Multifractal properties of traces of functions in a prevalent set of inhomogeneous Besov spaces

Quentin Rible Under the supervision of S. Seuret

Fractal Geometry and Stochastics 7 September 2024

Introduction

Back to the 80s, physicists were measuring the velocity of a turbulent fluid and aimed at quantifying the local variation of the velocity in such environment. The *interest in the trace* comes from the ability to **only measure one** dimensional trace of the fluid velocity across time.

Question: Can we link roughness of the 3-dimensional velocity and its 1-dimensional measurement?

Notations

For $j \in \mathbb{N}$, Λ_j^d is the collection of closed dyadic cubes of generation j , *i.e.* the cubes $\lambda_{j,k}^d = 2^{-j}k + 2^{-j}[0,1)^d$ where $k \in \{0, \ldots, 2^j-1\}.$

For $x \in [0,1]^d$, $\lambda_j^d(x)$ is the dyadic cubes of generation j which contains x .

For $N \in \mathbb{N}^*$ and $B = B(x, r)$, we denote $NB = B(x, Nr)$ and similarly for dyadic cubes λ gives $N\lambda$.

Definition 1

The set of **Hölder capacities** is

$$
\mathcal{C}([0,1]^d) = \{ \nu : \mathcal{B}([0,1]^d) \to \mathbb{R}_+ \cup \{+\infty\} \ : \ \exists C,s > 0, \ \forall E,F \in \mathcal{B}([0,1]^d), \newline \nu(E) \leq C|E|^s \text{ and } E \subset F \Rightarrow \nu(E) \leq \nu(F) \}.
$$

Example: A Borel measure is a capacity.

For a capacity μ , $s > 0$, and $E \subset [0,1]$, define $\mu^{(+s)} = \mu(E) |E|^s$.

The set function $\mu^{(+s)}$ is still a capacity.

Sobolev and Besov Spaces

Let $1 \leq p, q \leq +\infty$.

► For $m \in \mathbb{N}$, **Sobolev spaces** are defined by $W^{m,p}([0,1]^d) = \{f \in {}^p([0,1]^d) : \forall \alpha \in \mathbb{N}^d, |\alpha| \leq m, D^{\alpha} f \in L^p([0,1]^d)\}.$

► For
$$
s > 0
$$
 with $s \notin \mathbb{N}$, $f \in W^{s,p}([0,1]^d)$ and for all $\alpha \in \mathbb{N}^d$ such that $|\alpha| = \lfloor s \rfloor$, $D^{\alpha} f \in C^{s-\lfloor s \rfloor}([0,1]^d)$.

For $h \in \mathbb{R}^d$ and $f: \mathbb{R}^d \to \mathbb{R}$, consider the finite difference operator $\Delta_h f : x \in \mathbb{R}^d \mapsto f(x+h) - f(x)$. Then, for $n \geq 2$, set $\Delta_h^n f = \Delta_h(\Delta_h^{n-1} f)$.

Besov spaces are generalised versions of Sobolev spaces with control on the oscillation of the function : for

$$
\omega_n(f,t)_\rho = \sup_{0 \le h \le t} \|\Delta_h^n f\|_{L^p},
$$

$$
B_{\rho,q}^s([0,1]^d) = \{f \in L^p([0,1]^d) \ : \ \left\|(2^{jd/p}\omega_n(f,2^{-j})_\rho)_{j \in \mathbb{N}}\right\|_{l^q(\mathbb{N})} < +\infty\}.
$$

There are sharp embeddings between Sobolev and Besov spaces.

Inhomogeneous Besov Spaces

From J.Barral and S.Seuret [\[2\]](#page-18-0), the inhomogeneous Besov spaces generalise the previously introduced Besov spaces by controlling the oscillation with a capacity ξ called a ξ -environment.

