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Interval maps with neutral fixed points
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Numerical studies by physicists:
• Pomeau, Manneville ’80: intermittent transition to turbulence in convective fluids
• Grossmann, Horner ’85: slowly (polynomially) decaying correlations, infinite static susceptibility
• Pikovsky ’91: dynamically generated anomalous diffusion
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Intermittent dynamics

Trajectories alternate between a laminar phase,
caused by neutral fixed points, and a chaotic phase
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Similar phenomena occurs in more com-
plex systems, e.g. dispersing billiards with
cusps: laminar phase occurs (for the colli-
sion map) as the billiard particle becomes
trapped deep in a cusp
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Inducing schemes

Y := [1/2, 1] R(y) := inf{n ≥ 1 : Tn
α (y) ∈ Y }, F (y) := TR(y)
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Young ’99: ∃! absolutely continuous invariant probability measure (a.c.i.p.) µα iff

∫
Y
R(y) dy < ∞.

The rate of mixing is determined by the decay rate of {R > n}: for Hölder φ,ψ,

Leb({R > n}) = O(n−1/α) =⇒
∫
φ ◦ Tn

α · ψ dµα −
∫
φdµα

∫
ψ dµα = O(n1−1/α)

Remark:
∫

Y
R(y) dy < ∞ ⇐⇒ α ∈ (0, 1)
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Memory loss in Markov chains (Lindvall ’79)

0 1 2 k · · ·

∼ k−1− 1
α • ∃! probability measure π invariant under

Perron-Frobenius transfer operator P
• If µk is concentrated at k, then

|Pn(π − µk)| ≲ n1− 1
α

• But |Pn(µk − µj)| ≲ n− 1
α

Memory loss for intermittent maps
Classic (Young ’99, Hu ’04, Gouëzel ’04): |(Tn

α )∗µ− (Tn
α )∗µα| ≲ n1− 1

α for “regular” measures µ

Unexpected (Gouëzel ’04): |(Tn
α )∗ν − (Tn

α )∗ν
′| ≲ n− 1

α for “special” measures ν, ν′ (including those
with Hölder densities)
Proof: operator renewal theory + Wiener lemma
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Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time
under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence T1, T2, . . . of intermittent maps with corresponding parameters α1, α2, . . ..

Thm (Korepanov, L. ’21)
Suppose that supn αn ≤ α∗ < 1. Then, for measures ν, ν′ with Hölder densities:

a) |(T1,n)∗µβ − (T1,n)∗ν| ≲ n1− 1
α∗ (β ≤ α∗)

b) |(T1,n)∗ν − (T1,n)∗ν
′| ≲ n− 1

α∗

Here, T1,n := Tn ◦ · · · ◦ T1 and | · | denotes the total variation distance.

Related: Aimino, Hu, Nicol, Török, Vaienti ’15 obtained ≲ (logn)1/α∗n1−1/α∗ in a)

Question
How are the rates of convergence in a) and b) affected by subsequences (Tnk

)?

6 / 13



Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time
under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence T1, T2, . . . of intermittent maps with corresponding parameters α1, α2, . . ..

Thm (Korepanov, L. ’21)
Suppose that supn αn ≤ α∗ < 1. Then, for measures ν, ν′ with Hölder densities:

a) |(T1,n)∗µβ − (T1,n)∗ν| ≲ n1− 1
α∗ (β ≤ α∗)

b) |(T1,n)∗ν − (T1,n)∗ν
′| ≲ n− 1

α∗

Here, T1,n := Tn ◦ · · · ◦ T1 and | · | denotes the total variation distance.

Related: Aimino, Hu, Nicol, Török, Vaienti ’15 obtained ≲ (logn)1/α∗n1−1/α∗ in a)

Question
How are the rates of convergence in a) and b) affected by subsequences (Tnk

)?

6 / 13



Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time
under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence T1, T2, . . . of intermittent maps with corresponding parameters α1, α2, . . ..

Thm (Korepanov, L. ’21)
Suppose that supn αn ≤ α∗ < 1. Then, for measures ν, ν′ with Hölder densities:

a) |(T1,n)∗µβ − (T1,n)∗ν| ≲ n1− 1
α∗ (β ≤ α∗)

b) |(T1,n)∗ν − (T1,n)∗ν
′| ≲ n− 1

α∗

Here, T1,n := Tn ◦ · · · ◦ T1 and | · | denotes the total variation distance.

Related: Aimino, Hu, Nicol, Török, Vaienti ’15 obtained ≲ (logn)1/α∗n1−1/α∗ in a)

Question
How are the rates of convergence in a) and b) affected by subsequences (Tnk

)?

6 / 13



Condition on the density of “good” maps
• (Tn): sequence of intermittent maps with parameters 0 < αn ≤ α∗ < 1
• ν, ν′: probability measures with Hölder densities
• µβ : a.c.i.p. of Tβ

Condition
Let γ ∈ (0, α∗]. Suppose that for a sufficiently small ε > 0 there exists N ≥ 1 such that

#{1 ≤ k ≤ n : αk ≤ γ}
n

∈ [b− ε, b+ ε] ∀n ≥ N. (∗)

Thm (Korepanov, L. ’24+)
Assume (∗). Then:

a) |(T1,n)∗µβ − (T1,n)∗ν| ≲ n1− 1
γ (β ≤ γ)

b) |(T1,n)∗ν − (T1,n)∗ν
′| ≲ n− 1

γ
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RDS with an ergodic driving system

Suppose that a sequence ω = (ωn) of parameters is sampled randomly from a probability space
(Ω,F ,P) where Ω = (0, α∗]N and F = Borel(Ω).

