Heat kernel gradient bounds on the Vicsek set

Fractal Geometry and Stochastics 7, Chemnitz

Li Chen, Aarhus University September 26, 2024

Motivation from smooth settings

Since the 1980s, gradient estimates for heat kernels and their connections with functional inequalities have been extensively studied in smooth structures satisfying Gaussian heat kernel bounds:

$$
p_t(x,y) \simeq \frac{C}{\text{Vol}(B(x,\sqrt{t}))} \exp\left(-c\frac{d(x,y^2)}{t}\right).
$$

Since the 1980s, gradient estimates for heat kernels and their connections with functional inequalities have been extensively studied in smooth structures satisfying Gaussian heat kernel bounds:

$$
p_t(x,y) \simeq \frac{C}{\text{Vol}(B(x,\sqrt{t}))} \exp\left(-c\frac{d(x,y^2)}{t}\right).
$$

For instance, on Riemannian manifolds with non-negative Ricci curvature

▶ Pointwise gradient bound for the heat kernel

$$
|\nabla_x p_t(x,y)| \leq \frac{C}{\sqrt{t} \text{Vol}(B(y,\sqrt{t}))} \exp\left(-c\frac{d(x,y^2)}{t}\right).
$$

 \blacktriangleright L^p ($p \ge 1$) Poincaré inequality

$$
\int_{B(x,r)}|f-f_{B(x,r)}|^p d\mu \leq Cr^p \int_{B(x,r)}|\nabla f|^p d\mu.
$$

Since the 1980s, gradient estimates for heat kernels and their connections with functional inequalities have been extensively studied in smooth structures satisfying Gaussian heat kernel bounds:

$$
p_t(x,y) \simeq \frac{C}{\text{Vol}(B(x,\sqrt{t}))} \exp\left(-c\frac{d(x,y^2)}{t}\right).
$$

For instance, on Riemannian manifolds with non-negative Ricci curvature

▶ Pointwise gradient bound for the heat kernel

$$
|\nabla_x p_t(x,y)| \leq \frac{C}{\sqrt{t} \text{Vol}(B(y,\sqrt{t}))} \exp\left(-c\frac{d(x,y^2)}{t}\right).
$$

 \blacktriangleright L^p ($p \ge 1$) Poincaré inequality

$$
\int_{B(x,r)}|f-f_{B(x,r)}|^p d\mu \leq Cr^p \int_{B(x,r)}|\nabla f|^p d\mu.
$$

A. Grigor'yan, L. Saloff-Coste, K.-T. Sturm: Gaussian bounds are equivalent to the volume doubling property and L^2 -Poincaré inequality. $\hspace{1cm} 1$

$$
\|\nabla f\|_{p} \simeq \|\sqrt{\Delta} f\|_{p},\tag{E_p}
$$

$$
\|\nabla f\|_{p} \simeq \|\sqrt{\Delta} f\|_{p},\tag{E_p}
$$

Such relation is also known as the L^p boundedness of the Riesz transform $\nabla\Delta^{-1/2}$ and the reverse Riesz transform, denoted by (R_p) and (RR_p) .

$$
\|\nabla f\|_{p} \simeq \|\sqrt{\Delta} f\|_{p},\tag{E_p}
$$

Such relation is also known as the L^p boundedness of the Riesz transform $\nabla\Delta^{-1/2}$ and the reverse Riesz transform, denoted by (R_p) and (RR_p) .

On Euclidean spaces, the Riesz transform is a Calderón-Zygmund type singular integral. From the viewpoint in operator theory,

$$
\nabla \Delta^{-1/2} f = C \int_0^\infty \sqrt{t} \nabla e^{-t\Delta} f \frac{dt}{t}.
$$

$$
\|\nabla f\|_{p} \simeq \|\sqrt{\Delta} f\|_{p},\tag{E_p}
$$

Such relation is also known as the L^p boundedness of the Riesz transform $\nabla\Delta^{-1/2}$ and the reverse Riesz transform, denoted by (R_p) and (RR_p) .

