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How to distinguish sets with same fractal
dimension?

▶ Possible to find some new parameters which detect/quantify
geometric differences between the sets?
▶ Define a geometric function on the parallel set Aε and
investigate behavior as ε → 0+

▶ For instance: Minkowski dimension and content.
▶ Also:

fractal curvature measures and associated scaling exponents
complex dimensions via fractal zeta functions



Approximation by parallel sets

For A ⊂ Rd and ε > 0 let

Aε := {x ∈ Rn : dist(x ,A) ≤ ε}
be the ε-parallel set of A.
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upper s-dimensional outer Minkowski content of A ⊂ Rd :

Mout,s
(A) := lim sup

ε↘0
εs−dVd(Aε \ A)

(outer) Minkowski dimension:

dim
out
M A := inf{s ≥ 0 : Mout,s

(A) = 0}

= sup{s ≥ 0 : Mout,s
(A) = ∞}



Steiner formulas

▶ Classical: ∀ convex K ⊂ Rd ∃ C0(K ), . . . ,Cd−1(K ), s.t. ∀ ε ≥ 0,

Vd(Kε \ K ) =
d−1∑
i=0

κd−iε
d−iCi (K ).

▶ General Steiner formula [Hug, Last, Weil 04]: For any compact
A ⊂ Rd , ∃ signed measures µ0(A; ·), . . . , µd−1(A; ·) s.t. ∀ ε > 0

Vd(Aε\A) =
d−1∑
i=0

κd−i

d − i

∫ ε

0
td−i−1

∫
N(A)

1{t<δ(A,x ,u)} µi (A; d(x , u))dt.

▶ fractal tube formulas [Lapidus, Radunovic, Zubrinic 17]: For certain
compact sets A ⊂ Rd

Vd(Aε \ A) =
∑

w∈P(ζA)

εd−w

d − w
res (ζA(s),w) ,

where P(ζA) is the set of complex dimensions of A.



Questions

Can we compute the Minkowski content using the general
Steiner formula?
Can we obtain more refined information on how the parallel
volume of fractals grows from support measures?
How are support measures related to complex dimensions and
fractal tube formulas?
What is the relation between support measures and fractal
curvatures?
(s-dimensional) k-th fractal curvature of F :

Cs
k(A) := esslim

ε↘0
εs−kCk(Aε)

where Ck(Fε) are the total curvatures of Fε (additive
generalizations of the coefficients in the Steiner formula)
Most basic question: How are the associated scaling exponents
related?



Generalized normal bundle and local reach

x

πK(x) = p

z

K

πK : Rd \ exo(K ) → K metric projection:
maps x to its nearest point p ∈ K

generalized normal bundle

N(K ) :=
{ (

πK (x),
x−πK (x)
dist(x ,K)

)︸ ︷︷ ︸
=:ΠK (x)

}
⊆ K×Sd−1

local reach δ(K , p, u) := sup{t ≥ 0 : πK (p + tu) = p}

reach(K ) := inf
{
δ(K , p, u) : (p, u) ∈ N(K )

}
K convex ⇒ reach(K ) = ∞, C 2-manifold reach(K ) > 0



Support measures [Hug, Last, Weil’ 03]

▶ i-th support measure of a closed set A ⊂ Rd

(ωd := Area(Sd−1)):

µi (A; ·) =
1

ωd−i

∫
N(A)∩·

Hd−1−i (A, x , u)H
d−1(d(x , u)),

▶ H d−1. . . (d − 1)-Hausdorff measure on N(A) ⊆ Rd × Sd−1,
▶ Hj . . . symmetrical functions of generalized principal curvatures:

Hj(A, x , u) :=
d−1∏
i=1

(
1 + ki (A, x , u)

2)−1/2 ∑
|I |=j ,I⊆{1,...,d−1}

∏
l∈I

kl(A, x , u)

▶ relation with curvature measures: µi (A; ·) = Ci (A;N(A) ∩ ·)
whenever Ci (A, ·) is defined



General Steiner-type formula [Hug, Last, Weil ’03]

L d(Aε\A) =
d−1∑
i=0

ωd−i

∫ ε

0
td−i−1

∫
N(A)

1{t<δ(A,x ,u)}µi (A; d(x , u))︸ ︷︷ ︸
=:βi (A;t)

dt.

