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Interval maps with neutral fixed points
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Numerical studies by physicists:
= Pomeau, Manneville '80: intermittent transition to turbulence in convective fluids
= Grossmann, Horner '85: slowly (polynomially) decaying correlations, infinite static susceptibility

= Pikovsky '91: dynamically generated anomalous diffusion
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Intermittent dynamics

Trajectories alternate between a laminar phase,

caused by neutral fixed points, and a chaotic phase
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Similar phenomena occurs in more com-
plex systems, e.g. dispersing billiards with
cusps: laminar phase occurs (for the colli-
sion map) as the billiard particle becomes
trapped deep in a cusp
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Inducing schemes

Y :=[1/2,1] R(y):=inf{n>1: T (y) €Y}, F(y):=TEW(y)
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Young '99: 3! absolutely continuous invariant probability measure (a.c.i.p.) pa iff [, R(y) dy < co.
The rate of mixing is determined by the decay rate of {R > n}: for Hélder ¢, 1,

Leb({R > n}) = O(n~"/) = /@oTZJ ) dpia */sodua/zbdua =0(n'"1)

Remark: [, R(y)dy < oo <= a € (0,1)
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Memory loss in Markov chains (Lindvall '79)

~ kR = 3! probability measure 7 invariant under
Perron-Frobenius transfer operator P
= |f ug is concentrated at k, then
1
[P (7 — )| St

= But [P (i — )| Snw
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Memory loss in Markov chains (Lindvall '79)

1
~ k1S

3! probability measure 7 invariant under
Perron-Frobenius transfer operator P

If pg is concentrated at k, then
1

[P (m — )| St

But [P" (s — )| S n

Memory loss for intermittent maps

Classic (Young '99, Hu '04, Gouézel '04): [(T)upt — (T7)spta] < n'~ % for “regular” measures 1

Unexpected (Gouézel '04): |(T7),v — (T™),./| <n~ = for “special” measures v,/ (including those

with Holder densities)

Proof: operator renewal theory + Wiener lemma
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Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time
under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence 11,75, ... of intermittent maps with corresponding parameters a1, aq, . . ..

6 /13



Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time
under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence 11,75, ... of intermittent maps with corresponding parameters a1, aq, . . ..

Thm (Korepanov, L. '21)

Suppose that sup,, o, < . < 1. Then, for measures v, with Hélder densities:
a) [(Tin)tts — (Tin)er] 01737 (B< o)
b) |(Tyn)sv = (Tun)er/| Sn73%

Here, Ty ,, :=T,, 0--- 0Ty and | - | denotes the total variation distance.

Related: Aimino, Hu, Nicol, Térok, Vaienti '15 obtained < (logn)'/®*n!=1/ in a)
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Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time
under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence 11,75, ... of intermittent maps with corresponding parameters a1, aq, . . ..

Thm (Korepanov, L. '21)

Suppose that sup,, o, < . < 1. Then, for measures v, with Hélder densities:
a) [(Tin)tts — (Tin)er] 01737 (B< o)
b) |(Tyn)sv = (Tun)er/| Sn73%

Here, Ty ,, :=T,, 0--- 0Ty and | - | denotes the total variation distance.

Related: Aimino, Hu, Nicol, Térok, Vaienti '15 obtained < (logn)'/®*n!=1/ in a)

Question

How are the rates of convergence in a) and b) affected by subsequences (75, )7
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Condition on the density of “good” maps

= (T,): sequence of intermittent maps with parameters 0 < o, < v, < 1
= p, ' probability measures with Holder densities

" gt a.ci.p. of Ty

Let v € (0, av]. Suppose that for a sufficiently small £ > 0 there exists NV > 1 such that

#{1Sk§n:ak§7}€[

- b—e,b+e] VYn>N. (%)
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Condition on the density of “good” maps

= (T,): sequence of intermittent maps with parameters 0 < o, < v, < 1
= p, ' probability measures with Holder densities

" gt a.ci.p. of Ty

Condition
Let v € (0, av]. Suppose that for a sufficiently small £ > 0 there exists NV > 1 such that

< k< : <
#{1_1@‘_: ak_v}e[b

—e,b+¢e] VYn>N. (%)
Thm (Korepanov, L. '24+)
Assume (). Then:
_1
a) |(Tum)spsp = (Tin)sv| SnP77 (B <)
b) [(Ti,n)ev = (T1n)eV'| S

1
n v
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RDS with an ergodic driving system

Suppose that a sequence w = (wy,) of parameters is sampled randomly from a probability space
(Q, F,P) where Q = (0, .. ] and F = Borel ().

= the shift map o : Q — Q, (ow),, = wny1, preserves P,
= (0,P) is ergodic,
" Plwi <7v)>0
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RDS with an ergodic driving system

Suppose that a sequence w = (wy,) of parameters is sampled randomly from a probability space
(Q, F,P) where Q = (0, .. ] and F = Borel ().