Assumptions

• the shift map σ : Ω → Ω, (σω)n = ωn+1, preserves P,
• (σ,P) is ergodic,
• P(ω1 ≤ γ) > 0

Let π1 : Ω → (0, α∗] project onto the first coordinate. By Birkhoff’s ergodic theorem, for P-a.e.
ω ∈ Ω,

|{1 ≤ k ≤ n : ωk ≤ γ}|
n

= n−1
n−1∑
k=0

1(0,γ] ◦ π1(σkω) n→∞→ P(ω1 ≤ γ) > 0.

Thus, we obtain estimates on the rate of quenched memory loss for ergodic compositions.
Related: Bahsoun, Bose, Ruziboev ’18 obtained (classic) rates of mixing for i.i.d. compositions.
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Application of memory loss: concentration inequalities

Let Sn =
∑n−1

k=0 vk ◦ T1,k where vk : [0, 1] → R are Hölder with λ(vk) = 0. We consider the sums Sn

as random variables/process on ([0, 1],Borel, λ) where λ = Leb|[0,1]

Question
How fast does Sn grow?

If E(Sp
n) ≤ Mn, then P(Sn ≥ t) ≤ Mn/t

p (the smaller Mn and larger p, the better)

Notation:

∥X∥p = E(|X|p)1/p, ∥X∥p,∞ =
[
sup
t>0

tpP(|X| ≥ t)
]1/p
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Martingale approach
Definitions: for a martingale (Mn) w.r.t. a filtration (Fn), define

[M ]n =
∑
k≤n

|Mk −Mk−1|2 (quadratic variation)

σn =
∑
k≤n

E(|Mk −Mk−1|2|Fk−1) (conditioned quadratic variation)

M∗
n = sup

k≤n
Mk (record process)

Thm (Burkholder)
For every p ≥ 1,

∥M∗
n∥p ∼ ∥[M ]1/2

n ∥p (same estimate holds for ∥ · ∥p,∞)
∥M∗

n∥p ≲ ∥σ1/2
n ∥p + ∥ max

j≤n
|Mj −Mj−1|∥p.
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Constructing the martingale

Symbolic coding: recall that Y = [1/2, 1], and let

an = an(x) =

{
0, T1,n(x) /∈ Y,

1, T1,n(x) ∈ Y

Filtration: Fn is generated by a0, . . . , an−1

Doob martingale: fix N > 0 and let
Mn = E(SN |Fn).

Then, Mn → SN pointwise as n → ∞.
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Increments Mk − Mk−1

Consider
M1 −M0 = E(Sn|F1) − E(Sn) = E(Sn|F1).

Let m = Leb|Y /normalization. We have

E(Sn|a0 = 1) =
∫ n−1∑

k=0

vk ◦ T1,k (dλ− dm) =
n−1∑
k=0

∫
vkd(T1,k)∗(λ−m).

Thus, E(Sn|a0 = 1) is bounded if

∞∑
k=1

|(T1,k)∗(λ−m)| < ∞.

Further, we use the exact rate |(T1,n)∗(λ−m)| = O(n−1/γ) to control Mk −Mk−1 for k > 1.
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Quenched moment bounds

(Ω,F ,P) = ((0, α∗]N,Borel,P), σ∗P = P, (σ,P) ergodic

Thm (Korepanov, L. ’21)
For P-a.e. ω ∈ Ω:

a) If 0 < α∗ < 1/2 then ∥Sn∥2( 1
α∗ −1) ≲ n

1
2

b) If α∗ = 1/2 then ∥Sn∥2 ≲
√
n logn

c) If 1/2 < α∗ < 1 then ∥Sn∥ 1
α∗ ,∞ ≲ nα∗

Thm (Korepanov, L. ’24+)
If P(ω1 ≤ γ) > 0, then ↑ hold with γ in place of α∗.

Related: Gouëzel, Melbourne ’14 and Dedecker, Merlevede ’15 obtained similar bounds for stationary
dynamics (iterations of a single map Tα)
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Structure of proof

For any “regular” measure µ on [0, 1], construct measures µn and numbers κn ∈ [0, 1] such that:
• µ =

∑
n≥1 κnµn

• (T1,n)∗µn = m

The sequence (κn) along with the decay rate of
∑

j≥n κj as n → ∞ are determined by dynamical
constants and tail bounds r, (hk)k≥1:

µ(R1 ≥ ℓ) ≤ r(ℓ) and m(Rk ≥ ℓ) ≤ hk(ℓ),

where
Rk(x) = inf{ℓ ≥ 1 : Tk+ℓ−1 ◦ · · · ◦ Tk(x) ∈ Y }.

Hence, for two “regular” measures µ, µ′ with the same tail bounds r, (hk)k≥1:

|(T1,n)∗µ− (T1,n)∗µ
′| ≤ 2

∑
j>n

κj .
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