \left(t^{i-s} \check{\zeta}_{A,i}(s;\varepsilon), w \right) + O(t^{i-\sup S}).
$$

Refined fractal tube formula

for nice sets this provides a refined tube formula:

$$
V_d(A_{\varepsilon} \setminus A) = \sum_{i=0}^{d-1} \omega_{d-i} \int_0^{\varepsilon} t^{d-i-1} \beta_i(t) dt
$$

=
$$
\sum_{i=0}^{d-1} \frac{\omega_{d-i}}{d-i} \sum_{w \in \mathcal{P}(\zeta_{A,i}, W)} t^{d-w} \text{ res } \left(\zeta_{A,i}(s), w \right) + \tilde{R}(t)
$$

Hence, it is useful to find functional equations for the basic zeta functions

- **a** advantage: possible reconstruction of (complex) basic exponents from poles of $\breve{\zeta}_{A,i}$ without explicit knowledge of the basic functions β_i
- reconstruction of complex dimensions from poles of $\breve{\zeta}_{A,i}$

Functional equations for basic zeta functions

Theorem (2nd functional equation for basic zeta functions) $\mathcal{A}\subseteq\mathbb{R}^d$ cpt. and fix $\varepsilon>0.$ Then for all $s\in\mathbb{C}$ such that $\mathsf{Re}\, s>\overline{\mathfrak{m}}_i$: $\check{\zeta}_{A,i}(s) =$ $A_{\varepsilon}\backslash A$ dist $(z, A)^{s-i-1}$ $\breve{K}_i(z)$ dz, $\breve{\mathsf{K}}_i(z) :=\hspace{-0.1cm} \frac{1}{\omega_{d-i}}$ d−1
TT $m=1$ 1 $1 + dist(z, A)k_m(A, \Pi_A(z))$ $\cdot \qquad \sum \qquad \prod k_l(A, \Pi_A(z))$ I⊆{1,...,d−1} l∈I $|I|=d-1-i$ $\blacktriangleright \ \Pi_A(z) := \left(\pi_A(z), \frac{z-\pi_A(z)}{\text{dist}(z,A)}\right)$ $\frac{z-\pi_{A}(z)}{\textsf{dist}(z,A)}\Big)$... directional metric projection

Example: going back to the Sierpinski gasket

 \blacktriangleright A = Sierpinski gasket; B the initial unit triangle; ε fixed.

$$
k_1(A,\Pi_A(z)) = \begin{cases} \infty, & \text{if } \pi_A(z) \text{ is a vertex of } B \\ 0, & \text{otherwise.} \end{cases}
$$

(2)

$$
\breve{\zeta}_{A,0}(s)=\int_{A_{\varepsilon}\setminus A} \mathsf{dist}(z,A)^{s-1}\breve{K}_{0}(z)\mathrm{d} z=\frac{2\pi \varepsilon^{s}}{\omega_{2}s},
$$

$$
\zeta_{A,1}(s) = \int_{A_{\varepsilon} \setminus A} \text{dist}(z, A)^{s-2} \check{K}_1(z) dz
$$
\n
$$
= \frac{3\varepsilon^{s-1}}{\omega_1(s-1)} + \frac{6(\sqrt{3})^{1-s} \cdot 2^{-s}}{\omega_1 s(s-1)(2^s - 3)},
$$

$$
\Rightarrow \mathfrak{m}_0 = 0, \quad \mathfrak{m}_1 = \log_2 3 = \overline{\dim}_{M}^{\text{out}} A \Rightarrow \zeta_A(s) = \omega_2 \zeta_{A,0}(s) + \omega_1 \zeta_{A,1}(s)
$$

Reconstruction of basic functions for the Sierpinski gasket

$$
\blacktriangleright \text{ we now have for all } t \in (0, g) \text{ that}
$$

$$
\hat{\beta}_0(A;t) = \mathrm{res}(t^{-s}\breve{\zeta}_{A,0}(s),0) = \frac{2\pi}{\omega_2}
$$

and

$$
\hat{\beta}_1(A; t) = \sum_{w \in \mathcal{P}(\zeta_{A,1}, \mathbb{C})} \text{res}\left(t^{1-s} \zeta_{A,1}, w\right)
$$

= $t^{1-\log_2 3} \frac{6\sqrt{3}}{\omega_1 \log 2} \underbrace{\sum_{k \in \mathbb{Z}} \frac{(4\sqrt{3})^{-w_k} t^{-\frac{2\pi i k}{\log 2}}}{w_k(w_k - 1)} + \frac{3\sqrt{3}}{\omega_1}t, \frac{3\sqrt{3}}{\omega_1}t}$

$$
\blacktriangleright w_k := \log_2 3 + \frac{2\pi i k}{\log 2} \text{ for all } k \in \mathbb{Z}
$$

