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Ian D. Morris

TU Chemnitz, September 25th 2024

Ian D. Morris

Linear images of self-affine sets 1 / 20



Self-affine sets and their projections Higher-dimensional phenomena The mechanism

Self-affine sets: some fundamentals

Given a tuple of invertible affine contractions
T1, . . . ,TN : Rd → Rd , there exists a unique nonempty
compact set X ⊂ Rd satisfying X =

⋃N
i=1 TiX . We call

(T1, . . . ,TN) an affine IFS and X a self-affine set.

There also exists a unique well-defined associated coding map
Π: {1, . . . ,N}N → X which satisfies

Π[(xk)
∞
k=1] = lim

n→∞
Tx1 · · ·Txnv

for all v ∈ Rd , and whose image is precisely X .
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Self-affine sets and their projections Higher-dimensional phenomena The mechanism

Some natural questions

Given an affine IFS (T1, . . . ,TN):

What is the value of the Hausdorff dimension dimH X?

Given a linear map Q : Rd → Rd which is not of full rank,
what is dimHQX? When does it equal min{dimH X , rankQ}?
What are the dimensions of some natural measures on X?

If µ is an ergodic shift-invariant measure on {1, . . . ,N}N, is
Π∗µ exact-dimensional? What is its dimension?
If a projection Q : Rd → Rd is also given, is Q∗Π∗µ
exact-dimensional? What is its dimension?

These issues are relatively well-understood in the case where every
Ti is conformal, and much less so otherwise.
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Standard dimension bounds

If V ⊂ Rd is a closed ball such that X ⊆ V , then clearly

X =
N⋃

i1,...,in=1

Ti1 · · ·TinX ⊆
N⋃

i1,...,in=1

Ti1 · · ·TinV

for all n ≥ 1.

In fact we can even obtain

X =
∞⋂
n=1

N⋃
i1,...,in=1

Ti1 · · ·TinV .

To cover X efficiently, and hence bound dimX , we could try to
efficiently cover the sets Ti1 · · ·TinV .
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If T is affine with Tx ≡ Ax + v , and V is a Euclidean ball, then
TV is an ellipsoid with semiaxes σ1(A) ≥ σ2(A) ≥ · · · ≥ σd(A),
say.

We can exploit this to cover TV with cubes in a way which
provides an efficient estimate of its s-dimensional volume.
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Define for each s ∈ [0, d ]

φs(A) := σ1(A) · · ·σ⌊s⌋(A)σ⌈s⌉(A)s−⌊s⌋.

This quantity measures the s-dimensional volume of an efficient
covering of an ellipsoid AV by small cubes.

Let X be the attractor of an affine IFS with linearisation
(A1, . . . ,AN). One may show that if

∞∑
n=1

N∑
i1,...,in=1

φs(Ai1 · · ·Ain) < ∞

then dimH X ≤ s.
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Self-affine sets and their projections Higher-dimensional phenomena The mechanism

If (T1, . . . ,TN) is an affine IFS with attractor X and linearistion
A = (A1, . . . ,AN), and µ an ergodic shift-invariant measure on
{1, . . . ,N}N, we define the affinity dimension

dimaff A = inf

s > 0:
∞∑
n=1

N∑
i1,...,in=1

φs(Ai1 · · ·Ain) < ∞


which is an upper bound for dimH X . . .

. . . and we also define the Lyapunov dimension of µ as

dimLyap(µ,A) = inf

{
s > 0: lim

n→∞
log

(
φs(Ai1 · · ·Ain)

µ([i1 · · · in])

)
< 0 µ-a.e.

}
which is an upper bound for the Hausdorff dimension of Π∗µ.
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The sharpness of these dimension bounds has been extensively
investigated in the last four decades, including:

1 Falconer ’88: if A = (A1, . . . ,AN) is sufficiently strongly
contracting, then for Lebesgue almost every (v1, . . . , vN), the
attractor of the IFS defined by Tix ≡ Aix + vi has Hausdorff
dimension dimaff A.