Definition 2

Let $\xi\in\mathcal{C}([0,1]^d)$ such that, for $0< s_1< s_2,$ $|E|^{s_1}\leq \xi(E)\leq |E|^{s_2}$ and consider an integer n $\geq \left| \mathsf{s}_2 + \frac{\mathsf{d}}{\mathsf{p}} \right| + 1.$ For $1\leq p,q\leq +\infty$, the Besov space in ξ-environment $\mathcal{B}_{p,q}^{\xi}([0,1]^{d})$ is the set of the functions $f:[0,1]^d\rightarrow\mathbb{R}$ such that $\left\|f\right\|_{L^p}<+\infty$ and for $\omega_n^{\xi}(f,t)_\rho = \sup\limits_{t/2 \leq h \leq t}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ $\Delta_h^n f(x)$ $\xi(B[x, x + nh])$ $\big\|_{L^p}$, $|f|_{B^{\xi}_{p,q}([0,1]^d)}:=\left\|(2^{jd/p}\omega_n^{\xi}(f,2^{-j})_p)_{j\in\mathbb{N}}\right\|_{l^q(\mathbb{N})}<+\infty.$

Pointwise exponent and Spectrum

Definition 3 (pointwise Hölder exponent)

Let $f \in L^{\infty}_{loc}(\mathbb{R})$. Let $\alpha \in \mathbb{R} \setminus \mathbb{N}$ and $x_0 \in \mathbb{R}$. The function f belongs to $C^{\alpha}(x_0)$ if there exist a polynomial P_{x_0} , $K_\alpha, r_\alpha > 0$

$$
\forall x\in [x_0-r_\alpha,x_0+r_\alpha],\ |f(x)-P_{x_0}(x-x_0)|\leq K_\alpha |x-x_0|^\alpha.
$$

The pointwise Hölder exponent is defined by

$$
h_f(x_0)=\sup\{\alpha\in\mathbb{R}_+:f\in C^{\alpha}(x_0)\}.
$$

Definition 4 (Multifractal spectrum)

Let $f\in L^\infty_{loc}(\mathbb{R}^d)$. The multifractal spectrum of f is

$$
\sigma_f: \alpha \mapsto \dim_H \big(\{ x \in \mathbb{R} \; : \; h_f(x) = \alpha \} \big),
$$

with dim_H is the Hausdorff dimension (with the convention dim_H (\emptyset) = $-\infty$).

Pointwise exponent and Spectrum

Definition 5 (Multifractal spectrum)

Let $f \in L^\infty_{loc}(\mathbb{R}^d)$. The multifractal spectrum of f is

$$
\sigma_f: \alpha \mapsto \dim_H \left(\{ x \in \mathbb{R} \; : \; h_f(x) = \alpha \} \right),
$$

with dim_H is the Hausdorff dimension (with the convention dim_H (\emptyset) = $-\infty$).

Pointwise exponent and Spectrum

Definition 5 (Multifractal spectrum)

Let $f \in L^\infty_{loc}(\mathbb{R}^d)$. The multifractal spectrum of f is

$$
\sigma_f: \alpha \mapsto \dim_H \left(\{ x \in \mathbb{R} \; : \; h_f(x) = \alpha \} \right),
$$

with dim_H is the Hausdorff dimension (with the convention dim_H (\emptyset) = $-\infty$).

[Introduction](#page-1-0) [Functional Spaces](#page-2-0) [Multifractal Spectrum](#page-5-0)

Pointwise exponent and Spectrum

Similarly for a capacity ν , one has

Definition 6

For $x \in \text{supp}(\nu)$, the lower local dimension of ν at x is $\underline{h}_{\nu}(x) = \liminf_{j \to +\infty}$ $\log_2 \nu(\lambda_j(x))$ $\frac{\overline{(y(x))}}{-j}$.

The multifractal spectrum of ν is the Hausdorff dimension of the level sets

$$
\sigma_{\nu} \; : \; \alpha \in \mathbb{R} \mapsto \dim_H \left(\{ x \in \mathbb{R} \; : \; \underline{h}_{\nu}(x) = \alpha \right).
$$

Definition 7

The scaling function of $\nu \in C([0,1]^d)$ is defined by

$$
\tau_{\nu}(q) = \liminf_{j \to +\infty} \frac{1}{-j} \log_2 \left(\sum_{\substack{I \in \Lambda_j, I \subset [0,1]^d \\ \nu(I) > 0}} \nu(I)^q \right).
$$

Then one always has $\sigma_{\nu}(\alpha) \le \tau_{\nu}^*(\alpha) := \inf_{q \in \mathbb{R}} (\alpha q - \tau_{\nu}(q)).$

Gibbs measures

Definition 8 (Gibbs measure)

