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Motivation from smooth settings

Since the 1980s, gradient estimates for heat kernels and their connections

with functional inequalities have been extensively studied in smooth

structures satisfying Gaussian heat kernel bounds:

pt(x , y) ≃ C

Vol(B(x ,
√
t))

exp

(
−c

d(x , y2)

t

)
.

For instance, on Riemannian manifolds with non-negative Ricci curvature

▶ Pointwise gradient bound for the heat kernel

|∇xpt(x , y)| ≤ C√
tVol(B(y ,

√
t))

exp

(
−c

d(x , y2)

t

)
.

▶ Lp (p ≥ 1) Poincaré inequality∫
B(x,r)

|f − fB(x,r)|pdµ ≤ Crp
∫
B(x,r)

|∇f |pdµ.

A. Grigor’yan, L. Saloff-Coste, K.-T. Sturm: Gaussian bounds are

equivalent to the volume doubling property and L2-Poincaré inequality.
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Motivation from smooth settings

Among many applications, gradient estimates for heat kernels and

Poincaré inequalities play an important role in the comparison

∥ |∇f | ∥p ≃ ∥
√

∆f ∥p, (Ep)

Such relation is also known as the Lp boundedness of the Riesz transform

∇∆−1/2 and the reverse Riesz transform, denoted by (Rp) and (RRp).

On Euclidean spaces, the Riesz transform is a Calderón-Zygmund type

singular integral. From the viewpoint in operator theory,

∇∆−1/2f = C

∫ ∞

0

√
t∇e−t∆f

dt

t
.

Study of Riesz transforms in smooth settings: D. Barkry 1987,

Coulhon-Duong 1999, Auscher-Coulhon-Duong-Hofmann 2004,

Coulhon-Jiang-Koskela-Sikora 2020, etc.
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Our goal

In this talk, our main goal is to understand heat kernel “gradient”

bounds, Sobolev spaces, Poincaré inequalities and the Riesz transform on

the Vicsek set.

Figure 1: Vicsek set

The Vicsek set has both fractal and tree structure. Whereas neither

analogue of curvature nor obvious differential structure exist.
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Some relevant results

Chen-Coulhon-Feneuil-Russ 2017.

On the Vicsek manifold or graph, (Rp) holds if and only if 1 < p ≤ 2,

(RRp) holds if and only if 2 ≤ p <∞.

 

Figure 2: Vicsek manifold Figure 3: Vicsek cable system

Devyver-Russ-Yang 2022, Devyver-Russ 2024.

For the Vicsek cable system, the reverse quasi Riesz inequality

∥∆γe−∆f ∥p ≲ ∥ |∇f | ∥p holds whenever γ ∈ [1/2, 1) and p > p∗, and is

false whenever γ ∈ (0, 1) and p < p∗.
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Study of diffusions on fractals

▶ Early 1980s, mathematical physicists studied “diffusion on fractals”

(random walks on fractal graphs)

▶ Late 1980s, diffusions on true fractals like the Sierpiński gasket. (S.

Goldstein, S. Kusuoka, M. Barlow-E. Perkins, J. Kigami)

▶ From 1990s, detailed information about solutions of the heat equa-

tion on regular fractals (e.g., Sierpiński gasket/carpet) and related

analysis. (M. Barlow, R. Bass, A. Grigor’yan, W. Hebisch, J. Kigami,

N. Kajino, Janna Lierl, T. Kumagai, M. Murugan, L. Saloff-Coste, R.

Strichartz, A. Teplyaev et al)
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Vicsek set

Let {qi}1≤i≤5 be the center and 4 corners of a unit square. Define

ψi (z) =
1

3
(z − qi ) + qi , 1 ≤ i ≤ 5.

Definition

The Vicsek set is the unique non-empty compact set such that

K =
5⋃

i=1

ψi (K ) =: Ψ(K ).

▶ The compact Vicsek set can be blown up to unbounded Vicsek sets.

If ϕ1(x) = x/3, then X =
⋃∞

n=1 3nK .
▶ The Vicsek set has both the fractal and tree structure, which makes

the analysis more accessible and would open the door to study more

general trees and fractals.
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Vicsek metric graphs (or cable systems)

W0 = {qi}1≤i≤5 and Wn+1 = Ψ(Wn), n ≥ 1

W̄n: the cable system with vertices Wn and edges of length 3−n.

Vicsek metric graphs: V̄n =
⋃
m≥1

3m−nW̄m, with vertices Vn =
⋃
m≥1

3m−nWm.

Skeleton of X : S =
⋃
n≥0

V̄n, dense in X .

Reference measure ν on S: Length measure, σ-finite.

Figure 4: Parts of Vicsek metric graphs V̄0, V̄1, V̄2
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Volume, heat kernel and Poincaré inequality on the Vicsek set

µ: Hausdorff measure; d : Euclidean distance.

