Hausdorff dimension of stable Lévy processes with measurable drift

Peter Kern

joint work with LEONARD PLESCHBERGER

FGS 7, TU Chemnitz, 23.09.2024

PETER KERN Hausdorff dimension of stable Lévy processes with drift

Selfsimilar stochastic processes

Let $X=(X_t)_{t\geq 0}$ be a stochastic process in \mathbb{R}^d defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The process X is called selfsimilar if for all $c > 0$

$$
(X_{ct})_{t\geq 0}\stackrel{\text{fd}}{=} (c^H X_t)_{t\geq 0},
$$

where $H > 0$ is called the **Hurst index**. This means

$$
\mathbb{P}\big((X_{ct_1},\ldots,X_{ct_n})\in A\big)=\mathbb{P}\big(c^H(X_{t_1},\ldots,X_{t_n})\in A\big)
$$

for all $n \in \mathbb{N}$, $0 \le t_1 < \cdots < t_n$ and $A \in \mathcal{B}(\mathbb{R}^{nd})$.

Selfsimilar stochastic processes

Let $X=(X_t)_{t\geq 0}$ be a stochastic process in \mathbb{R}^d defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The process X is called selfsimilar if for all $c > 0$

$$
(X_{ct})_{t\geq 0}\stackrel{\text{fd}}{=} (c^H X_t)_{t\geq 0},
$$

where $H > 0$ is called the **Hurst index**. This means

$$
\mathbb{P}\big((X_{ct_1},\ldots,X_{ct_n})\in A\big)=\mathbb{P}\big(c^H(X_{t_1},\ldots,X_{t_n})\in A\big)
$$

for all $n \in \mathbb{N}$, $0 \le t_1 < \cdots < t_n$ and $A \in \mathcal{B}(\mathbb{R}^{nd})$.

Left: Sample path of a Brownian motion with $H = 1/2$. Right: Sample path of a stable Lévy p[r](#page-19-0)ocess with $H = 1/\alpha$ [fo](#page-0-0)r $\alpha \in (0, 2)$ $\alpha \in (0, 2)$ $\alpha \in (0, 2)$ $\alpha \in (0, 2)$ $\alpha \in (0, 2)$.

Additionally, add a measurable function $f:\mathbb{R}_+\rightarrow\mathbb{R}^d$ to get a selfsimilar stochastic process with deterministic drift function

$$
X+f=(X_t+f(t))_{t\geq 0}.
$$

For a restricted time domain $T \in \mathcal{B}(\mathbb{R}_+)$ we consider the random sets

- graph: ${\cal G}_{\cal T}(X+f)=\big\{ (t,X_t+f(t)): t\in {\cal T} \big\}$
- range: $\mathcal{R}_\mathcal{T}(X + f) = \big\{X_t + f(t) : t \in \mathcal{T}\big\}$

Additionally, add a measurable function $f:\mathbb{R}_+\rightarrow\mathbb{R}^d$ to get a selfsimilar stochastic process with deterministic drift function

$$
X+f=(X_t+f(t))_{t\geq 0}.
$$

For a restricted time domain $T \in \mathcal{B}(\mathbb{R}_+)$ we consider the random sets

- graph: ${\cal G}_{\cal T}(X+f)=\big\{ (t,X_t+f(t)): t\in {\cal T} \big\}$
- range: $\mathcal{R}_\mathcal{T}(X + f) = \big\{X_t + f(t) : t \in \mathcal{T}\big\}$

Question: What is the interplay between X and f that determines the Hausdorff dimension of $X + f$?

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

Hausdorff dimension of fractional Bm with drift

Let $B^H=(B_t^H)_{t\geq 0}$ be a fractional Brownian motion with Hurst index $H \in (0, 1]$, that is a centered Gaussian process with stationary increments and covariance function

$$
\mathbb{E}[B_t^H \cdot B_s^H] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H}), \quad s, t \ge 0.
$$

Hausdorff dimension of fractional Bm with drift

Let $B^H=(B_t^H)_{t\geq 0}$ be a fractional Brownian motion with Hurst index $H \in (0, 1]$, that is a centered Gaussian process with stationary increments and covariance function

$$
\mathbb{E}[B_t^H \cdot B_s^H] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H}), \quad s, t \ge 0.
$$

