Rate of memory loss in nonstationary dynamical systems with some hyperbolicity

Juho Leppänen (Tokai University)

Joint work with Alexey Korepanov (Loughborough University)

26.9.2024 FGS7, Technical University of Chemnitz

Interval maps with neutral fixed points

Numerical studies by physicists:

- Pomeau, Manneville '80: intermittent transition to turbulence in convective fluids
- Grossmann, Horner '85: slowly (polynomially) decaying correlations, infinite static susceptibility
- Pikovsky '91: dynamically generated anomalous diffusion

Intermittent dynamics

Similar phenomena occurs in more complex systems, e.g. dispersing billiards with cusps: laminar phase occurs (for the collision map) as the billiard particle becomes trapped deep in a cusp

Young '99: \exists ! absolutely continuous invariant probability measure (a.c.i.p.) μ_{α} iff $\int_{Y} R(y) dy < \infty$. The rate of mixing is determined by the decay rate of $\{R > n\}$: for Hölder φ, ψ ,

$$\mathsf{Leb}(\{R > n\}) = O(n^{-1/\alpha}) \implies \int \varphi \circ T_{\alpha}^{n} \cdot \psi \, d\mu_{\alpha} - \int \varphi \, d\mu_{\alpha} \int \psi \, d\mu_{\alpha} = O(n^{1-1/\alpha})$$

Remark: $\int_Y R(y) \, dy < \infty \iff \alpha \in (0, 1)$

Memory loss in Markov chains (Lindvall '79)

- \exists ! probability measure π invariant under Perron-Frobenius transfer operator \mathcal{P}
- If μ_k is concentrated at k, then $|\mathcal{P}^n(\pi-\mu_k)| \lesssim n^{1-\frac{1}{\alpha}}$
- But $|\mathcal{P}^n(\mu_k-\mu_j)| \lesssim n^{-rac{1}{lpha}}$

Memory loss in Markov chains (Lindvall '79)

- \exists ! probability measure π invariant under Perron-Frobenius transfer operator \mathcal{P}
- If μ_k is concentrated at k, then $|\mathcal{P}^{n}(\pi - \mu_{k})| \lesssim n^{1 - \frac{1}{\alpha}}$ • But $|\mathcal{P}^{n}(\mu_{k} - \mu_{j})| \lesssim n^{-\frac{1}{\alpha}}$

Memory loss for intermittent maps

Classic (Young '99, Hu '04, Gouëzel '04): $|(T_{\alpha}^n)_*\mu - (T_{\alpha}^n)_*\mu_{\alpha}| \leq n^{1-\frac{1}{\alpha}}$ for "regular" measures μ **Unexpected** (Gouëzel '04): $|(T_{\alpha}^{n})_{*}\nu - (T_{\alpha}^{n})_{*}\nu'| \leq n^{-\frac{1}{\alpha}}$ for "special" measures ν, ν' (including those with Hölder densities)

Proof: operator renewal theory + Wiener lemma

Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence T_1, T_2, \ldots of intermittent maps with corresponding parameters $\alpha_1, \alpha_2, \ldots$

Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence T_1, T_2, \ldots of intermittent maps with corresponding parameters $\alpha_1, \alpha_2, \ldots$

Thm (Korepanov, L. '21)

Suppose that $\sup_n \alpha_n \leq \alpha_* < 1$. Then, for measures ν, ν' with Hölder densities:

a)
$$|(T_{1,n})_*\mu_\beta - (T_{1,n})_*\nu| \lesssim n^{1-\frac{1}{\alpha_*}}$$
 $(\beta \le \alpha_*)$
b) $|(T_{1,n})_*\nu - (T_{1,n})_*\nu'| \lesssim n^{-\frac{1}{\alpha_*}}$
Here, $T_{1,n} := T_n \circ \cdots \circ T_1$ and $|\cdot|$ denotes the total variation distance.