The support measure µi (A, ·) is
a signed measure (only µd−1(A, ·) is always nonnegative);
motion covariant and homogeneous of degree i :

µi (λA, λ(·)) = λiµi (A, ·),

locally defined: if A1 ∩ U = A2 ∩ U for some U open, then

µi (A1,D) = µi (A2,D) for all D ⊂ U × Sd−1.



Introducing the basic functions for compact sets

Definition (Basic functions [RadWin24+])

Define the i-th basic function of A as

βi (t) := βi (A; t) :=

∫
N(A)

1{t<δ(A,x ,u)}µi (A; d(x , u)),

for i = 0, . . . , d − 1 and t > 0.
We also denote by βvar

i (t) the total variation analog of βi (t).

The general Steiner formulas then becomes:

L d(Aε) = L d(A) +
d−1∑
i=0

ωd−i

∫ ε

0
td−i−1βi (t)dt



Some immediate properties

∀i ∈ {0, 1, . . . , d − 1} and t > 0, βi (t) and βvar
i (t) are finite

βvar
i (t), is nonincreasing and right continuous in t > 0

need not be left continuous

lim
t→0+

βvar
i (t) =


0, ⇔ βi ≡ 0
const > 0, or
+∞

▶ Strategy: define new quantities corresponding to βvar
i and

explore their connection to complex dimensions and fractal
curvature measures



Introducing basic contents and exponents

Definition (Basic contents and exponents [RadWin24+])

Let ∅ ≠ A ⊆ Rd compact and q ∈ R. We define the
(q-dimensional) upper i-th basic content of A by

Mq
i (A) := lim sup

t→0+
tq−iβi (t),

by analogy, also Mq
i (A) and Mvar,q

i (A).
We also introduce the upper i-th basic scaling exponent

mi (A) = mi := inf{q ∈ R : Mvar,q
i (A) = 0}

= sup{q ∈ R : Mvar,q
i (A) = +∞},

as well as its lower counterpart mi (A).

▶ contents: homogeneous of degree q and motion invariant
▶ exponents: scaling invariant and motion invariant



Example: Circle of Radius R in R2

(x , u)

R

(x ,−u)
▶ S . . . circle of radius R
▶ N(S)+ . . . outer normals; k1 = R−1

▶ N(S)− . . . inner normals; k1 = −R−1

βi (t) =
∫
N(S) 1{t<δ(A,x ,u)}µi (S ; d(x , u))

▶ β0(t) =

∫
N(S)+

µ0(S , d(x , u)) + 1{t<R}

∫
N(S)−

µ0(S , d(x , u))

= 1 − 1{t<R}

▶ βvar
0 (t) = 1 + 1{t<R}

▶ M0
0(S) = 0, Mvar,0

0 (S) = 2, and so m0 = 0
▶ β1(t) = (1 + 1{t<R})Rπ = βvar

1 (t),

▶ M1
1(S) = Mvar,1

1 (S) = 2Rπ and so m1 = 1 = dimM S



Example: Sierpinski gasket

For any t > 0, β0(A; t) = 1. Hence
m0 = 0 and M0

0(SG ) = 1.

Set D := log2 3 and νk := D + 2πik
log 2 ,

k ∈ Z.

Then, for any t > 0 sufficiently small,

β1(SG ; t) = t1−D 6
√

3
2 log 2

∑
k∈Z

(4
√

3)−νk t−
2πik
log 2

νk(νk − 1)︸ ︷︷ ︸
=:G(t)

+
3
√

3
2

t,

where G is strictly positive, bounded and multipicatively periodic.

Hence m1 = D = dimM SG and MD
1 (SG ) does not exist.

(But MD
1 (SG ) and MD

1 (SG ) can be computed explicitly.)



Properties of the basic exponents

Theorem ([RadWin24+])

Let ∅ ≠ A ⊆ Rd be a compact set. For each i ∈ {0, . . . , d − 1} one
of the following is true:
(a) µi (A; ·) ≡ 0 (and then we set mi (A) := mi (A) := −∞).

(b) i ≤ mi (A) ≤ mi (A) ≤ dim
out
M A.