∆: Kigami Laplacian; pt(x , y): the associated heat kernel.

▶ Ahlfors regularity:

µ(B(x , r)) ≃ rdh ,

where dh = log 5
log 3 is the Hausdorff dimension.

▶ Sub-Gaussian heat kernel estimate:

pt(x , y) ≃ Ct−
dh
dw exp

(
−c

(
d(x , y)dw

t

) 1
dw−1

)
,

where dw = log 15
log 3 = dh + 1 is the walk dimension.

▶ L2-Poincaré inequality PI(dw ):∫
B(x,r)

|u − uB(x,r)|2 dµ ≤ Crdw
∫
B(x,r)

dΓ(u, u).

8
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Different perspectives towards Sobolev spaces on fractals

To understand the Lp energy measure and Sobolev spaces on fractals, one

may adapt concepts of Sobolev spaces on metric measure spaces such as

• Korevaar-Schoen spaces (1993);

• Haj lasz–Sobolev spaces (1996);

• Poincaré-Sobolev spaces (Haj lasz-Koskela 2000).

See e.g. the work of J.X. Hu 2003, Pietruska-Pa luba and Stós 2013.

In recent years, other perspectives have been taken through

• Heat kernel based Besov spaces

(Alonso-Ruiz-Baudoin-C.-Rogers-Shanmugalingan-Teplyaev 2020, 2021);

• Approximation by discrete p-energies (Herman-Peirone-Strichartz 2004;

after 2020: Kigami, Murugan-Shimizu, Cao-Qiu, Kajino-Shimizu).
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• Poincaré-Sobolev spaces (Haj lasz-Koskela 2000).

See e.g. the work of J.X. Hu 2003, Pietruska-Pa luba and Stós 2013.

In recent years, other perspectives have been taken through

• Heat kernel based Besov spaces

(Alonso-Ruiz-Baudoin-C.-Rogers-Shanmugalingan-Teplyaev 2020, 2021);

• Approximation by discrete p-energies (Herman-Peirone-Strichartz 2004;

after 2020: Kigami, Murugan-Shimizu, Cao-Qiu, Kajino-Shimizu).

9



Korevaar-Schoen-Sobolev spaces

For any p > 1 and α > 0, define

Ep,α(f , r) :=
1

rα

(∫
X

∫
B(x,r)

|f (y) − f (x)|p

µ(B(x , r))
dµ(y)dµ(x)

) 1
p

.

Korevaar-Schoen-Sobolev space: let α = 1 + dh−1
p ,

KS1,p(X ) =
{
f ∈ Lp(X , µ) : lim sup

r→0+
Ep,α(f , r) < +∞

}
.

Korevaar-Schoen semi-norm: ∥f ∥KS1,p(X ) = lim sup
r→0+

Ep,α(f , r).
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Sobolev spaces via a sequence of discrete energies

Discrete energies on Vicsek graphs

En
A,p(f ) := 1

23(p−1)n
∑

x,y∈Vn∩A,x∼y

|f (x) − f (y)|p, 1 ≤ p <∞.

p-energy via approximation:

EA,p(f ) := lim
m→∞

Em
A,p(f ).

Sobolev space via p-energy:

Fp(X ) =

{
f ∈ C (X ) : sup

n≥0
En
p (f ) < +∞

}
.

Seminorm: ∥f ∥Fp(X ) = Ep(f )1/p.
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Sobolev spaces via weak gradients

For any n ≥ 0, let e(u, v) be the edge of neighboring vertices u, v ∈ Vn.

Weak gradient of f ∈ C (X ): ∂f ∈ L1loc(S, ν) such that

f (v) − f (u) =

∫
e(u,v)

∂f dν.

Sobolev spaces via weak gradient:

W 1,p(X ) =
{
f ∈ C (X ) : ∥∂f ∥Lp(S,ν) < +∞

}
.

12



Equivalence of different Sobolev characterizations

Theorem (Baudoin-C. 2022)

Let 1 < p < +∞. For f ∈ C (X ) the following are equivalent:

• f ∈ KS1,p(X );

• f ∈ Fp(X );

• f ∈ W 1,p(X ).

Moreover, one has ∥f ∥KS1,p(X ) ≃ ∥∂f ∥Lp(S,ν) ≃ ∥f ∥Fp(X ).

13



Ideas for the proof

Figure 5: Parts of Vicsek graphes V̄0, V̄1, V̄2

n-piecewise affine functions: linear between the vertices of V̄n and

constant on any connected component of V̄m \ V̄n for every m > n.

▶ Let Φ : X → R be n-piecewise affine. Then En
p (Φ) = Em

p (Φ), ∀m ≥ n.

▶ Any f ∈ C (X ) can be approximated by a sequence of n-piecewise

affine functions {Hnf }n which coincide with f on Vn.

▶ The set of compactly supported piecewise affine functions is the core

of Dirichlet form (E ,W 1,2(X )).