Related: Aimino, Hu, Nicol, Török, Vaienti '15 obtained $\leq (\log n)^{1/\alpha_*} n^{1-1/\alpha_*}$ in a)

Memory loss for nonstationary intermittent dynamical systems

Nonstationary dynamical systems: description of nonequilibrium systems whose laws vary with time under external influence (noise, fluctuating environment, control-signals, etc.)

Consider a sequence T_1, T_2, \ldots of intermittent maps with corresponding parameters $\alpha_1, \alpha_2, \ldots$

Thm (Korepanov, L. '21)

Suppose that $\sup_n \alpha_n \leq \alpha_* < 1$. Then, for measures ν, ν' with Hölder densities:

a)
$$|(T_{1,n})_*\mu_\beta - (T_{1,n})_*\nu| \lesssim n^{1-\frac{1}{\alpha_*}} \qquad (\beta \le \alpha_*)$$

b)
$$|(T_{1,n})_*\nu - (T_{1,n})_*\nu'| \lesssim n^{-\frac{1}{\alpha_*}}$$

Here, $T_{1,n} := T_n \circ \cdots \circ T_1$ and $|\cdot|$ denotes the total variation distance.

Related: Aimino, Hu, Nicol, Török, Vaienti '15 obtained $\leq (\log n)^{1/\alpha_*} n^{1-1/\alpha_*}$ in a)

Question

How are the rates of convergence in a) and b) affected by subsequences (T_{n_k}) ?

Condition on the density of "good" maps

- (T_n) : sequence of intermittent maps with parameters $0 < \alpha_n \le \alpha_* < 1$
- ν, ν' : probability measures with Hölder densities
- μ_{β} : a.c.i.p. of T_{β}

Condition

Let $\gamma \in (0, \alpha_*]$. Suppose that for a sufficiently small $\varepsilon > 0$ there exists $N \ge 1$ such that

$$\frac{\#\{1 \le k \le n : \alpha_k \le \gamma\}}{n} \in [b - \varepsilon, b + \varepsilon] \quad \forall n \ge N.$$
(*)

Condition on the density of "good" maps

- (T_n) : sequence of intermittent maps with parameters $0 < \alpha_n \le \alpha_* < 1$
- ν, ν' : probability measures with Hölder densities
- μ_{β} : a.c.i.p. of T_{β}

Condition

Let $\gamma \in (0, \alpha_*]$. Suppose that for a sufficiently small $\varepsilon > 0$ there exists $N \ge 1$ such that

$$\frac{\#\{1 \le k \le n : \alpha_k \le \gamma\}}{n} \in [b - \varepsilon, b + \varepsilon] \quad \forall n \ge N.$$
(*)

Thm (Korepanov, L. '24+)

Assume (*). Then:

$$\begin{array}{l} \text{a)} \ |(T_{1,n})_*\mu_\beta - (T_{1,n})_*\nu| \lesssim n^{1-\frac{1}{\gamma}} \qquad (\beta \le \gamma) \\ \text{b)} \ |(T_{1,n})_*\nu - (T_{1,n})_*\nu'| \lesssim n^{-\frac{1}{\gamma}} \end{array}$$

RDS with an ergodic driving system

Suppose that a sequence $\omega = (\omega_n)$ of parameters is sampled randomly from a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ where $\Omega = (0, \alpha_*]^{\mathbb{N}}$ and $\mathcal{F} = \text{Borel}(\Omega)$.

Assumptions

- the shift map $\sigma:\Omega \to \Omega$, $(\sigma \omega)_n = \omega_{n+1}$, preserves ${f P}$,
- (σ, \mathbf{P}) is ergodic,
- $\mathbf{P}(\omega_1 \leq \gamma) > 0$

RDS with an ergodic driving system

Suppose that a sequence $\omega = (\omega_n)$ of parameters is sampled randomly from a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ where $\Omega = (0, \alpha_*]^{\mathbb{N}}$ and $\mathcal{F} = \mathsf{Borel}(\Omega)$.