Theorem 1 (Peres & Sousi, 2016)

Let $\varphi_{1/H}:=\mathcal{P}^{1/H}-\mathsf{dim}\, \mathcal{G}_{\mathcal{T}}(f)$, then for all $H\in (0,1]$ we $\mathbb{P}\text{-}\mathsf{almost}$ surely have

$$
\dim \mathcal{G}_{\mathcal{T}}(B^H + f) = \begin{cases} \varphi_{1/H} & , \varphi_{1/H} \le d \\ H \cdot \varphi_{1/H} + (1 - H) \cdot d & , \varphi_{1/H} \ge d \end{cases}
$$

$$
\dim \mathcal{R}_{\mathcal{T}}(B^H + f) = \begin{cases} \varphi_{1/H} & , \varphi_{1/H} \le d \\ d & , \varphi_{1/H} \ge d \end{cases}
$$

Let $X = (X_t)_{t\geq 0}$ be an isotropic α -stable Lévy process with $\alpha \in (0, 2]$. This is a selfsimilar process with Hurst index $H = 1/\alpha$, starting in $X_0 = 0$, having independent and stationary increments: For all $0 \leq t_0 \leq \cdots \leq t_n$

\n- $$
X_{t_0}, X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}
$$
 are independent
\n- $X_{t_j} - X_{t_{j-1}} \stackrel{\text{d}}{=} X_{t_j - t_{j-1}}$
\n

in the state of the

Let $X = (X_t)_{t\geq 0}$ be an isotropic α -stable Lévy process with $\alpha \in (0, 2]$. This is a selfsimilar process with Hurst index $H = 1/\alpha$, starting in $X_0 = 0$, having independent and stationary increments: For all $0 \leq t_0 \leq \cdots \leq t_n$

\n- $$
X_{t_0}, X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}
$$
 are independent
\n- $X_{t_j} - X_{t_{j-1}} \stackrel{d}{=} X_{t_j - t_{j-1}}$
\n

Obstacles:

- pure jump process for $\alpha \in (0, 2)$
- process with power law tails for $\alpha \in (0,2)$
- **•** extension of Hurst parameter region for $\alpha \in (0,1)$

All . . E . . E . .

The covering sets are **parabolic cylinders**. For $\alpha > 0$ define

$$
\mathcal{P}^{\alpha}:=\left\{[t,t+c]\times\prod_{j=1}^{d}[x_j,x_j+c^{1/\alpha}]:t\geq 0,\,x_j\in\mathbb{R},\,c\in(0,1]\right\}
$$

 299

∍

K 로) K 로 로

The covering sets are **parabolic cylinders**. For $\alpha > 0$ define

$$
\mathcal{P}^{\alpha}:=\left\{[t,t+c]\times\prod_{j=1}^{d}[x_j,x_j+c^{1/\alpha}]:t\geq0,\,x_j\in\mathbb{R},\,c\in(0,1]\right\}
$$

and for $\beta>0$ and $A\subseteq \mathbb{R}_+\times \mathbb{R}^d$ the α -**parabolic** β -**Hausdorff** measure is given by

$$
\mathcal{P}^{\alpha} - \mathcal{H}^{\beta}(A) := \lim_{\delta \downarrow 0} \inf \left\{ \sum_{k=1}^{\infty} |P_k|^{\beta} : A \subseteq \bigcup_{k=1}^{\infty} P_k, P_k \in \mathcal{P}^{\alpha}, |P_k| \le \delta \right\}
$$

