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1.Minkowski and S-contents, extension to curvatures

For a compact set K ⊂ Rd and r > 0 the r-parallel set is given by

K(r) := {x ∈ Rd : min
y∈K
|x− y| ≤ r} ,

and for 0 ≤ D ≤ d, the D-dimensional Minkowski content of K by

MD(K) := lim
ε→0

Ld(K(ε))

εd−D
,

for 0 ≤ D < d the D-dimensional S-content (surface area based) by

SD(K) := lim
ε→0

Hd−1(∂K(ε))

(d−D)εd−1−D ,

provided positive and finite limits exist.

Average versions:

M̃D(K) := lim
δ→0

1

| ln δ|

∫ 1

δ

Ld(K(ε))

εd−D
1

ε
dε

S̃D(K) := lim
δ→0

1

| ln δ|

∫ 1

δ

Hd−1(∂K(ε))

(d−D)εd−1−D
1

ε
dε
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Ld(K(ε)) and Hd−1(∂K(ε)) are completed by the Lipschitz-Killing
curvatures Ck(K(ε)), k = 0, . . . , d− 2, under some additional conditions
of regularity of the boundary ∂K(ε).

In the smooth case the latter agree with the higher order mean curvature
integrals, in particular,
k = 0 Gauss curvature, k = d− 2 mean curvature, k = d− 3 scalar
curvature.
We denote Cd(K(ε)) := Ld(K(ε)) and Cd−1(K(ε)) := 1

2H
d−1(∂K(ε)).

For all k = 0, . . . , d and compact sets K such that K or Kc has positive
reach, there exist measure variants Ck(K, ·) with Ck(K,Rd) = Ck(K).
(By a result of Fu, 1985, in space dimensions less than 4 the condition is
fulfilled for K = K(ε) for any compact set K and Lebesgue almost all ε.)

Essential properties for our purposes: They are
I invariant under Euclidean motions,
I scaling: Ck(λK, λ(·)) = λkCk(K, ·), λ > 0,
I locally determined: Ck(K′, (·) ∩G) = Ck(K, (·) ∩G), if
K′ ∩G = K ∩G for an open set G.

(For certain classes of sets the total values Ck(K), k = 0, 1, . . . , d, form
a complete system of related invariants under Euclidean motions.)
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Question: For which classes of fractal sets K (or domains with fractal
boundaries) we can extend the notions of (average) Minkowski- and
s-contents to curvatures in the following sense?

Cfrack (K) := lim
ε→0

Ck(K(ε))

εk−D
, or

C̃frack (K) := lim
δ→0

1

| ln δ|

∫ 1

δ

Ck(K(ε))

εk−D
1

ε
dε

up to some normalizing constants.
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Survey on some related literature

I Relationships to spectral analysis, certain Zeta functions and
fractal drums
For the Minkowski content see the books of Lapidus and van
Frankenhuijsen 2006, Lapidus, Radunovic and Zubrinic 2017, and
the references therein.

I Self-similar sets
Falconer 1995 under (SSC), Gatzouras 2000 under (OSC): existence
and integral representation forMD, resp. M̃D.
Winter 2008: Cfrack for the case of polyconvex parallel sets.

Rataj and Winter 2010: for SD, resp. S̃D,MD = SD, M̃D = S̃D,
if D < d, known before: dimH = dimM = D for such sets.
Z. 2011: Cfrack for a more general case.
Rataj and Z. 2012: average fractal curvature densities.
Winter and Z. 2013, Z. 2013: fractal curvature measures.

Lapidus, Pearse and Winter 2011-2013, Winter 2015: relationships
to fractal tilings.
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I Extensions to some classes of self-conformal sets
Kombrink 2011, Bohl 2012, Kesseböhmer and Kombrink 2012,
Freiberg and Kombrink 2012.

I Stochastically self-similar sets (random recursive
constructions)
Gatzouras 2000: existence and integral representation forMD, resp.
M̃D, almost surely and in the mean sense, equality.
Z. 2011: for Cfrack , resp. C̃frack .

I Homogeneous random fractals
Hambly 1992 (special case), Troscheit 2017: dimH = dimM = D′

a.s..
Troscheit 2021/2023:MD′ , resp. M̃D′ , in the almost sure sense do
not exist.

Z. 2020: existence and integral representation for EMD, resp.
EM̃D.
Rataj, Winter and Z. 2023: extension to ECfrack , resp. EC̃frack .
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I V -variable random fractals
Z. 2023: existence and integral representation for EMD, ESD, resp.
EM̃D, ES̃D, and

EMD = ESD , EM̃D = ES̃D , if D < d.
I Domains with piecewise self-similar fractal boundaries

in preparation (joint work with A. Rozanova-Pierrat, A. Teplyaev,
and S. Winter in connection with analysis and curvatures).