Furthermore, one always has µ0(A; ·) ̸≡ 0, and

dim
out
M A = max{mi (A) : i ∈ {0, . . . , d − 1}}. (1)

As a consequence, for all i > dim
out
M A, assertion (a) holds

(a) is possible for each i ̸= 0, and the bounds in (b) are
attained for some sets A.
Any basic exponent can be the largest and can thus determine
dimM A.



Example: fractal window

Is it possible to have
m1 ≤ m0 = dimM A? Yes!
“fractal window” with scaling
ratio r ∈ (0, 1/2)

▶ inhomogeneous self-similar: A =
⋃4

i=1 Φi (A)
⋃
B , where B = □

▶ Φi are the 4 similarity contraction mappings.
▶ m0 = m1 = dimM A = max{1, log1/r 4} and can be anything in
[1, 2).
▶ on the Figure: r = 1/3, dimM A = log3 4.



Example: Enclosed fractal dust

Is it possible to have

m1 < m0 = dimM A?

Yes!

family of sets with two parameters α ∈ (1
2 ,

2
3 ] and m ∈ N

sidelengths of squares given by ℓj = j−α, j ∈ N
n2
j equidistant points inside the j-th square with nj := jm − 1

Then

1 < m1 =
1 +m

α+m
<

1 + 2m
α+m

= m0 = dimM A < 2.

dimM A = m0 can be any number ∈ [1.8, 2)



Comparing the three examples

▶ 0 = m0 < m1 = log2 3 = dimM(SG )
▶ geomatically: 1-dim features dominate the
fractal behavior and give raise to the
Minkowski dimension

▶ m0 = m1 = dimM A ∈ [1, 2)
▶ geomatically: 1-dim segments and 0-dim
corners contribute to the fractal behavior

▶ 1 < m1 < m0 = dimM(A)
▶ geomatically: 0-dim points dominate the
fractal behavior but 1-dim segments feature
“subdominant” fractality



Distance Zeta Function of a cpt. set [LaRaZu’17]

ζA(s) :=

∫
Aε\A

dist(x ,A)s−d dx

ζA(s) is holomorphic on {Re s > dimMA}
diverges if s ∈ (−∞, dimMA)
set of complex dimensions of A: poles of ζA
generalization of ζL for fractal strings [Lapidus, van
Frankenhuijsen, Pomerance, Maier]
Under additional assumptions, a fractal tube formula holds:

Vd(Aε \ A) =
∑

w∈P(ζA,W )

εd−w

d − w
res (ζA(s),w) + R(ε).

It allows to compute the (upper/lower/average) Minkowski
content and to obtain higher order asymptotic terms.
Geometric interpr. of coeffs.? res(ζA,D) = (d−D)MD(A)



Basic zeta function decomposition

Theorem (Basic zeta functions for compact sets [RadWin])

Let ∅ ≠ A ⊆ Rd be compact and fix ε > 0. Then for all s ∈ C such
that Re s > dim

out
M A the following functional equation holds:

ζA(s) =
d−1∑
i=0

ωd−i ζ̆A,i (s),

where the i-th basic zeta function of A, ζ̆A,i , for i ∈ {0, . . . , d − 1}
is defined as

ζ̆A,i (s) =

∫ ε

0
ts−i−1βi (t)dt.

Furthermore, the integral defining ζ̆A,i is absolutely convergent, and
hence, holomorphic, in the open half-plane {Re s > mi}.



The Window and the Screen

Re

Im

Screen S

Window W

initial half plane {Re s > mi}

mi



Reconstructing βi from their basic zeta functions

Theorem (Pointwise formula [RadWin+])

Let ∅ ≠ A ⊆ Rd be compact and let ζ̆A,i (·; ε) satisfy appropriate
growth conditions on some window W ⊆ C with screen S. Then,
for every t ∈ (0, ε):

β̂i (A; t) =
∑

w∈P(ζ̆A,i (·;ε),W)

res
(
t i−s ζ̆A,i (s; ε),w

)
+ O(t i−supS).

mi



Refined fractal tube formula

for nice sets this provides a refined tube formula:

Vd(Aε \ A) =
d−1∑
i=0

ωd−i

∫ ε

0
td−i−1βi (t)dt

=
d−1∑
i=0

ωd−i

d − i

∑
w∈P(ζ̆A,i ,W )

td−w res
(
ζ̆A,i (s),w

)
+ R̃(t)

Hence, it is useful to find functional equations for the basic zeta
functions

advantage: possible reconstruction of (complex) basic
exponents from poles of ζ̆A,i without explicit knowledge of the
basic functions βi

reconstruction of complex dimensions from poles of ζ̆A,i



Functional equations for basic zeta functions

Theorem (2nd functional equation for basic zeta functions)

A ⊆ Rd cpt. and fix ε > 0. Then for all s ∈ C such that Re s > mi :

ζ̆A,i (s) =

∫
Aε\A

dist(z ,A)s−i−1K̆i (z) dz ,

K̆i (z) :=
1

ωd−i

d−1∏
m=1

1
1 + dist(z ,A)km(A,ΠA(z))

·
∑

I⊆{1,...,d−1}
|I |=d−1−i

∏
l∈I

kl(A,ΠA(z))

▶ ΠA(z) :=
(
πA(z),

z−πA(z)
dist(z,A)

)
. . . directional metric projection



Example: going back to the Sierpinski gasket

▶ A = Sierpinski gasket; B the initial unit triangle; ε fixed.

k1(A,ΠA(z)) =

{
∞, if πA(z) is a vertex of B
0, otherwise.

(2)

ζ̆A,0(s) =

∫
Aε\A

dist(z ,A)s−1K̆0(z)dz =
2πεs

ω2s
,

ζ̆A,1(s) =

∫
Aε\A

dist(z ,A)s−2K̆1(z)dz

=
3εs−1

ω1(s − 1)
+

6(
√

3)1−s · 2−s

ω1s(s − 1)(2s − 3)
,

⇒ m0 = 0, m1 = log2 3 = dim
out
M A

⇒ ζA(s) = ω2ζ̆A,0(s) + ω1ζ̆A,1(s)



Reconstruction of basic functions for the
Sierpinski gasket

▶ we now have for all t ∈ (0, g) that

β̂0(A; t) = res(t−s ζ̆A,0(s), 0) =
2π
ω2

and

β̂1(A; t) =
∑

w∈P(ζ̆A,1,C)

res
(
t1−s ζ̆A,1,w

)

= t1−log2 3 6
√

3
ω1 log 2

∑
k∈Z

(4
√

3)−wk t−
2πik
log 2

wk(wk − 1)︸ ︷︷ ︸
G(log2 t)

+
3
√

3
ω1

t,

▶ wk := log2 3 + 2πik
log 2 for all k ∈ Z



Further research directions

Obtain existence criteria for the basic contents in terms of the
basic zeta functions
Applying the theory to problems from dynamical systems and
fractal geometry
What can be said about special kinds of sets? - self-similar,
self-affine, etc..
Further connections to the theory of fractal curvatures via the
newly defined support contents and support zeta functions
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Support functions and scaling exponents

Let A ⊆ Rd be a compact set and i ∈ Id . We are interested in

ε 7→ µi (Aε)

and its behavior as ε → 0+.

Remark ([HugLasWei’04])

µd−1(Aε) is a positive measure essentially equal to half of the
surface area of Aε, i.e., we have

µd−1(Aε) =
1
2
H d−1(∂Aε)

where the last equality holds for almost every ε > 0.

▶ we define now support scaling exponents si analogously as mi .



Support contents and support exponents

Observe that, for any ε > 0, the total mass µi (Aε) of µi (Aε, ·) is
finite, similarly the total mass of |µi |(Aε) of |µi |(Aε, ·).

Definition
Let A ⊆ Rd be a compact set, q ∈ R and i ∈ Id . We define the
(q-dimensional) upper i-th support content of A by

Sq
i (A) := lim sup

ε→0+
εq−iµi (Aε),

as well as its total variation analog

Svar,q
i (A) := lim sup

ε→0+
εq−i |µi |(Aε).