 QQ

The covering sets are **parabolic cylinders**. For $\alpha > 0$ define

$$
\mathcal{P}^{\alpha}:=\left\{[t,t+c]\times\prod_{j=1}^{d}[x_j,x_j+c^{1/\alpha}]:t\geq0,\,x_j\in\mathbb{R},\,c\in(0,1]\right\}
$$

and for $\beta>0$ and $A\subseteq \mathbb{R}_+\times \mathbb{R}^d$ the α -**parabolic** β -**Hausdorff** measure is given by

$$
\mathcal{P}^{\alpha} - \mathcal{H}^{\beta}(A) := \lim_{\delta \downarrow 0} \inf \left\{ \sum_{k=1}^{\infty} |P_k|^{\beta} : A \subseteq \bigcup_{k=1}^{\infty} P_k, P_k \in \mathcal{P}^{\alpha}, |P_k| \le \delta \right\}
$$

which determines the α -parabolic Hausdorff dimension

$$
\mathcal{P}^{\alpha} - \dim A := \inf \{ \beta > 0 : \mathcal{P}^{\alpha} - \mathcal{H}^{\beta}(A) = 0 \} \\ = \sup \{ \beta > 0 : \mathcal{P}^{\alpha} - \mathcal{H}^{\beta}(A) = \infty \}.
$$

The covering sets are **parabolic cylinders**. For $\alpha > 0$ define

$$
\mathcal{P}^{\alpha}:=\left\{[t,t+c]\times\prod_{j=1}^d[x_j,x_j+c^{1/\alpha}]:t\geq0,\,x_j\in\mathbb{R},\,c\in(0,1]\right\}.
$$

 $\alpha = 2$: Taylor & Watson (1985)

- $\alpha = 1$: Leads to genuine Hausdorff dimension
- $\alpha \in [1,\infty)$: Peres & Sousi (2012, 2016) $c^{1/H}$ instead of c

The covering sets are **parabolic cylinders**. For $\alpha > 0$ define

$$
\mathcal{P}^{\alpha}:=\left\{[t,t+c]\times\prod_{j=1}^d[x_j,x_j+c^{1/\alpha}]:t\geq 0,\,x_j\in\mathbb{R},\,c\in(0,1]\right\}.
$$

- $\alpha = 2$: Taylor & Watson (1985)
- $\alpha = 1$: Leads to genuine Hausdorff dimension

 $\alpha \in [1,\infty)$: Peres & Sousi (2012, 2016) $c^{1/H}$ instead of c Abuse of notation:

- $\alpha > 2$: hyperbolic
- $\alpha = 2$: parabolic
- $\bullet \ \alpha \in (1,2)$: elliptic
- $\alpha = 1$: linear
- $\bullet \ \alpha \in (0,1)$: sublinear

つくい

For
$$
A \subseteq \mathbb{R}_+ \times \mathbb{R}^d
$$
 and $\varphi_{\alpha} := \mathcal{P}^{\alpha} - \dim A$ we have

$$
\dim A \leq \begin{cases} \varphi_{\alpha} \wedge (\alpha \cdot \varphi_{\alpha} + 1 - \alpha), & \alpha \in (0,1], \\ \varphi_{\alpha} \wedge (\frac{1}{\alpha} \cdot \varphi_{\alpha} + (1 - \frac{1}{\alpha}) \cdot d), & \alpha \in [1,\infty) \end{cases}
$$

and

$$
\dim A \ge \begin{cases} \varphi_{\alpha} + \left(1 - \frac{1}{\alpha}\right) \cdot d, & \alpha \in (0, 1], \\ \varphi_{\alpha} + 1 - \alpha, & \alpha \in [1, \infty). \end{cases}
$$

メロトメ 御 トメ 君 トメ 君 トー

 \equiv 990

Let $X = (X_t)_{t>0}$ be an isotropic α -stable Lévy process with $\alpha\in(0,2]$ and $\varphi_\alpha:=\mathcal{P}^\alpha-\mathsf{dim}\,\mathcal{G}_\mathcal{T}(f).$

Theorem 2 (K. & Pleschberger, 2024)

We P-almost surely have

$$
\dim \mathcal{G}_{\mathcal{T}}(X+f) = \begin{cases} \varphi_1 = \dim \mathcal{G}_{\mathcal{T}}(f) & , \alpha \in (0,1] \\ \varphi_\alpha \wedge (\frac{1}{\alpha} \cdot \varphi_\alpha + (1 - \frac{1}{\alpha}) \cdot d) & , \alpha \in [1,2] \end{cases}
$$

$$
\dim \mathcal{R}_{\mathcal{T}}(X+f) = \begin{cases} \alpha \cdot \varphi_\alpha \wedge d & , \alpha \in (0,1] \\ \varphi_\alpha \wedge d & , \alpha \in [1,2] \end{cases}
$$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