On Euclidean spaces, the Riesz transform is a Calderón-Zygmund type singular integral. From the viewpoint in operator theory,

$$
\nabla \Delta^{-1/2} f = C \int_0^\infty \sqrt{t} \nabla e^{-t\Delta} f \frac{dt}{t}.
$$

Study of Riesz transforms in smooth settings: D. Barkry 1987, Coulhon-Duong 1999, Auscher-Coulhon-Duong-Hofmann 2004, Coulhon-Jiang-Koskela-Sikora 2020, etc.

In this talk, our main goal is to understand heat kernel "gradient" bounds, Sobolev spaces, Poincaré inequalities and the Riesz transform on the Vicsek set.

Figure 1: Vicsek set

In this talk, our main goal is to understand heat kernel "gradient" bounds, Sobolev spaces, Poincaré inequalities and the Riesz transform on the Vicsek set.

Figure 1: Vicsek set

The Vicsek set has both fractal and tree structure. Whereas neither analogue of curvature nor obvious differential structure exist.

Chen-Coulhon-Feneuil-Russ 2017.

On the Vicsek manifold or graph, (R_p) holds if and only if $1 < p \le 2$, (RR_p) holds if and only if $2 \leq p < \infty$.

Figure 2: Vicsek manifold Figure 3: Vicsek cable system

Chen-Coulhon-Feneuil-Russ 2017.

On the Vicsek manifold or graph, (R_p) holds if and only if $1 < p \le 2$, (RR_p) holds if and only if $2 \le p \le \infty$.

Figure 2: Vicsek manifold Figure 3: Vicsek cable system

Devyver-Russ-Yang 2022, Devyver-Russ 2024.

For the Vicsek cable system, the reverse quasi Riesz inequality $\|\Delta^{\gamma}e^{-\Delta}f\|_p\lesssim \|\|\nabla f\|\|_p$ holds whenever $\gamma\in [1/2,1)$ and $p>p^*$, and is false whenever $\gamma \in (0,1)$ and $p < p^*$.

▶ Early 1980s, mathematical physicists studied "diffusion on fractals" (random walks on fractal graphs)

- ▶ Early 1980s, mathematical physicists studied "diffusion on fractals" (random walks on fractal graphs)
- \blacktriangleright Late 1980s, diffusions on true fractals like the Sierpinski gasket. (S. Goldstein, S. Kusuoka, M. Barlow-E. Perkins, J. Kigami)
- ▶ Early 1980s, mathematical physicists studied "diffusion on fractals" (random walks on fractal graphs)
- \triangleright Late 1980s, diffusions on true fractals like the Sierpinski gasket. (S. Goldstein, S. Kusuoka, M. Barlow-E. Perkins, J. Kigami)
- ▶ From 1990s, detailed information about solutions of the heat equation on regular fractals (e.g., Sierpiński gasket/carpet) and related analysis. (M. Barlow, R. Bass, A. Grigor'yan, W. Hebisch, J. Kigami, N. Kajino, Janna Lierl, T. Kumagai, M. Murugan, L. Saloff-Coste, R. Strichartz, A. Teplyaev et al)

Let ${q_i}_{1 \leq i \leq 5}$ be the center and 4 corners of a unit square. Define $\psi_i(z) = \frac{1}{3}(z - q_i) + q_i, \quad 1 \leq i \leq 5.$

Let ${q_i}_{1 \leq i \leq 5}$ be the center and 4 corners of a unit square. Define $\psi_i(z) = \frac{1}{3}(z - q_i) + q_i, \quad 1 \leq i \leq 5.$

Definition

The Vicsek set is the unique non-empty compact set such that

$$
K=\bigcup_{i=1}^5\psi_i(K)=:\Psi(K).
$$

Let ${q_i}_{1 \leq i \leq 5}$ be the center and 4 corners of a unit square. Define $\psi_i(z) = \frac{1}{3}(z - q_i) + q_i, \quad 1 \leq i \leq 5.$

Definition

The Vicsek set is the unique non-empty compact set such that

$$
K=\bigcup_{i=1}^5\psi_i(K)=:\Psi(K).
$$

▶ The compact Vicsek set can be blown up to unbounded Vicsek sets. If $\phi_1(x) = x/3$, then $X = \bigcup_{n=1}^{\infty} 3^n K$.