= the shift map o : Q — Q, (ow),, = wny1, preserves P,
= (0,P) is ergodic,
" Plwi <7v)>0

Let 1 : © — (0, a.] project onto the first coordinate. By Birkhoff's ergodic theorem, for P-a.e.
w e N,

n—1
1<k<n:w< - e
Hl<k< 3 < 1};}1(077107“(0%) = P(wr <) > 0.

Thus, we obtain estimates on the rate of quenched memory loss for ergodic compositions.

Related: Bahsoun, Bose, Ruziboev '18 obtained (classic) rates of mixing for i.i.d. compositions.
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Application of memory loss: concentration inequalities

Let S, = ZZ;& v, 0 11,5, where vy : [0,1] — R are Hélder with A(vi) = 0. We consider the sums S,
as random variables/process on ([0, 1], Borel, \) where A = Leb|[ 1
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Application of memory loss: concentration inequalities

Let S, = ZZ;CI) v, 0 11,5, where vy : [0,1] — R are Hélder with A(vi) = 0. We consider the sums S,
as random variables/process on ([0, 1], Borel, \) where A = Leb|[ 1

Question

How fast does S,, grow?

If E(S2) < M, then P(S,, >t) < M, /t?  (the smaller M,, and larger p, the better)

Notation:

1/p
11, = BIXP)M, X = sup (1] > 1)
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Martingale approach

Definitions: for a martingale (M,,) w.r.t. a filtration (F,,), define

[M], = Z |My, — My_1|* (quadratic variation)

k<n
Op = Z E(|My, — My_1*|Fx_1) (conditioned quadratic variation)
k<n
M = sup My, (record process)
k<n
Thm (Burkholder)
For every p > 1,
M|, ~ I[M]Y3],  (same estimate holds for || - [|,.oc)

1M1l S llow/2lp + | o [y — Byl
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Constructing the martingale

Symbolic coding: recall that Y = [1/2,1], and let

Tin Y,
an = ap(r) = 0, Tin(z) ¢
1, Tl’n(m) cyY
Filtration: F,, is generated by ag,...,a,_1
Doob martingale: fix N > 0 and let
M, = E(Sn|Fn).

Then, M,, — Sn pointwise as n — oo.
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Increments M, — M;_;

Consider
M1 - MO = E(Sn|]:1) - E(Sn) = E(SW|F1)
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Increments M, — M;_;

Consider
M1 - MO = E(Sn|]:1) - E(Sn) = E(SW|F1)

Let m = Leb|y /normalization. We have

E(Sn|a0 = 1) = /z_: Vg OTl,k (d)\ - dm) = z_: /'de(Tl,k)*(/\ - m)
k=0 k=0
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Increments M, — M;_;

Consider
M1 - MO = E(Sn|]:1) - E(Sn) = E(Sn|F1)

Let m = Leb|y /normalization. We have
n—1 n—1
E(Sylag = 1) = /Z vk o Tig (dA —dm) = 3 /vkd(TLk)*(/\ _m).
k=0 k=0
Thus, E(S,|ag = 1) is bounded if
> (T x)« (A= m)| < 0.

k=1

Further, we use the exact rate |(T1.,,)«(A —m)| = O(n~'/7) to control My, — My_; for k > 1.
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Quenched moment bounds

(Q, F,P) = ((0,a.]", Borel, P), 0.P = P, (0, P) ergodic
Thm (Korepanov, L. '21)

For P-a.e. w e Q:
a) If 0 < a, <1/2 then [[Spllyr 1) Sn?

b) If a, =1/2 then ||S,]l2 S vnlogn
c) If1/2 < ae < 1 then ||S,]| o o S0

——,00 ~
O

Thm (Korepanov, L. '24+)

If P(wy <) >0, then 1 hold with ~ in place of a.

Related: Gouézel, Melbourne '14 and Dedecker, Merlevede '15 obtained similar bounds for stationary
dynamics (iterations of a single map T,,)
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Structure of proof

For any “regular” measure 1 on [0, 1], construct measures p,, and numbers k,, € [0, 1] such that:
" p= Zn21 Kntn
" (Tl,n)*/fén =m
The sequence (k,) along with the decay rate of
constants and tail bounds 7, (h*)j>1:

j>n kj @s n — 0o are determined by dynamical

w(Ry > 0) <r() and m(Ry >0) < h*(0),

where
Rk(u’(}) = inf{ﬁ >1: Tk+g,1 0---0 Tk(m) S Y}

Hence, for two “regular” measures j, i/ with the same tail bounds 7, (h*)>1:

|(T1,n)*'u - (Tl,n)*ﬂ/| <2 Z Kj.

j>n
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