Below we will present an extension of the mean value results to a large
class of self-similar random code-tree fractals with more dependencies,
which contains all former random cases mentioned above (joint work with
J. Rataj and S. Winter).
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Self-similar random code-tree fractals

Random labeled code trees
(f1, . . . , fN ) random number of random contracting similarities (RIFS)
with random contraction ratios (r1, . . . , rN ) such that
1. 0 < rmin ≤ ri ≤ rmax < 1 w.p.1, for deterministic values
rmin, rmax.

2. 1 < EN <∞ (supercritical case)
3.
⋃N
i=1 fi(O) ⊂ O and fi(O) ∩ fj(O) = ∅ , i 6= j, w.p.1,

for some fixed open set O (Uniform Open Set Condition UOSC)

Recursive random code tree construction:

Σ0 := {i : 1 ≤ i ≤ N}
Σn := {σ = σ1 . . . σn : σ1 . . . σn−1 ∈ Σn−1, 1 ≤ σn ≤ Nσ1...σn−1}
(codes at levels n) for random numbers Nσ1...σn−1 , n ≥ 1

Σ∗ :=

∞⋃
n=1

Σn (random code tree)
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RIFS’s as above are chosen as labels at the nodes σ ∈ Σ∗:

Fσ := (fσ1, . . . , fσNσ ) .

Random labeled code tree:

T := {(σ,Fσ) : σ ∈ Σ∗} .

For σ ∈ Σ∗ the subtree rooted at the node σ is given by

Tσ := {(τ,Fστ ) : στ ∈ Σ∗}

Assumption 1 (back path condition): For each i, under the condition
that i ≤ N , the labeled subtree Ti is independent of the preceding
mapping fi and has the same distribution as T .
Essential consequence: For all steps n ∈ N , under the condition that
σ = σ1 . . . σn ∈ Σn, the random labeled subtree Tσ rooted at σ is
independent of the corresponding random mappings along the path
(fσ1

, fσ1σ2
, . . . , fσ1...σn) and has the same distribution as the primary

tree T .

Martina Zähle Lipschitz-Killing curvatures for different classes of fractals



RIFS’s as above are chosen as labels at the nodes σ ∈ Σ∗:

Fσ := (fσ1, . . . , fσNσ ) .

Random labeled code tree:

T := {(σ,Fσ) : σ ∈ Σ∗} .

For σ ∈ Σ∗ the subtree rooted at the node σ is given by

Tσ := {(τ,Fστ ) : στ ∈ Σ∗}

Assumption 1 (back path condition): For each i, under the condition
that i ≤ N , the labeled subtree Ti is independent of the preceding
mapping fi and has the same distribution as T .
Essential consequence: For all steps n ∈ N , under the condition that
σ = σ1 . . . σn ∈ Σn, the random labeled subtree Tσ rooted at σ is
independent of the corresponding random mappings along the path
(fσ1

, fσ1σ2
, . . . , fσ1...σn) and has the same distribution as the primary

tree T .

Martina Zähle Lipschitz-Killing curvatures for different classes of fractals



New: Allows much more dependencies between the different paths than
in the former models.
Iteration of the random function systems along the paths of the
random tree: For n ≥ 1 and σ = σ1 . . . σn ∈ Σn denote

fσ = fσ1 ◦ fσ1σ2 ◦ · · · ◦ fσ1...σn

Associated self-similar random code-tree fractal:

F :=

∞⋂
n=1

⋃
σ∈Σn

fσ(O)

is a.s. determined

Assumption 2 (USOSC): Uniform Strong Open Set Condition for some
bounded open set O in Rd, i.e., UOSC as above for O and

P(F ∩O 6= ∅) > 0 .
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Mean Minkowski and S-contents

Let (r1, r2, . . . , rN ) be a random vector with random N having the same
distribution as the contraction ratios of the above RIFSs. Let D be
determined by

E
N∑
i=1

(ri)
D = 1 (mean dimension equation) .