- Obtain existence criteria for the basic contents in terms of the basic zeta functions
- **Applying the theory to problems from dynamical systems and** fractal geometry
- What can be said about special kinds of sets? self-similar, self-affine, etc..
- **F**urther connections to the theory of fractal curvatures via the newly defined support contents and support zeta functions

Some references

- D. Hug, G. Last and W. Weil, A local Steiner-type formula for 歸 general closed sets and applications, Math. Zeitschrift 246 (2004), 237–272.
- M. L. Lapidus, G. Radunović and D. Žubrinić, Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions, Springer Monographs in Mathematics, New York, 2017.
- G. Radunović and S. Winter, From support measures to complex dimensions in fractal geometry, in preparation, 2024.
- 歸 J. Rataj and M. Zähle, Curvature measures of Singular Sets, Springer, 2019.

Support functions and scaling exponents

Let $A \subseteq \mathbb{R}^d$ be a compact set and $i \in I_d.$ We are interested in

$$
\varepsilon\mapsto\mu_i(A_\varepsilon)
$$

and its behavior as $\varepsilon \to 0^+.$

Remark ([HugLasWei'04])

 $\mu_{d-1}(A_{\varepsilon})$ is a positive measure essentially equal to half of the surface area of A_{ε} , i.e., we have

$$
\mu_{d-1}(A_{\varepsilon})=\frac{1}{2}\mathscr{H}^{d-1}(\partial A_{\varepsilon})
$$

where the last equality holds for almost every $\varepsilon > 0$.

 \blacktriangleright we define now support scaling exponents \mathfrak{s}_i analogously as \mathfrak{m}_i .

Support contents and support exponents

Observe that, for any $\varepsilon > 0$, the total mass $\mu_i(A_\varepsilon)$ of $\mu_i(A_\varepsilon, \cdot)$ is finite, similarly the total mass of $|\mu_i|({A_\varepsilon})$ of $|\mu_i|({A_\varepsilon},\cdot).$

Definition

Let $A \subseteq \mathbb{R}^d$ be a compact set, $q \in \mathbb{R}$ and $i \in I_d.$ We define the (q -dimensional) upper *i*-th support content of \overline{A} by

$$
\overline{\mathcal{S}}_i^q(A) := \limsup_{\varepsilon \to 0^+} \varepsilon^{q-i} \mu_i(A_\varepsilon),
$$

as well as its total variation analog

$$
\overline{\mathcal{S}}_i^{\text{var},q}(A) := \limsup_{\varepsilon \to 0^+} \varepsilon^{q-i} |\mu_i|(A_{\varepsilon}).
$$

We also introduce the upper/lower *i*-th support scaling exponent of A as

$$
\underline{\overline{s}}_i := \overline{\underline{s}}_i(A) := \inf \{ q \in \mathbb{R} : \underline{\overline{S}}_i^{\text{var},q}(A) = 0 \},
$$

Support vs. basic exponents

Theorem [RW24+]

Let $A \subset \mathbb{R}^d$ be a nonempty compact set. For each $i \in I_d$ and each $\varepsilon > 0$, $\mu_i(A_{\varepsilon};\cdot) \not\equiv 0$, and

$$
0 \leq \underline{\mathfrak{s}}_i(A) \leq \overline{\mathfrak{s}}_i(A) \leq \overline{\dim}_{M}^{\rm out} A.
$$

Furthermore,

$$
\overline{\mathfrak{s}}_i(A) \leq \max\{\overline{\mathfrak{m}}_j(A) : j \leq i\}
$$

and also

$$
\overline{\mathfrak{m}}_i(A) \leq \max\{\overline{\mathfrak{s}}_j(A) : j \leq i\}.
$$

Moreover,

$$
\overline{\dim}_M^{\rm out}(A)=\max\{\overline{\mathfrak{s}}_i(A):i
$$

Support vs. basic contents

Theorem [RW24+]

Let $A \subseteq \mathbb{R}^d$ be a compact set, $q \ge 0$ and $i \in \{0, \ldots, d-1\}$. Assume also that the q -dimensional j -th basic content exists (in $\mathbb{R} \cup \{+\infty\}$ for $j = 0, \ldots, i$. Then,

$$
\mathcal{S}_i^q(A) = \sum_{j=0}^i c_{i,j} \mathcal{M}_j^q(A).
$$

In particular, if $i = d - 1$ and $q = \dim_M A = D$, then

$$
\frac{d-D}{2} \mathcal{M}^D(A) = \mathcal{S}_{d-1}^D(A) = \sum_{j=0}^{d-1} c_{d-1,j} \mathcal{M}_j^D(A).
$$

Remarks:

■ The last statement is due to the relation $2\mu_{\bm{d}-\bm{1}}(\mathcal{A}_{\varepsilon})=\mathscr{H}^{\bm{d}-\bm{1}}(\partial \mathcal{A}_{\varepsilon}),$ which holds for all $\varepsilon>0$ except countably many and a result in [Rataj, W. 10].