14
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Morrey type estimates and Poincaré inequalities

Another key ingredient in the proof is the Morrey type estimate. That is,

for a closed connected set A,

|f (x) − f (y)|p ≤ d(x , y)p−1EA,p(f ), x , y ∈ A.

As a consequence, we easily obtain the Lp-Poincaré inequality: for any

f ∈ Fp there holds∫
B(x0,r)

∣∣∣f (x) −−
∫
B(x0,r)

fdµ
∣∣∣pdµ(x) ≤ Crp−1+dhEB(x0,r),p(f ).

15



Morrey type estimates and Poincaré inequalities
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Gradient estimates for the heat kernel

Theorem (Baudoin-C. 2023)

▶ Pointwise gradient bound: for every t > 0, y ∈ X and ν a.e. x ∈ S

|∂xpt(x , y)| ≤ C

t1/dw
pct(x , y).

▶ Lp(X , µ) → W 1,q(S, ν) continuity of Pt : for 1 ≤ p ≤ q ≤ ∞

∥∂Pt f ∥Lq(S,ν) ≤
C

t(1−
1
p−

1
q )

1
dw

+ 1
p

∥f ∥Lp(X ,µ).

In particular, Pt : Lp(X , µ) → W 1,p(S, ν) is bounded for p ≥ 1 with

∥∂Pt f ∥Lp(S,ν) ≤
C

tαp
∥f ∥Lp(X ,µ), with αp =

(
1 − 2

p

) 1

dw
+

1

p
.
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From Lipschitz continuity to gradient bound

Follow the approach of M. Barlow 1995 through probabilistic potential

theory, then for the resolvent kernel gλ(x , y) =
∫∞
0

e−λtpt(x , y)dt,

|gλ(z , x) − gλ(z , y)| ≤ Cλ1−
dh
dw

d(x , y)

t1/dw
(gλ(z , x) + gλ(z , y)).

Together with semigroup properties and sub-Gaussian bounds, it implies

|pt(z , x) − pt(z , y)| ≤ C
d(x , y)

t1/dw
(pct(z , x) + pct(z , y))

and therefore the gradient estimate.

J. Gao and M. Yang 2024: alternative analytical approach for the

Hölder/ Lipschitz regularity of heat kernels on general metric measure

spaces, among many other interesting results.
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From gradient bound to Lp(µ) → W 1,q(ν) continuity of Pt

To obtain the Lp(µ) → W 1,q(ν) continuity of Pt , it suffices to prove∫
S
|∂ypt(x , y)|dν(y) ≤ C

t1−1/dw
.

The idea is to introduce a co-differential operator ∂∗ : L2(S, ν) → L2(X , µ)

as the L2 adjoint of ∂ so

dom∆ = {u ∈ dom E : ∂u ∈ dom ∂∗}, ∆u = ∂∗∂u.

Thanks to the existence of nice cutoff functions on the Vicsek set, we have∫
S
|η|dν ≤

∫
X

d(x0, x)|∂∗η|(x)dµ(x).
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Applications: Sobolev and Nash inequalities

Recall that αp = (1 − 2
p ) 1

dw
+ 1

p .

Lp pseudo-Poincaré inequality for Pt : for p ≥ 1

∥f − Pt f ∥Lp(X ,µ) ≤ Ctαp∥∂f ∥Lp(S,ν).

The Sobolev norm behaves nicely under cutoffs:

•
∫
S |∂((f − t)+ ∧ s)|pdν ≤

∫
S |∂f |pdν;

•
∑
k∈Z

∫
S |∂((f − ρk)+ ∧ ρk(ρ− 1))|pdν ≤

∫
S |∂f |pdν.

Hence one can apply the general theory developed by Bakry-Coulhon-

Ledoux-Saloff-Coste 1995 to obtain

Nash inequality: for p > 1 and θ = (p−1)dh
p−1+pdh

∥f ∥Lp(X ,µ) ≤ C∥∂f ∥θLp(S,ν)∥f ∥
1−θ
L1(X ,µ).
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Applications: Sobolev and Nash inequalities

Recall that αp = (1 − 2
p ) 1

dw
+ 1

p .

For p ≥ 1, 0 < s < αp

∥∆s f ∥Lp(X ,µ) ≤ C∥f ∥
1− s

αp

Lp(X ,µ)∥∂f ∥
s

αp

Lp(S,ν).

For p ≥ 1, s > αp

∥∂f ∥Lp(S,ν) ≤ C∥f ∥1−
αp
s

Lp(X ,µ)∥∆s f ∥
αp
s

Lp(X ,µ).

Combining the above two inequalities, it is natural to conjecture

Conjecture (Boundedness of the Riesz transform)

c∥∂f ∥Lp(S,ν) ≤ ∥∆αp f ∥Lp(X ,µ) ≤ C∥∂f ∥Lp(S,ν).
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Thank you for your attention !
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