Let ${q_i}_{1 \leq i \leq 5}$ be the center and 4 corners of a unit square. Define $\psi_i(z) = \frac{1}{3}(z - q_i) + q_i, \quad 1 \leq i \leq 5.$

Definition

The Vicsek set is the unique non-empty compact set such that

$$
K=\bigcup_{i=1}^5\psi_i(K)=:\Psi(K).
$$

- ▶ The compact Vicsek set can be blown up to unbounded Vicsek sets. If $\phi_1(x) = x/3$, then $X = \bigcup_{n=1}^{\infty} 3^n K$.
- ▶ The Vicsek set has both the fractal and tree structure, which makes the analysis more accessible and would open the door to study more general trees and fractals.

Vicsek metric graphs (or cable systems)

$$
W_0 = \{q_i\}_{1 \leq i \leq 5} \text{ and } W_{n+1} = \Psi(W_n), n \geq 1
$$

 \bar{W}_n : the cable system with vertices W_n and edges of length 3⁻ⁿ.

Vicsek metric graphs (or cable systems)

$$
W_0 = \{q_i\}_{1 \leq i \leq 5} \text{ and } W_{n+1} = \Psi(W_n), n \geq 1
$$

 \bar{W}_n : the cable system with vertices W_n and edges of length 3⁻ⁿ.

Vicsek metric graphs (or cable systems)

$$
W_0 = \{q_i\}_{1 \le i \le 5} \text{ and } W_{n+1} = \Psi(W_n), n \ge 1
$$

$$
\bar{W}_n:
$$
 the cable system with vertices W_n and edges of length 3^{-n} .
Vicsek metric graphs: $\bar{V}_n = \bigcup_{m \ge 1} 3^{m-n} \bar{W}_m$, with vertices $V_n = \bigcup_{m \ge 1} 3^{m-n} W_m$.

Skeleton of X: $S = \left\{\right.\right.\left.\right. \int \bar{V}_n$, dense in X. $n>0$

Reference measure ν on S: Length measure, σ -finite.

Figure 4: Parts of Vicsek metric graphs \bar{V}_0 , \bar{V}_1 , \bar{V}_2

- μ : Hausdorff measure; d: Euclidean distance.
- ∆: Kigami Laplacian; $p_t(x, y)$: the associated heat kernel.

- μ : Hausdorff measure; d: Euclidean distance.
- ∆: Kigami Laplacian; $p_t(x, y)$: the associated heat kernel.
	- ▶ Ahlfors regularity:

 $\mu(B(x,r)) \simeq r^{d_h},$

where $d_h = \frac{\log 5}{\log 3}$ is the Hausdorff dimension.

- μ : Hausdorff measure; d: Euclidean distance.
- ∆: Kigami Laplacian; $p_t(x, y)$: the associated heat kernel.
	- ▶ Ahlfors regularity:

$$
\mu(B(x,r))\simeq r^{d_h},
$$

where $d_h = \frac{\log 5}{\log 3}$ is the Hausdorff dimension.

▶ Sub-Gaussian heat kernel estimate:

$$
p_t(x,y) \simeq Ct^{-\frac{d_h}{d_w}} \exp\left(-c\left(\frac{d(x,y)^{d_w}}{t}\right)^{\frac{1}{d_w-1}}\right),
$$

where $d_w = \frac{\log 15}{\log 3} = d_h + 1$ is the walk dimension.

- μ : Hausdorff measure; d: Euclidean distance.
- ∆: Kigami Laplacian; $p_t(x, y)$: the associated heat kernel.
	- ▶ Ahlfors regularity:

$$
\mu(B(x,r))\simeq r^{d_h},
$$

where $d_h = \frac{\log 5}{\log 3}$ is the Hausdorff dimension.