2 Käenmäki ’04: under the same hypotheses, if µ is an ergodic
shift-invariant measure on {1, . . . ,N}N, then
dimHΠ∗µ = dimLyap(A, µ) for Lebesgue almost every
(v1, . . . , vN).

3 Bárány-Hochman-Rapaport ’19: if X is the attractor of an
affine IFS on R2 which satisfies the SSC and is strongly
irreducible, then dimH X = dimaff A.

Ian D. Morris
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4 Feng ’23: if µ is an ergodic shift-invariant measure on
{1, . . . ,N}N and (T1, . . . ,TN) is an affine IFS with coding
map Π, then Π∗µ is exact-dimensional.

5 Rapaport ’24: if X is the attractor of an affine IFS on R3

which satisfies the SSC and is strongly irreducible, and if
Q : R3 → R3 is linear, then
dimHQX = min{rankQ, dimaff A}.

6 Pyörälä ’24: if X and Y are the attractors of affine IFS’s on
R2 which satisfy the SSC, proximality and strong irreducibility,
then dimH(X + Y ) = min{2, dimH X + dimH Y }.

I will describe some complications which occur in dimension 4 and
higher.

Ian D. Morris
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Example 1: abundance of exceptional projections

Let n,m ≥ 2. Then there exists a self-affine set X ⊂ Rnm, defined
by an affine IFS with linearisation A, such that:

For every u ∈ Sn−1, if Q is given by orthogonal projection
onto the subspace {(a1 · u, a2 · u, . . . , am · u) : a ∈ Rm}, then

dimHQX < dimH X = dimaff A .

In particular, X has an (n− 1)-dimensional algebraic variety of
exceptional orthogonal projections in the sense of Marstrand’s
theorem.

Ian D. Morris
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Example 2: failure of exact-dimensionality for projections

Let n ≥ 2. Then there exists a self-affine set X ⊂ R2n, defined by
an affine IFS with linearisation A, such that:

There exists a unique ergodic shift-invariant measure µ on
{1, . . . ,N}N such that

dimHΠ∗µ = dimH X = dimaff A .

For every U ∈ SO(n), if QU denotes the orthogonal projection
Q onto the subspace {(v ,Uv) : u ∈ Rn}, then Q∗Π∗µ is not
exact-dimensional.

Ian D. Morris
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Example 3: dimension defects for sumsets

Let n ≥ 2. Then there exists a self-affine set X ⊂ R2n, defined by
an affine IFS with linearisation A, such that:

If n is odd:

dimH(X + X ) < 2 dimH X = 2dimaff A ≤ 2n.

If n is even:

dimH(X + RX ) < 2 dimH X = 2dimaff A ≤ 2n,

where R denotes reflection in the first co-ordinate in R2n.
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Example 4: failure of exact-dimensionality for convolutions

Let n ≥ 3 be odd. Then there exist self-affine sets X ,Y ⊂ R2n,
each defined by an affine IFS with the same linearisation A, such
that:

There exists a unique ergodic shift-invariant measure on
{1, . . . ,N}N such that

dimHΠX
∗ µ = dimH X = dimaff A

and this measure is also the unique ergodic shift-invariant
measure on {1, . . . ,N}N such that

dimHΠY
∗ µ = dimH Y = dimaff A .

The convolution
ΠX
∗ µ ∗ ΠY

∗ µ

is not exact-dimensional.
Ian D. Morris
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There is (almost) nothing up my sleeve

For each of Examples 1–4:

The IFS is invertible and is strongly irreducible on Rd .

The results hold for almost all choices of translation
component (in the sense of Falconer ’88).

The strong separation condition can be assumed to hold.

The IFS does not act strongly irreducibly on every exterior
power of Rd .

Ian D. Morris
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The mechanism

A sumset X + Y of two self-affine sets is simply the image of
the self-affine set X × Y under the specific projection
(u, v) 7→ u + v .

A similar remark applies to convolutions of measures on
self-affine sets.