We also introduce the upper/lower i-th support scaling exponent of
A as

si := si (A) := inf{q ∈ R : Svar,q
i (A) = 0},



Support vs. basic exponents

Theorem [RW24+]

Let A ⊂ Rd be a nonempty compact set. For each i ∈ Id and each
ε > 0, µi (Aε; ·) ̸≡ 0, and

0 ≤ si (A) ≤ si (A) ≤ dim
out
M A.

Furthermore,
si (A) ≤ max{mj(A) : j ≤ i}

and also
mi (A) ≤ max{sj(A) : j ≤ i}.

Moreover,
dim

out
M (A) = max{si (A) : i < d}.



Support vs. basic contents

Theorem [RW24+]

Let A ⊆ Rd be a compact set, q ≥ 0 and i ∈ {0, . . . , d − 1}.
Assume also that the q-dimensional j-th basic content exists (in
R ∪ {+∞}) for j = 0, . . . , i . Then,

Sq
i (A) =

i∑
j=0

ci ,jMq
j (A).

In particular, if i = d − 1 and q = dimM A = D, then

d−D
2 MD(A) = SD

d−1(A) =
d−1∑
j=0

cd−1,jMD
j (A).



Remarks:
The last statement is due to the relation
2µd−1(Aε) = H d−1(∂Aε), which holds for all ε > 0 except
countably many and a result in [Rataj, W. 10].
In general,

d−D
2 MD

(A) ≤ SD
d−1(A) ≤

d−1∑
j=0

cd−1,jM
D
j (A)

and all inequalities can be strict.



Fractal grills - basic type of direct product formula

Proposition (RadWin)

Let ∅ ≠ A ⊆ Rd be cpt. Then for any i ∈ {0, . . . , d} we have that

β
[d+1]
i (A× [0, L]; t) = L · β[d ]

i−1(A; t) + β
[d+1]
i (A× {0}; t),

where we let β[d ]
−1 ≡ 0 for all d ≥ 0.

Corollary (RadWin)

Let A ⊆ Rd be cpt, and B ⊆ Rk a hyperrectangle of side-lengths
L1, . . . , Lk ; K := {1 . . . , k}. Then ∀i ∈ {0, . . . , d + k − 1}:

β
[d+k]
i (A× B; t) =

k∑
l=max{0,k−i}

Ck−l(B) · β
[d+l ]
i−(k−l)(A× {0}l ; t),

where Cj(B) are the Steiner functionals of B .



Embedings into higher dimensional space

Proposition (RadWin)

Let A ⊆ Rd be compact. Then, for any i ∈ {0, . . . , d} we have that

β
[d+1]
i (A× {0}; t) = ωd−i

ωd+1−i

∫ 1

−1
β
[d ]
i (A; t

√
1 − v2) dv , (3)

where we let β[d ]
d (A; t) := L d(A) and ω0 := 1, i.e.,

β
[d+1]
d (A× {0}; t) ≡ L d(A).

⇒ Basic exponents and basic zeta functions are invariant to the
ambient space.



Support zeta functions

Theorem (Support zeta functions for compact sets)

Let A ⊆ Rd be a compact set, ε > 0 fixed and i ∈ {0, . . . , d − 1}
fixed. Then,

“ζA,i (s) =

∫ ε

0
ts−i−1µi (At)dt

is called the i-th fractal support zeta function and is holomorpic in
{Re s > si} as an absolutely convergent integral.
Furthermore, the following decomposition into the basic zeta
functions ζ̆A,j is valid for Re s > max{mj : j = 0, . . . , i}:

“ζA,i (s) =
i∑

j=0

ci ,j ζ̆A,j(s).



Functional equations for support zeta functions

Theorem (Functional equation for support zeta functions
[RadWin])

A ⊆ Rd cpt. such that dimout
M A < d and fix ε > 0. Then for all

s ∈ C such that Re s > si :

“ζA,i (s) =

∫
Aε\A

dist(z ,A)s−i−1 “Ki (z) dz ,

“Ki (z) :=
1

ωd−i

∑
I⊆{1,...,d−1}
|I |=d−1−i

∏
l∈I

kl(A,ΠA(z))

1 + dist(z ,A)kl(A,ΠA(z))

▶ ΠA(z) :=
(
πA(z),

z−πA(z)
dist(z,A)

)
. . . directional metric projection