▶ Sub-Gaussian heat kernel estimate:

$$
p_t(x,y) \simeq Ct^{-\frac{d_h}{d_w}} \exp\left(-c\left(\frac{d(x,y)^{d_w}}{t}\right)^{\frac{1}{d_w-1}}\right),
$$

where $d_w = \frac{\log 15}{\log 3} = d_h + 1$ is the walk dimension.

 \blacktriangleright L²-Poincaré inequality PI(d_w):

$$
\int_{B(x,r)}|u-u_{B(x,r)}|^2\,d\mu\leq Cr^{d_w}\int_{B(x,r)}d\Gamma(u,u).
$$

To understand the L^p energy measure and Sobolev spaces on fractals, one may adapt concepts of Sobolev spaces on metric measure spaces such as

- Korevaar-Schoen spaces (1993);
- Hajłasz–Sobolev spaces (1996);
- Poincaré-Sobolev spaces (Hajłasz-Koskela 2000).

See e.g. the work of J.X. Hu 2003, Pietruska-Pałuba and Stós 2013.

To understand the L^p energy measure and Sobolev spaces on fractals, one may adapt concepts of Sobolev spaces on metric measure spaces such as

- Korevaar-Schoen spaces (1993);
- Hajłasz–Sobolev spaces (1996);
- Poincaré-Sobolev spaces (Hajłasz-Koskela 2000).

See e.g. the work of J.X. Hu 2003, Pietruska-Pałuba and Stós 2013. In recent years, other perspectives have been taken through

- Heat kernel based Besov spaces (Alonso-Ruiz-Baudoin-C.-Rogers-Shanmugalingan-Teplyaev 2020, 2021);
- Approximation by discrete p-energies (Herman-Peirone-Strichartz 2004; after 2020: Kigami, Murugan-Shimizu, Cao-Qiu, Kajino-Shimizu).

For any $p > 1$ and $\alpha > 0$, define

$$
E_{p,\alpha}(f,r):=\frac{1}{r^{\alpha}}\left(\int_X\int_{B(x,r)}\frac{|f(y)-f(x)|^p}{\mu(B(x,r))}d\mu(y)d\mu(x)\right)^{\frac{1}{p}}.
$$

For any $p > 1$ and $\alpha > 0$, define

$$
E_{p,\alpha}(f,r):=\frac{1}{r^{\alpha}}\left(\int_X\int_{B(x,r)}\frac{|f(y)-f(x)|^p}{\mu(B(x,r))}d\mu(y)d\mu(x)\right)^{\frac{1}{p}}.
$$

Korevaar-Schoen-Sobolev space: let $\alpha = 1 + \frac{d_h-1}{\rho}$,

$$
\mathsf{KS}^{1,p}(X)=\big\{f\in\mathsf{L}^p(X,\mu):\limsup_{r\to 0^+}E_{p,\alpha}(f,r)<+\infty\big\}.
$$

Korevaar-Schoen semi-norm: $||f||_{\mathcal{KS}^{1,p}(X)} = \limsup_{r \to 0^+} E_{p,\alpha}(f,r).$

Discrete energies on Vicsek graphs

$$
\mathcal{E}_{A,p}^n(f):=\frac{1}{2}3^{(p-1)n}\sum_{x,y\in V_n\cap A,x\sim y}|f(x)-f(y)|^p,\quad 1\leq p<\infty.
$$

Discrete energies on Vicsek graphs

$$
\mathcal{E}_{A,p}^n(f):=\frac{1}{2}3^{(p-1)n}\sum_{x,y\in V_n\cap A,x\sim y}|f(x)-f(y)|^p,\quad 1\leq p<\infty.
$$

p-energy via approximation:

$$
\mathcal{E}_{A,p}(f):=\lim_{m\to\infty}\mathcal{E}_{A,p}^m(f).
$$

Sobolev space via p -energy:

$$
\mathcal{F}_p(X)=\left\{f\in C(X): \sup_{n\geq 0}\mathcal{E}_p^n(f)<+\infty\right\}.
$$

Seminorm: $||f||_{\mathcal{F}_p(X)} = \mathcal{E}_p(f)^{1/p}$.