Assumptions

- the shift map $\sigma:\Omega\to\Omega,\ (\sigma\omega)_n=\omega_{n+1}$, preserves ${f P}$,
- (σ, \mathbf{P}) is ergodic,
- $\mathbf{P}(\omega_1 \leq \gamma) > 0$

Let $\pi_1: \Omega \to (0, \alpha_*]$ project onto the first coordinate. By Birkhoff's ergodic theorem, for P-a.e. $\omega \in \Omega$,

$$\frac{|\{1 \le k \le n : \omega_k \le \gamma\}|}{n} = n^{-1} \sum_{k=0}^{n-1} \mathbf{1}_{(0,\gamma]} \circ \pi_1(\sigma^k \omega) \xrightarrow{n \to \infty} \mathbf{P}(\omega_1 \le \gamma) > 0.$$

Thus, we obtain estimates on the rate of quenched memory loss for ergodic compositions. **Related:** Bahsoun, Bose, Ruziboev '18 obtained (classic) rates of mixing for i.i.d. compositions.

Application of memory loss: concentration inequalities

Let $S_n = \sum_{k=0}^{n-1} v_k \circ T_{1,k}$ where $v_k : [0,1] \to \mathbb{R}$ are Hölder with $\lambda(v_k) = 0$. We consider the sums S_n as random variables/process on $([0,1], \text{Borel}, \lambda)$ where $\lambda = \text{Leb}|_{[0,1]}$

Application of memory loss: concentration inequalities

Let $S_n = \sum_{k=0}^{n-1} v_k \circ T_{1,k}$ where $v_k : [0,1] \to \mathbb{R}$ are Hölder with $\lambda(v_k) = 0$. We consider the sums S_n as random variables/process on $([0,1], \text{Borel}, \lambda)$ where $\lambda = \text{Leb}|_{[0,1]}$

Question

How fast does S_n grow?

If $\mathbf{E}(S_n^p) \leq M_n$, then $\mathbf{P}(S_n \geq t) \leq M_n/t^p$ (the smaller M_n and larger p, the better) Notation:

$$||X||_p = \mathbf{E}(|X|^p)^{1/p}, \quad ||X||_{p,\infty} = \left[\sup_{t>0} t^p \mathbf{P}(|X| \ge t)\right]^{1/p}$$

Martingale approach

Definitions: for a martingale (M_n) w.r.t. a filtration (\mathcal{F}_n) , define

$$\begin{split} &[M]_n = \sum_{k \leq n} |M_k - M_{k-1}|^2 \quad (\text{quadratic variation}) \\ &\sigma_n = \sum_{k \leq n} \mathbf{E}(|M_k - M_{k-1}|^2 |\mathcal{F}_{k-1}) \quad (\text{conditioned quadratic variation}) \\ &M_n^* = \sup_{k \leq n} M_k \quad (\text{record process}) \end{split}$$

Thm (Burkholder)

For every $p \ge 1$,

$$\begin{split} \|M_n^*\|_p &\sim \|[M]_n^{1/2}\|_p \quad \text{(same estimate holds for } \|\cdot\|_{p,\infty}\text{)} \\ \|M_n^*\|_p &\lesssim \|\sigma_n^{1/2}\|_p + \|\max_{j \le n} |M_j - M_{j-1}|\|_p. \end{split}$$

Constructing the martingale

Symbolic coding: recall that Y = [1/2, 1], and let

$$a_n = a_n(x) = \begin{cases} 0, & T_{1,n}(x) \notin Y, \\ 1, & T_{1,n}(x) \in Y \end{cases}$$

Filtration: \mathcal{F}_n is generated by a_0, \ldots, a_{n-1}

Doob martingale: fix N > 0 and let

$$M_n = \mathbf{E}(S_N | \mathcal{F}_n).$$

Then, $M_n \to S_N$ pointwise as $n \to \infty$.