∍

For $T \in \mathcal{B}(\mathbb{R}_+)$ and the constant function $f : T \to \{0\}$ we have

$$
\varphi_{\alpha} = \mathcal{P}^{\alpha} - \dim \mathcal{G}_{\mathcal{T}}(f) = (\alpha \vee 1) \cdot \dim \mathcal{T}.
$$

In this case we recover the classical results:

Theorem 3 (Blumenthal & Getoor, 1960, 1962)

We P-almost surely have

$$
\dim \mathcal{G}_T(X) = \begin{cases} \dim \mathcal{T} + 1 - \frac{1}{\alpha} & , \alpha \cdot \dim \mathcal{T} \ge 1 \\ (\alpha \vee 1) \cdot \dim \mathcal{T} & , else \end{cases}
$$

$$
\dim \mathcal{R}_T(X) = (\alpha \cdot \dim \mathcal{T}) \wedge d.
$$

す 白 キ す き き す 重 ト

- For $\beta>\varphi_\alpha=\mathcal{P}^\alpha-\mathsf{dim}\,\mathcal{G}_\mathcal{T}(f)$ take a cover of $\mathcal{G}_\mathcal{T}(f)$ such that $\mathcal{P}^\alpha-\mathcal{H}^\beta(\mathcal{G}_{\mathcal{T}}(f))$ is (arbitrary) small.
- Combine it with a random cover of $\mathcal{G}_T(X)$ with cubes of comparable size.
- Use the covering lemma of Pruitt & Taylor (1969) to estimate the expected number of covering cubes for $G_T(X + f)$.
- Show that $\mathbb{E}[\mathcal{H}^\beta(\mathcal{G}_{\mathcal{T}}(X+f))]<\infty.$

桐 トラミトラミン

Proof, lower bound for the graph

Use a parabolic version of Frostman's lemma: For $\beta < \varphi_\alpha = \mathcal{P}^\alpha - \mathsf{dim}\, \mathcal{G}_\mathcal{T}(f)$ there exists a probability measure μ supported on $\mathcal{G}_T(f)$ such that

$$
\mu\left([t,t+c]\times \prod_{j=1}^d[x_j,x_j+c^{1/\alpha}]\right)\lesssim \begin{cases}c^\beta&,\ \alpha\in(0,1]\\ c^{\beta/\alpha}&,\ \alpha\in[1,\infty)\end{cases}
$$

• Use this measure to show that expected energy integrals

$$
\int_{\mathcal{G}_T(f)} \int_{\mathcal{G}_T(f)} \mathbb{E}\left[\|(t-s,X_{|t-s|}+x-y)\|^{-\beta}\right] d\mu(t,x) d\mu(s,y)
$$

are finite.

For this we need sharp upper bounds of the kernel function

$$
\mathsf{K}^\beta(\tau,\delta) = \mathbb{E}\left[\|(\tau, \mathsf{X}_{|\tau|}+\delta)\|^{-\beta}\right]
$$

- Blumenthal, R.; and Getoor, R. (1960) A dimension theorem for sample functions of stable processes. Illinois J. Math. 4, 370–375.
- Blumenthal, R.; and Getoor, R. (1962) The dimension of the set of zeroes and the graph of a symmetric stable process. Illinois J. Math. 6, 308-316.
- Kern, P.; and Pleschberger, L. (2024) Parabolic fractal geometry of stable Lévy processes with drift. J. Fractal Geometry (to appear), arXiv 2312. 13800
- Peres, Y.; and Sousi, P. (2012) Brownian motion with variable drift: 0-1 laws, hitting probabilities and Hausdorff dimension. Math. Proc. Camb. Philos. Soc. 153, 215-234.
- Peres, Y.; and Sousi, P. (2016) Dimension of fractional Brownian motion with variable drift. Probab. Theory Relat. Fields 165, 771–794.
- Pruitt, W.; and Taylor, S. (1969) Sample path properties of processes with stable components. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 12, 267–289.
- Taylor, S.; and Watson, N. (1985) A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Camb. Philos. Soc. 97, 325–344.

イロト イ押 トイヨ トイヨ トー

 QQ

∍