For any $n \geq 0$, let $e(u, v)$ be the edge of neighboring vertices $u, v \in V_n$.

Weak gradient of $f \in \mathsf{C}(X)$: $\partial f \in \mathsf{L}_{\operatorname{loc}}^1(\mathcal{S},\nu)$ such that

$$
f(v) - f(u) = \int_{e(u,v)} \partial f \, d\nu.
$$

Sobolev spaces via weak gradient:

 $W^{1,p}(X) = \left\{ f \in C(X) : ||\partial f||_{L^p(S,\nu)} < +\infty \right\}.$

Theorem (Baudoin-C. 2022)

Let $1 < p < +\infty$. For $f \in C(X)$ the following are equivalent:

- $\bullet\;\; f\in {\mathcal K}$ S $^{1,p}(X);$
- $f \in \mathcal{F}_n(X)$;
- $f \in W^{1,p}(X)$.

Moreover, one has $||f||_{\mathcal{K}S^{1,p}(X)} \simeq ||\partial f||_{L^p(\mathcal{S},\nu)} \simeq ||f||_{\mathcal{F}_p(X)}$.

Ideas for the proof

Figure 5: Parts of Vicsek graphes \bar{V}_0 , \bar{V}_1 , \bar{V}_2

n-piecewise affine functions: linear between the vertices of \bar{V}_n and constant on any connected component of $\bar V_m \setminus \bar V_n$ for every $m>n$.

► Let $\Phi: X \to \mathbb{R}$ be *n*-piecewise affine. Then $\mathcal{E}_{p}^{n}(\Phi) = \mathcal{E}_{p}^{m}(\Phi)$, $\forall m \ge n$.

Ideas for the proof

Figure 5: Parts of Vicsek graphes V_0 , V_1 , V_2

n-piecewise affine functions: linear between the vertices of \bar{V}_n and constant on any connected component of $\bar V_m \setminus \bar V_n$ for every $m>n$.

- ► Let $\Phi: X \to \mathbb{R}$ be *n*-piecewise affine. Then $\mathcal{E}_{p}^{n}(\Phi) = \mathcal{E}_{p}^{m}(\Phi)$, $\forall m \ge n$.
- ▶ Any $f \in C(X)$ can be approximated by a sequence of *n*-piecewise affine functions $\{H_nf\}_n$ which coincide with f on V_n .

Ideas for the proof

Figure 5: Parts of Vicsek graphes \bar{V}_0 , \bar{V}_1 , \bar{V}_2

n-piecewise affine functions: linear between the vertices of \bar{V}_n and constant on any connected component of $\bar V_m \setminus \bar V_n$ for every $m>n$.

- ► Let $\Phi: X \to \mathbb{R}$ be *n*-piecewise affine. Then $\mathcal{E}_{p}^{n}(\Phi) = \mathcal{E}_{p}^{m}(\Phi)$, $\forall m \ge n$.
- ▶ Any $f \in C(X)$ can be approximated by a sequence of *n*-piecewise affine functions $\{H_nf\}_n$ which coincide with f on V_n .
- ▶ The set of compactly supported piecewise affine functions is the core of Dirichlet form $(\mathcal{E}, W^{1,2}(X))$.

Another key ingredient in the proof is the Morrey type estimate. That is, for a closed connected set A,

 $|f(x) - f(y)|^p \le d(x, y)^{p-1} \mathcal{E}_{A,p}(f), \quad x, y \in A.$

Another key ingredient in the proof is the Morrey type estimate. That is, for a closed connected set A,

$$
|f(x)-f(y)|^p\leq d(x,y)^{p-1}\mathcal{E}_{A,p}(f),\quad x,y\in A.
$$

As a consequence, we easily obtain the L^p -Poincaré inequality: for any $f \in \mathcal{F}_p$ there holds

$$
\int_{B(x_0,r)}\left|f(x)-\int_{B(x_0,r)}fd\mu\right|^pd\mu(x)\leq Cr^{p-1+d_h}\mathcal{E}_{B(x_0,r),p}(f).
$$