Associated probability distribution of the logarithmic contraction ratios:

µ := E
( N∑
i=1

1(·)(|ln(ri)|)(ri)D
)

Corresponding mean value:

η := E
( N∑
i=1

|ln(ri)|(ri)D
)
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Denote ϕd(ε) := ELd(F (ε)). Under the above conditions we obtain the
following:

Theorem 1 [(average) mean Minkowski content]
(i) If the measure µ is non-lattice, then

lim
ε→0

ELd(F (ε))

εd−D
=

1

η

∫ 1

0

εD−dRd(ε)
1

ε
dε =: MD

F ,

where the function Rd(ε) is given by

Rd(ε) = 1(0,1](ε)ϕd(ε)− E
N∑
i=1

1(0,ri](ε) r
d
i ϕd(r

−1
i ε) .

(ii) For general µ we get for the average limit

lim
δ→0

1

|lnδ|

∫ 1

δ

ELd(F (ε)

(d−D)εd−D
1

ε
dε = MD

F .

(iii) The limit value MD
F does not vanish.
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Theorem 2 [(average) mean S-content]

Items (i) and (ii) are analogous for the surface area based version SDF .
Moreover,

SDF = MD
F for D < d .

Methods of proof: Renewal theorem from classical probability theory,
using Markov stops, conditional expectations and Assumption 1
concerning the back path property.
The formulas are structurally the same as in the former cases, since only
expectations are considered.

Remark: Barnsley, Hutchinson and Stenflo 2012: determined the almost
sure Hausdorff dimension dimHF via flow matrices for the V -variable
case, Troscheit 2017: dimHF = dimMF = DH, given by
E ln

(∑
σ∈Σneck

(rσ)DH
)

= 0.

DH is, in general, less than the above Minkowski dimension D in the
mean sense given by E

∑N
i=1(ri)

D = 1.
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Extensions to fractal Lipschitz-Killing curvatures

Choose an arbitrary constant R >
√

2|O|.
Assumption 3 (regularity of F ): w.p.1 for Lebesgue almost all r < R
the sets F (r)c have positive reach.

(Remark: It is known that, in general for a.a. r ≥ R, and in space
dimensions d ≤ 3 for a.a. r > 0 this is always fulfilled.)

Notation (Markov stop in the code space):

Σ(r) := {σ ∈ Σ∗ : Rrσ ≤ r < Rrσ||σ|−1} , 0 < r < R ,

where σ||σ| − 1 means σ1 . . . σn−1 if σ = σ1 . . . σn.
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Extensions to fractal Lipschitz-Killing curvatures
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Σ(r) := {σ ∈ Σ∗ : Rrσ ≤ r < Rrσ||σ|−1} , 0 < r < R ,

where σ||σ| − 1 means σ1 . . . σn−1 if σ = σ1 . . . σn.
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Theorem 3 [(average) mean Lipschitz-Killing curvatures]
Let k ∈ {0, 1, . . . , d} and let F be a random self-similar code tree fractal
in Rd as above with independence along back paths (Assumption 1)
satisfying the Uniform Strong Open Set Condition with basic set O ⊂ Rd
(Assumption 2). For k ≤ d− 2 we additionally suppose the following:
(i) if d ≥ 4, then F is regular ( Assumption 3),
(ii) there exists a constant ck > 0 such that w.p.1,

Cvar
k (F (r), fσ(O)(r) ∩ fτ (O)(r)) ≤ ckrk

for Lebesgue a.a. r < R and all σ, τ ∈ Σ(r) with σ 6= τ .

Set for a.a. r > 0,

Rk(r) := ECk(F (r))− E
N∑
i=1

1(0,Rri](r)Ck
(
Fi(r)

)
.

Then we get the following:
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(I) If the measure µ is non-lattice, then

lim
ε→0

εD−kECk(F (ε)) =
1

η

∫ R

0

rD−k−1Rk(r) dr .

(II) If the measure µ is lattice with constant c, then for almost all
s ∈ [0, c)

lim
n→∞

e(k−D)(s+nc)ECk
(
F (e−(s+nc))

)
=

1

η

∞∑
m=0

e(k−D)(s+mc)Rk
(
e−(s+mc)

)
.

(III) In general,

lim
δ→0

1

| ln δ|

∫ 1

δ

εD−kECk(F (ε)) ε−1dε =
1

η

∫ R

0

rD−k−1Rk(r) dr.
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Special cases and an example
Assumption 1 (back path condition) is satisfied for the random recursive
case and the V-variable random fractals.
Our extension: certain dependencies between different paths are allowed.

There is an intersection of our model with the graph directed random
code tree fractals studied by S. Troscheit (2017, 2021).

Assumption 2 (USOSC) is always required.

Assumption 3 (geometric regularity condition) is always fulfilled in Rd
with d ≤ 3.

Boundedness condition (ii) can be checked for classical examples of
random Sierpinski-type fractals (gaskets or carpets)
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