Let $\varphi:\mathbb{R}^d\to\mathbb{R}$ be a \mathbb{Z}^d -invariant real valued Hölder continuous function. Gibbs measures associated with the Hölder continuous potential φ are measures satisfying the following properties :

- ► Gibbs measures are doubling measure : $\exists C_\nu > 1$, $\nu(2B) < C_\nu \nu(B)$,
- **For a Gibbs measure v, the multifractal spectrum** σ_v **is completely known,**
- ► They satisfy the multifractal formalism : $\forall \alpha \in \mathbb{R}, \ \sigma_{\nu}(\alpha) = \tau_{\nu}^{*}(\alpha)$,
- **►** For a Gibbs measure ν , the function $q \mapsto \tau_{\nu}(q)$ is analytic.

Auxiliary measure

Definition 9 (Auxiliary measure)

Let ν be a Gibbs measure on \mathbb{R}^d and $r \in \mathbb{R}$. An auxiliary measure is a probability measure ν_r with the following properties : set $h_r = \tau_{\nu}'(r)$. Then :

 \triangleright ν_r is also a Gibbs measure and satisfies the multifractal formalism,

$$
\blacktriangleright \nu_r(E_{\nu_r}(\sigma_\nu(h_r))=1,
$$

 \blacktriangleright dim(ν_r) = $\sigma_{\nu}(h_r)$.

Remark 1

for $r \in \mathbb{R}$, $h_r = \tau'_\nu(r)$ is in the support of σ_ν .

So studying $\tau_{\nu}'(r)$ for all $r\in\mathbb{R}$ means that one <mark>studies all regularity values in</mark> the support of σ_{ν} .

Traces

For $a \in \mathbb{R}$, my goal is to look at

$$
f_{\mathsf{a}} := f|_{\mathcal{H}_{\mathsf{a}}} : \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ t & \longmapsto & f(t,\mathsf{a}). \end{array} \right.
$$

with $\mathcal{H}_\mathsf{a} := \{ (t, \mathsf{a}) \mid t \in \mathbb{R} \}$ the 1-dimensional affine subspace of \mathbb{R}^2 passing by (0, a). Consider $\xi = \mu \otimes \nu$ (μ and ν will be supposed equal here).

Trace belonging

Standard trace theorems inevitably involve a loss of regularity. For example, the trace operator $f\mapsto f_{\scriptscriptstyle \partial}$ maps $\mathcal{B}^s_{\scriptscriptstyle p,q}([0,1]^2)$ to $\mathcal{B}^{s-1/p}_{\scriptscriptstyle p,q}([0,1]).$

For standard Besov spaces, Aubry, Maman, Seuret [\[1\]](#page-18-1) showed the following results.

Theorem 1

Let $0 < p, s < \infty$, with $s - 2/p > 0$, and $0 < q < \infty$.

If $f\in B^s_{\rho,q}([0,1]^2)$ and $q<\rho$ (resp. $q=\rho)$, then for Lebesgue-almost all $a \in [0, 1]$, $f_a \in B^{s}_{p, qp/(p-q)}([0, 1])$ (resp. $B^{s}_{p, \infty}([0, 1])$).

Theorem 2

Let
$$
0 < p < \infty
$$
, $0 < q \leq \infty$ and $0 < s - 1/p < +\infty$. For a prevalent set of $f \in B_{p,q}^s([0,1]^2)$, for Lebesgue-almost all $a \in [0,1]$, $\sigma_{f_a}(h) = \begin{cases} 1 + (h - s)p & \text{if } h \in [s - 1/p, s], \\ -\infty & \text{else.} \end{cases}$

Trace belonging

For a capacity μ , $s > 0$, and $E \subset \mathbb{R}$, define

$$
\mu^{(+s)}=\mu(E)|E|^s.
$$

The set function $\mu^{(+s)}$ is still a capacity.

We prove that functions in $\mathcal{B}_{p,q}^{\xi}(\mathbb{R}^2)$ show a smaller loss of regularity than expected.