Gradient estimates for the heat kernel

Theorem (Baudoin-C. 2023)

► Pointwise gradient bound: for every $t > 0$, $y \in X$ and ν a.e. $x \in S$

$$
|\partial_x p_t(x,y)| \leq \frac{C}{t^{1/d_w}} p_{ct}(x,y).
$$

 \blacktriangleright $L^p(X, \mu) \to W^{1,q}(\mathcal{S}, \nu)$ continuity of P_t : for $1 \leq p \leq q \leq \infty$

$$
\|\partial P_t f\|_{L^q(\mathcal{S},\nu)} \leq \frac{C}{t^{(1-\frac{1}{p}-\frac{1}{q})\frac{1}{d_w}+\frac{1}{p}}}\|f\|_{L^p(X,\mu)}.
$$

Gradient estimates for the heat kernel

Theorem (Baudoin-C. 2023)

► Pointwise gradient bound: for every $t > 0$, $y \in X$ and ν a.e. $x \in S$

$$
|\partial_x p_t(x,y)| \leq \frac{C}{t^{1/d_w}} p_{ct}(x,y).
$$

 \blacktriangleright $L^p(X, \mu) \to W^{1,q}(\mathcal{S}, \nu)$ continuity of P_t : for $1 \leq p \leq q \leq \infty$

$$
\|\partial P_t f\|_{L^q(S,\nu)} \leq \frac{C}{t^{(1-\frac{1}{p}-\frac{1}{q})\frac{1}{d_w}+\frac{1}{p}}}\|f\|_{L^p(X,\mu)}.
$$

In particular, $P_t:L^p(X,\mu)\to W^{1,p}(\mathcal{S},\nu)$ is bounded for $p\geq 1$ with

$$
\|\partial P_t f\|_{L^p({\mathcal S}, \nu)} \leq \frac{C}{t^{\alpha_p}} \|f\|_{L^p(X,\mu)}, \quad \text{ with } \alpha_p = \big(1-\frac{2}{p}\big)\frac{1}{d_w} + \frac{1}{p}.
$$

Follow the approach of M. Barlow 1995 through probabilistic potential theory, then for the resolvent kernel $g_{\lambda}(x, y) = \int_0^{\infty} e^{-\lambda t} p_t(x, y) dt$,

$$
|g_{\lambda}(z,x)-g_{\lambda}(z,y)|\leq C\lambda^{1-\frac{d_h}{d_w}}\frac{d(x,y)}{t^{1/d_w}}(g_{\lambda}(z,x)+g_{\lambda}(z,y)).
$$

Follow the approach of M. Barlow 1995 through probabilistic potential theory, then for the resolvent kernel $g_{\lambda}(x, y) = \int_0^{\infty} e^{-\lambda t} p_t(x, y) dt$,

$$
|g_{\lambda}(z,x)-g_{\lambda}(z,y)|\leq C\lambda^{1-\frac{d_h}{d_w}}\frac{d(x,y)}{t^{1/d_w}}(g_{\lambda}(z,x)+g_{\lambda}(z,y)).
$$

Together with semigroup properties and sub-Gaussian bounds, it implies

$$
|p_t(z,x) - p_t(z,y)| \leq C \frac{d(x,y)}{t^{1/d_w}} (p_{ct}(z,x) + p_{ct}(z,y))
$$

and therefore the gradient estimate.

Follow the approach of M. Barlow 1995 through probabilistic potential theory, then for the resolvent kernel $g_{\lambda}(x, y) = \int_0^{\infty} e^{-\lambda t} p_t(x, y) dt$,

$$
|g_{\lambda}(z,x)-g_{\lambda}(z,y)|\leq C\lambda^{1-\frac{d_h}{d_w}}\frac{d(x,y)}{t^{1/d_w}}(g_{\lambda}(z,x)+g_{\lambda}(z,y)).
$$

Together with semigroup properties and sub-Gaussian bounds, it implies

$$
|p_t(z,x) - p_t(z,y)| \leq C \frac{d(x,y)}{t^{1/d_w}} (p_{ct}(z,x) + p_{ct}(z,y))
$$

and therefore the gradient estimate.