Thus, all four examples listed above are all derived from a
new analysis of projections of self-affine sets.
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Consider an affine IFS with attractor X and linearisation
(A1, . . . ,AN), together with a linear transformation Q of Rd .
Suppose that X ⊆ V where V is a closed Euclidean ball.

Following Falconer’s original bound, we can write

QX =
∞⋂
n=1

N⋃
i1,...,in=1

QTi1 · · ·TinV

and it follows in the same manner that

dimHQX ≤ inf

s > 0:
N∑

i1,...,in=1

φs(QAi1 · · ·Ain) < ∞

 .

Ian D. Morris

Linear images of self-affine sets 16 / 20



Self-affine sets and their projections Higher-dimensional phenomena The mechanism

Consider an affine IFS with attractor X and linearisation
(A1, . . . ,AN), together with a linear transformation Q of Rd .
Suppose that X ⊆ V where V is a closed Euclidean ball.

Following Falconer’s original bound, we can write

QX =
∞⋂
n=1

N⋃
i1,...,in=1

QTi1 · · ·TinV

and it follows in the same manner that

dimHQX ≤ inf

s > 0:
N∑

i1,...,in=1

φs(QAi1 · · ·Ain) < ∞

 .

Ian D. Morris

Linear images of self-affine sets 16 / 20



Self-affine sets and their projections Higher-dimensional phenomena The mechanism

Consider an affine IFS with attractor X and linearisation
(A1, . . . ,AN), together with a linear transformation Q of Rd .
Suppose that X ⊆ V where V is a closed Euclidean ball.

Following Falconer’s original bound, we can write

QX =
∞⋂
n=1

N⋃
i1,...,in=1

QTi1 · · ·TinV

and it follows in the same manner that

dimHQX ≤ inf

s > 0:
N∑

i1,...,in=1

φs(QAi1 · · ·Ain) < ∞

 .

Ian D. Morris

Linear images of self-affine sets 16 / 20



Self-affine sets and their projections Higher-dimensional phenomena The mechanism

Similarly, if Π is the associated coding map and µ is an ergodic
shift-invariant measure on {1, . . . ,N}N, we may bound the upper
Hausdorff dimension of Q∗Π∗µ by

inf

{
s > 0: ess sup lim

n→∞
log

φs(QAi1 · · ·Ain)

µ([i1 · · · in])
< 0

}

and the lower Hausdorff dimension by

inf

{
s > 0: ess inf lim

n→∞
log

φs(QAi1 · · ·Ain)

µ([i1 · · · in])
< 0

}
.

These bounds may be unequal.
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Çağrı Sert and I generalise the existing thermodynamic formalism
of affine IFS so as to encompass pressure functions of the form

PQ(A, s) := lim
n→∞

1

n
log

N∑
i1,...,in=1

φs (QAi1 · · ·Ain) .

We establish:

Existence of the limit!

Variational description of the pressure. . .

Existence and description of equilibrium states. . .

Almost everywhere dimension results (after Falconer ’88,
Käenmäki ’04). . .

Dependence on Q: sub-level sets with respect to Q are
algebraic varieties!
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Çağrı Sert and I generalise the existing thermodynamic formalism
of affine IFS so as to encompass pressure functions of the form

PQ(A, s) := lim
n→∞

1

n
log

N∑
i1,...,in=1

φs (QAi1 · · ·Ain) .

We establish:

Existence of the limit!

Variational description of the pressure. . .

Existence and description of equilibrium states. . .

Almost everywhere dimension results (after Falconer ’88,
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Summary

If an affine IFS on Rd does not act strongly irreducibly on
every exterior power of Rd then pathological projections of
sets and measures, and pathological sumsets and
convolutions, should be expected to exist.

Strong irreducibility of exterior powers fails in many natural
circumstances, e.g. for affine IFS with holomorphic structure,
symplectic structure, or Cartesian product structure (in
particular, when investigating sumsets and convolutions).

The results on projections of sets and measures are currently
being written up (70 pages and counting. . . ).

A sequel article will prove an almost sure dimension formula
for sumsets and convolutions of self-affine sets and their
natural measures.
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Thanks for listening!

Ian D. Morris
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