 \blacksquare In general,

$$
\tfrac{d-D}{2} \overline{\mathcal{M}}^D(A) \leq \overline{\mathcal{S}}^D_{d-1}(A) \leq \sum_{j=0}^{d-1} c_{d-1,j} \overline{\mathcal{M}}^D_j(A)
$$

and all inequalities can be strict.

Fractal grills - basic type of direct product formula

Proposition (RadWin)

Let $\emptyset \neq A \subseteq \mathbb{R}^d$ be cpt. Then for any $i \in \{0, \ldots, d\}$ we have that

$$
\beta_i^{[d+1]}(A\times[0,L];t)=L\cdot\beta_{i-1}^{[d]}(A;t)+\beta_i^{[d+1]}(A\times\{0\};t),
$$

where we let $\beta_{-1}^{[d]} \equiv 0$ for all $d \geq 0$.

Corollary (RadWin)

Let $A \subseteq \mathbb{R}^d$ be cpt, and $B \subseteq \mathbb{R}^k$ a hyperrectangle of side-lengths L_1, \ldots, L_k ; $K := \{1 \ldots, k\}$. Then $\forall i \in \{0, \ldots, d + k - 1\}$:

$$
\beta_i^{[d+k]}(A \times B; t) = \sum_{l = \max\{0, k - i\}}^k C_{k-l}(B) \cdot \beta_{i-(k-l)}^{[d+l]}(A \times \{0\}^l; t),
$$

where $C_i(B)$ are the Steiner functionals of B.

Embedings into higher dimensional space

Proposition (RadWin)

Let $A \subseteq \mathbb{R}^d$ be compact. Then, for any $i \in \{0,\ldots,d\}$ we have that

$$
\beta_i^{[d+1]}(A \times \{0\}; t) = \frac{\omega_{d-i}}{\omega_{d+1-i}} \int_{-1}^1 \beta_i^{[d]}(A; t\sqrt{1 - v^2}) dv, \qquad (3)
$$

where we let
$$
\beta_d^{[d]}(A; t) := \mathscr{L}^d(A)
$$
 and $\omega_0 := 1$, i.e.,
 $\beta_d^{[d+1]}(A \times \{0\}; t) \equiv \mathscr{L}^d(A)$.

 \Rightarrow Basic exponents and basic zeta functions are invariant to the ambient space.

Support zeta functions

Theorem (Support zeta functions for compact sets)

Let $A \subseteq \mathbb{R}^d$ be a compact set, $\varepsilon > 0$ fixed and $i \in \{0, \ldots, d-1\}$ fixed Then

$$
\hat{\zeta}_{A,i}(s) = \int_0^\varepsilon t^{s-i-1} \mu_i(A_t) \mathrm{d} t
$$

is called the i-th fractal support zeta function and is holomorpic in $\{Re s > \bar{s}_i\}$ as an absolutely convergent integral. Furthermore, the following decomposition into the basic zeta functions $\breve{\zeta}_{A,j}$ is valid for $\mathsf{Re}\, s > \max\{\overline{\mathfrak{m}}_j : j = 0,\ldots, l\}$:

$$
\hat{\zeta}_{A,i}(s)=\sum_{j=0}^i c_{i,j}\check{\zeta}_{A,j}(s).
$$

Functional equations for support zeta functions

Theorem (Functional equation for support zeta functions [RadWin])

 $\mathcal{A}\subseteq\mathbb{R}^d$ cpt. such that $\overline{\dim}_\mathcal{M}^{\rm out}\mathcal{A}< d$ and fix $\varepsilon>0.$ Then for all $s\in\mathbb{C}$ such that $\mathsf{Re}\, s>\bar{\mathfrak{s}}_i$:

$$
\hat{\zeta}_{A,i}(s) = \int_{A_{\varepsilon} \setminus A} \text{dist}(z, A)^{s-i-1} \hat{K}_i(z) \,dz,
$$

$$
\hat{K}_i(z) := \frac{1}{\omega_{d-i}} \sum_{\substack{I \subseteq \{1,\dots,d-1\} \\ |I| = d-1-i}} \prod_{I \in I} \frac{k_I(A,\Pi_A(z))}{1 + \text{dist}(z,A)k_I(A,\Pi_A(z))}
$$

 $\blacktriangleright \ \Pi_A(z) := \left(\pi_A(z), \frac{z-\pi_A(z)}{\text{dist}(z,A)}\right)$ $\frac{z-\pi_{A}(z)}{\textsf{dist}(z,A)}\Big)$... directional metric projection