J. Gao and M. Yang 2024: alternative analytical approach for the Hölder/ Lipschitz regularity of heat kernels on general metric measure spaces, among many other interesting results.

From gradient bound to $L^p(\mu) \to W^{1,q}(\nu)$ continuity of P_t

To obtain the $L^p(\mu)\to W^{1,q}(\nu)$ continuity of P_t , it suffices to prove

$$
\int_{S} |\partial_{y} p_{t}(x, y)| d\nu(y) \leq \frac{C}{t^{1-1/d_{w}}}.
$$

To obtain the $L^p(\mu)\to W^{1,q}(\nu)$ continuity of P_t , it suffices to prove

$$
\int_{S} |\partial_{y} p_{t}(x, y)| d\nu(y) \leq \frac{C}{t^{1-1/d_{w}}}.
$$

The idea is to introduce a co-differential operator $\partial^*: L^2(\mathcal{S},\nu) \rightarrow L^2(X,\mu)$ as the L^2 adjoint of ∂ so

dom $\Delta = \{u \in \text{dom }\mathcal{E} : \partial u \in \text{dom }\partial^*\}, \quad \Delta u = \partial^* \partial u.$

To obtain the $L^p(\mu)\to W^{1,q}(\nu)$ continuity of P_t , it suffices to prove

$$
\int_{S} |\partial_{y} p_{t}(x, y)| d\nu(y) \leq \frac{C}{t^{1-1/d_{w}}}.
$$

The idea is to introduce a co-differential operator $\partial^*: L^2(\mathcal{S},\nu) \rightarrow L^2(X,\mu)$ as the L^2 adjoint of ∂ so

$$
\operatorname{dom} \Delta = \{ u \in \operatorname{dom} \mathcal{E} : \partial u \in \operatorname{dom} \partial^* \}, \quad \Delta u = \partial^* \partial u.
$$

Thanks to the existence of nice cutoff functions on the Vicsek set, we have

$$
\int_{S} |\eta| d\nu \leq \int_{X} d(x_0, x) |\partial^* \eta|(x) d\mu(x).
$$

Recall that $\alpha_p = (1 - \frac{2}{p})\frac{1}{d_w} + \frac{1}{p}$.

 L^p pseudo-Poincaré inequality for P_t : for $p\geq 1$

$$
||f - P_t f||_{L^p(X,\mu)} \leq Ct^{\alpha_p} ||\partial f||_{L^p(\mathcal{S},\nu)}.
$$

Recall that $\alpha_p = (1 - \frac{2}{p})\frac{1}{d_w} + \frac{1}{p}$.

 L^p pseudo-Poincaré inequality for P_t : for $p\geq 1$

$$
||f - P_t f||_{L^p(X,\mu)} \leq Ct^{\alpha_p} ||\partial f||_{L^p(\mathcal{S},\nu)}.
$$

The Sobolev norm behaves nicely under cutoffs:

- $\int_{\mathcal{S}} |\partial((f-t)_+ \wedge s)|^p d\nu \leq \int_{\mathcal{S}} |\partial f|^p d\nu;$
- \bullet \sum k∈Z $\int_{\mathcal{S}} |\partial((f - \rho^k)_+ \wedge \rho^k(\rho - 1))|^p d\nu \leq \int_{\mathcal{S}} |\partial f|^p d\nu.$

Recall that $\alpha_p = (1 - \frac{2}{p})\frac{1}{d_w} + \frac{1}{p}$.