Increments $M_k - M_{k-1}$

Consider

$$M_1 - M_0 = \mathbf{E}(S_n | \mathcal{F}_1) - \mathbf{E}(S_n) = \mathbf{E}(S_n | \mathcal{F}_1).$$

Increments $M_k - M_{k-1}$

Consider

$$M_1 - M_0 = \mathbf{E}(S_n | \mathcal{F}_1) - \mathbf{E}(S_n) = \mathbf{E}(S_n | \mathcal{F}_1).$$

Let $m = \text{Leb}|_Y/\text{normalization}$. We have

$$\mathbf{E}(S_n|a_0=1) = \int \sum_{k=0}^{n-1} v_k \circ T_{1,k} \left(d\lambda - dm \right) = \sum_{k=0}^{n-1} \int v_k d(T_{1,k})_* (\lambda - m).$$

Increments $M_k - M_{k-1}$

Consider

$$M_1 - M_0 = \mathbf{E}(S_n | \mathcal{F}_1) - \mathbf{E}(S_n) = \mathbf{E}(S_n | \mathcal{F}_1).$$

Let $m = \text{Leb}|_Y$ /normalization. We have

$$\mathbf{E}(S_n|a_0=1) = \int \sum_{k=0}^{n-1} v_k \circ T_{1,k} \left(d\lambda - dm \right) = \sum_{k=0}^{n-1} \int v_k d(T_{1,k})_* (\lambda - m).$$

Thus, $\mathbf{E}(S_n|a_0=1)$ is bounded if

$$\sum_{k=1}^{\infty} |(T_{1,k})_*(\lambda - m)| < \infty.$$

Further, we use the exact rate $|(T_{1,n})_*(\lambda - m)| = O(n^{-1/\gamma})$ to control $M_k - M_{k-1}$ for k > 1.

Quenched moment bounds

$$(\Omega, \mathcal{F}, \mathbf{P}) = ((0, \alpha_*]^{\mathbb{N}}, \mathsf{Borel}, \mathbf{P}), \ \sigma_* \mathbf{P} = \mathbf{P}, \ (\sigma, \mathbf{P}) \ \mathsf{ergodic}$$

Thm (Korepanov, L. '21)

For P-a.e. $\omega \in \Omega$: a) If $0 < \alpha_* < 1/2$ then $\|S_n\|_{2(\frac{1}{\alpha_*}-1)} \lesssim n^{\frac{1}{2}}$ b) If $\alpha_* = 1/2$ then $\|S_n\|_2 \lesssim \sqrt{n \log n}$ c) If $1/2 < \alpha_* < 1$ then $\|S_n\|_{\frac{1}{2},\infty} \lesssim n^{\alpha_*}$

Thm (Korepanov, L. '24+)

If $\mathbf{P}(\omega_1 \leq \gamma) > 0$, then \uparrow hold with γ in place of α_* .

Related: Gouëzel, Melbourne '14 and Dedecker, Merlevede '15 obtained similar bounds for stationary dynamics (iterations of a single map T_{α})

Structure of proof

For any "regular" measure μ on [0,1], construct measures μ_n and numbers $\kappa_n \in [0,1]$ such that:

- $\mu = \sum_{n \ge 1} \kappa_n \mu_n$
- $(T_{1,n})_*\mu_n = m$

The sequence (κ_n) along with the decay rate of $\sum_{j\geq n} \kappa_j$ as $n \to \infty$ are determined by dynamical constants and tail bounds $r, (h^k)_{k\geq 1}$:

$$\mu(R_1 \geq \ell) \leq r(\ell)$$
 and $m(R_k \geq \ell) \leq h^k(\ell),$

where

$$R_k(x) = \inf\{\ell \ge 1 : T_{k+\ell-1} \circ \cdots \circ T_k(x) \in Y\}.$$

Hence, for two "regular" measures μ, μ' with the same tail bounds $r, (h^k)_{k \ge 1}$:

$$|(T_{1,n})_*\mu - (T_{1,n})_*\mu'| \le 2\sum_{j>n} \kappa_j.$$