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Selfsimilar stochastic processes

Let X = (Xt)t≥0 be a stochastic process in Rd defined on a
probability space (Ω,A,P). The process X is called selfsimilar if
for all c > 0

(Xct)t≥0
fd
= (cHXt)t≥0,

where H > 0 is called the Hurst index. This means

P
(
(Xct1 , . . . ,Xctn) ∈ A

)
= P

(
cH(Xt1 , . . . ,Xtn) ∈ A

)
for all n ∈ N, 0 ≤ t1 < · · · < tn and A ∈ B(Rnd).
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Left: Sample path of a Brownian motion with H = 1/2.

Right: Sample path of a stable Lévy process with H = 1/α for α ∈ (0, 2).
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Selfsimilar stochastic processes with drift

Additionally, add a measurable function f : R+ → Rd to get a
selfsimilar stochastic process with deterministic drift function

X + f = (Xt + f (t))t≥0.

For a restricted time domain T ∈ B(R+) we consider the random
sets

graph: GT (X + f ) =
{

(t,Xt + f (t)) : t ∈ T
}

range: RT (X + f ) =
{
Xt + f (t) : t ∈ T

}

Question: What is the interplay between X and f that determines
the Hausdorff dimension of X + f ?
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Hausdorff dimension of fractional Bm with drift

Let BH = (BH
t )t≥0 be a fractional Brownian motion with Hurst

index H ∈ (0, 1], that is a centered Gaussian process with
stationary increments and covariance function

E[BH
t · BH

s ] = 1
2

(
t2H + s2H − |t − s|2H

)
, s, t ≥ 0.

Theorem 1 (Peres & Sousi, 2016)

Let ϕ1/H := P1/H − dimGT (f ), then for all H ∈ (0, 1] we P-almost
surely have

dimGT (BH + f ) =

{
ϕ1/H , ϕ1/H ≤ d

H · ϕ1/H + (1− H) · d , ϕ1/H ≥ d

dimRT (BH + f ) =

{
ϕ1/H , ϕ1/H ≤ d

d , ϕ1/H ≥ d
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Isotropic stable Lévy processes

Let X = (Xt)t≥0 be an isotropic α-stable Lévy process with
α ∈ (0, 2]. This is a selfsimilar process with Hurst index H = 1/α,
starting in X0 = 0, having independent and stationary increments:
For all 0 ≤ t0 < · · · < tn

Xt0 , Xt1 − Xt0 , . . . ,Xtn − Xtn−1 are independent

Xtj − Xtj−1

d
= Xtj−tj−1

Obstacles:

pure jump process for α ∈ (0, 2)

process with power law tails for α ∈ (0, 2)

extension of Hurst parameter region for α ∈ (0, 1)
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Parabolic Hausdorff dimension

The covering sets are parabolic cylinders. For α > 0 define

Pα :=

[t, t + c]×
d∏

j=1

[xj , xj + c1/α] : t ≥ 0, xj ∈ R, c ∈ (0, 1]



and for β > 0 and A ⊆ R+ × Rd the α-parabolic β-Hausdorff
measure is given by

Pα−Hβ(A) := lim
δ↓0

inf

{ ∞∑
k=1

|Pk |β : A ⊆
∞⋃
k=1

Pk , Pk ∈ Pα, |Pk | ≤ δ

}

which determines the α-parabolic Hausdorff dimension

Pα − dimA := inf{β > 0 : Pα −Hβ(A) = 0}
= sup{β > 0 : Pα −Hβ(A) =∞}.
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Parabolic Hausdorff dimension

The covering sets are parabolic cylinders. For α > 0 define

Pα :=

[t, t + c]×
d∏

j=1

[xj , xj + c1/α] : t ≥ 0, xj ∈ R, c ∈ (0, 1]

 .

α = 2: Taylor & Watson (1985)

α = 1: Leads to genuine Hausdorff dimension

α ∈ [1,∞): Peres & Sousi (2012, 2016) c1/H instead of c

Abuse of notation:

α > 2: hyperbolic

α = 2: parabolic

α ∈ (1, 2): elliptic

α = 1: linear

α ∈ (0, 1): sublinear
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Trivial estimates

For A ⊆ R+ × Rd and ϕα := Pα − dimA we have

dimA ≤

{
ϕα ∧ (α · ϕα + 1− α) , α ∈ (0, 1],

ϕα ∧
(

1
α · ϕα +

(
1− 1

α

)
· d
)
, α ∈ [1,∞)

and

dimA ≥

{
ϕα +

(
1− 1

α

)
· d , α ∈ (0, 1],

ϕα + 1− α, α ∈ [1,∞).
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Main result

Let X = (Xt)t≥0 be an isotropic α-stable Lévy process with
α ∈ (0, 2] and ϕα := Pα − dimGT (f ).

Theorem 2 (K. & Pleschberger, 2024)

We P-almost surely have

dimGT (X + f ) =

{
ϕ1 = dimGT (f ) , α ∈ (0, 1]

ϕα ∧ ( 1
α · ϕα + (1− 1

α) · d) , α ∈ [1, 2)

dimRT (X + f ) =

{
α · ϕα ∧ d , α ∈ (0, 1]

ϕα ∧ d , α ∈ [1, 2)
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Case of constant drift

For T ∈ B(R+) and the constant function f : T → {0} we have

ϕα = Pα − dimGT (f ) = (α ∨ 1) · dimT .

In this case we recover the classical results:

Theorem 3 (Blumenthal & Getoor, 1960, 1962)

We P-almost surely have

dimGT (X ) =

{
dimT + 1− 1

α , α · dimT ≥ 1

(α ∨ 1) · dimT , else

dimRT (X ) = (α · dimT ) ∧ d .
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Proof, upper bound for the graph

For β > ϕα = Pα − dimGT (f ) take a cover of GT (f ) such
that Pα −Hβ(GT (f )) is (arbitrary) small.

Combine it with a random cover of GT (X ) with cubes of
comparable size.

Use the covering lemma of Pruitt & Taylor (1969) to estimate
the expected number of covering cubes for GT (X + f ).

Show that E[Hβ(GT (X + f ))] <∞.
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Proof, lower bound for the graph

Use a parabolic version of Frostman’s lemma:
For β < ϕα = Pα − dimGT (f ) there exists a probability
measure µ supported on GT (f ) such that

µ

[t, t + c]×
d∏

j=1

[xj , xj + c1/α]

 .

{
cβ , α ∈ (0, 1]

cβ/α , α ∈ [1,∞)

Use this measure to show that expected energy integrals∫
GT (f )

∫
GT (f )

E
[
‖(t − s,X|t−s| + x − y)‖−β

]
dµ(t, x) dµ(s, y)

are finite.

For this we need sharp upper bounds of the kernel function

Kβ(τ, δ) = E
[
‖(τ,X|τ | + δ)‖−β

]
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