 L^p pseudo-Poincaré inequality for P_t : for $p\geq 1$

$$
||f - P_t f||_{L^p(X,\mu)} \leq Ct^{\alpha_p} ||\partial f||_{L^p(\mathcal{S},\nu)}.
$$

The Sobolev norm behaves nicely under cutoffs:

•
$$
\int_{\mathcal{S}} |\partial((f-t)_+ \wedge s)|^p d\nu \leq \int_{\mathcal{S}} |\partial f|^p d\nu;
$$

•
$$
\sum_{k\in\mathbb{Z}}\int_{\mathcal{S}}|\partial((f-\rho^k)_+\wedge\rho^k(\rho-1))|^{p}d\nu\leq\int_{\mathcal{S}}|\partial f|^{p}d\nu.
$$

Hence one can apply the general theory developed by Bakry-Coulhon-Ledoux-Saloff-Coste 1995 to obtain

Recall that $\alpha_p = (1 - \frac{2}{p})\frac{1}{d_w} + \frac{1}{p}$.

 L^p pseudo-Poincaré inequality for P_t : for $p\geq 1$

$$
||f - P_t f||_{L^p(X,\mu)} \leq Ct^{\alpha_p} ||\partial f||_{L^p(\mathcal{S},\nu)}.
$$

The Sobolev norm behaves nicely under cutoffs:

•
$$
\int_{\mathcal{S}} |\partial((f-t)_{+} \wedge s)|^{p} d\nu \leq \int_{\mathcal{S}} |\partial f|^{p} d\nu;
$$

•
$$
\sum_{k\in\mathbb{Z}}\int_{\mathcal{S}}|\partial((f-\rho^k)_+\wedge\rho^k(\rho-1))|^p d\nu\leq \int_{\mathcal{S}}|\partial f|^p d\nu.
$$

Hence one can apply the general theory developed by Bakry-Coulhon-Ledoux-Saloff-Coste 1995 to obtain

Nash inequality: for $p > 1$ and $\theta = \frac{(p-1)d_h}{p-1+nd}$ $p-1+p$ dh

$$
||f||_{L^p(X,\mu)} \leq C ||\partial f||_{L^p(\mathcal{S},\nu)}^{\theta} ||f||_{L^1(X,\mu)}^{1-\theta}.
$$

Recall that $\alpha_p = (1 - \frac{2}{p})\frac{1}{d_w} + \frac{1}{p}$.

For
$$
p \ge 1
$$
, $0 < s < \alpha_p$
\n
$$
\|\Delta^s f\|_{L^p(X,\mu)} \le C \|f\|_{L^p(X,\mu)}^{1-\frac{s}{\alpha_p}} \|\partial f\|_{L^p(\mathcal{S},\nu)}^{\frac{s}{\alpha_p}}.
$$
\nFor $p \ge 1$, $s > \alpha_p$
\n
$$
\|\partial f\|_{L^p(\mathcal{S},\nu)} \le C \|f\|_{L^p(\chi,\mu)}^{1-\frac{\alpha_p}{s}} \|\Delta^s f\|_{L^p(X,\mu)}^{\frac{\alpha_p}{s}}.
$$

Recall that $\alpha_p = (1 - \frac{2}{p})\frac{1}{d_w} + \frac{1}{p}$.

For
$$
p \ge 1
$$
, $0 < s < \alpha_p$
\n
$$
\|\Delta^s f\|_{L^p(X,\mu)} \le C \|f\|_{L^p(X,\mu)}^{1-\frac{s}{\alpha_p}} \|\partial f\|_{L^p(S,\nu)}^{\frac{s}{\alpha_p}}.
$$
\nFor $p \ge 1$, $s > \alpha_p$
\n
$$
\|\partial f\|_{L^p(S,\nu)} \le C \|f\|_{L^p(X,\mu)}^{1-\frac{\alpha_p}{s}} \|\Delta^s f\|_{L^p(X,\mu)}^{\frac{\alpha_p}{s}}.
$$

Combining the above two inequalities, it is natural to conjecture

Conjecture (Boundedness of the Riesz transform)

$$
c||\partial f||_{L^p(\mathcal{S},\nu)} \leq ||\Delta^{\alpha_p} f||_{L^p(X,\mu)} \leq C||\partial f||_{L^p(\mathcal{S},\nu)}.
$$

Thank you for your attention !