Proposition 1

Let $p, q \in [1, +\infty]$. Let μ and ν be Gibbs measures on [0, 1]. Let ξ be the product capacity on $[0,1]^2$, $\xi(\lambda^{(1)} \times \lambda^{(2)}) := \mu(\lambda^{(1)}) \cdot \nu(\lambda^{(2)})$. Let $r \in \mathbb{R}$ and ν_r be the auxiliary measure of ν . Then for every $f \in B^{\xi}_{p,q}([0,1]^2)$, for ν_r -almost all $a \in [0,1]$, $f_a \in \widetilde{B}^{\mu(+\Gamma_{\nu,r})}_{p,q}([0,1]) \quad \text{with } \Gamma_{\nu,r} = \tau_{\nu}'(r) + \frac{\dim(\nu_r)}{p}.$

Remark 2

The regularity depends on the regularity of ν in a.

[Introduction](#page-1-0) [Functional Spaces](#page-2-0) [Multifractal Spectrum](#page-5-0)

Upper Bounds

Proposition 2

For all
$$
f \in B_{\infty,\infty}^{\xi}
$$
 and $a \in [0,1]$, one has
\nfor $h \in \mathbb{R}$, $\sigma_{f_a}(h) \leq \begin{cases} \sigma_{\mu}(h - h_{\nu}^{\min}) & \text{if } h \leq h_{\nu}^{\varsigma} + h_{\nu}^{\min}, \\ 1 & \text{if } h > h_{\nu}^{\varsigma} + h_{\nu}^{\min}. \end{cases}$

Upper Bounds

Strengthening to ν_r -almost every point a of [0, 1] gives the following results.

Proposition 3

Let $r \in \mathbb{R}$ and ν_r be an auxiliary measure of ν and write $h_r = \tau_{\nu}'(r)$. For all $f\in\mathcal{B}_\infty^\xi,$ and ν_r -almost all $a\in[0,1]$, one has for $h \in \mathbb{R}, \sigma_{f_a}(h) \leq$ $\sqrt{ }$ ^J \mathcal{L} $\sigma_{\mu}(h-h_r)$ if $h \leq h_{\nu}^s + h_r$, 1 for $h > h_{\nu}^s + h_r$.

Prevalence

Prevalence theory is proposed independently by Christensen [\[3\]](#page-18-2) and Hunt [\[4\]](#page-18-3).

A set is said to be *universally measurable* if it is measurable for any (completed) Borel measure.

A universally measurable set $A \subset E$ is called shy if there exists a Borel measure μ that is positive on some compact subset K of E and such that

for every $x \in E$, $\mu(A + x) = 0$.

A set that is included in a shy universally measurable set is also shy.

The **complement of a shy subset** is called prevalent.

[Introduction](#page-1-0) [Functional Spaces](#page-2-0) [Multifractal Spectrum](#page-5-0)

Lower Bound

Theorem 3

Let μ and ν be Gibbs measures on [0, 1].

Let ξ be the product capacity on $[0,1]^2$, $\xi(\lambda^{(1)} \times \lambda^{(2)}) := \mu(\lambda^{(1)}) \cdot \nu(\lambda^{(2)})$.

Let $r \in \mathbb{R}$ and ν_r be the auxiliary measure of ν and write $h_r = \tau_{\nu}'(r)$.

One has for any dense sequence $(h_n)_{n\in\mathbb{N}}$ in \mathbb{R}^+ , for a prevalent set of functions $f\in B^{\xi}_{\infty,\infty}([0,1]^2)$, for ν_r -almost all $a\in[0,1]$,

$$
\forall n \in \mathbb{N}, \ \sigma_{f_a}(h_n) \geq \begin{cases} \sigma_{\mu}(h_n - h_r) & \text{if } h_n \in \text{supp}(\sigma_{\mu}) + h_r \\ -\infty & \text{else.} \end{cases}
$$

F.

冨

J.-M. Aubry, D. Maman, and S. Seuret. Local behavior of traces of besov functions: prevalent results. Journal of Functional Analysis, 264(3):631–660, 2013.

- J. Barral and S. Seuret. The frisch-parisi conjecture ii: besov spaces in multifractal environment, and a full solution. Journal de Mathématiques Pures et Appliquées, 175:281–329, 2023.
- J. P. R. Christensen. On sets of Haar measure zero in abelian polish groups. Volume 13 of number 3. 1972, pages 255-260.
- 量

F

B. R. Hunt, T. Sauer, and J. A. Yorke. Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces. Bulletin of the American Mathematical Society, 27(2):217–238, 1992.

Thank you for you attention !