Multifractal properties of traces of functions in a prevalent set of inhomogeneous Besov spaces

Quentin Rible Under the supervision of S. Seuret

LAMA, Paris-Est Créteil University (France)

Fractal Geometry and Stochastics 7 September 2024

Introd	uction
•	

Introduction

Back to the 80s, physicists were measuring the velocity of a turbulent fluid and aimed at quantifying the local variation of the velocity in such environment. The interest in the trace comes from the ability to only measure one dimensional trace of the fluid velocity across time.

<u>Question:</u> Can we link roughness of the 3-dimensional velocity and its 1-dimensional measurement?

Notations

For $j \in \mathbb{N}$, Λ_j^d is the collection of closed dyadic cubes of generation j, *i.e.* the cubes $\lambda_{j,k}^d = 2^{-j}k + 2^{-j}[0,1)^d$ where $k \in \{0, \ldots, 2^j - 1\}$.

For $x \in [0, 1]^d$, $\lambda_i^d(x)$ is the dyadic cubes of generation j which contains x.

For $N \in \mathbb{N}^*$ and B = B(x, r), we denote NB = B(x, Nr) and similarly for dyadic cubes λ gives $N\lambda$.

Definition 1

The set of Hölder capacities is

$$\begin{split} \mathcal{C}([0,1]^d) &= \{\nu: \mathcal{B}([0,1]^d) \to \mathbb{R}_+ \cup \{+\infty\} \ : \ \exists C, s > 0, \ \forall E, F \in \mathcal{B}([0,1]^d), \\ \nu(E) &\leq C|E|^s \text{ and } E \subset F \Rightarrow \nu(E) \leq \nu(F)\}. \end{split}$$

Example: A Borel measure is a capacity.

For a capacity μ , s > 0, and $E \subset [0, 1]$, define $\mu^{(+s)} = \mu(E)|E|^{s}.$

The set function $\mu^{(+s)}$ is still a capacity.

Sobolev and Besov Spaces

Let $1 \leq p, q \leq +\infty$.

► For $m \in \mathbb{N}$, Sobolev spaces are defined by $W^{m,p}([0,1]^d) = \{f \in {}^p([0,1]^d) : \forall \alpha \in \mathbb{N}^d, |\alpha| \le m, D^{\alpha}f \in L^p([0,1]^d)\}.$

▶ For
$$s > 0$$
 with $s \notin \mathbb{N}$, $f \in W^{s,p}([0,1]^d)$ and for all $\alpha \in \mathbb{N}^d$ such that $|\alpha| = \lfloor s \rfloor$, $D^{\alpha}f \in C^{s-\lfloor s \rfloor}([0,1]^d)$.

For $h \in \mathbb{R}^d$ and $f : \mathbb{R}^d \to \mathbb{R}$, consider the finite difference operator $\Delta_h f : x \in \mathbb{R}^d \mapsto f(x+h) - f(x)$. Then, for $n \ge 2$, set $\Delta_h^n f = \Delta_h(\Delta_h^{n-1} f)$.

Besov spaces are generalised versions of Sobolev spaces with control on the oscillation of the function : for

$$\omega_n(f,t)_p = \sup_{0 \le h \le t} \left\| \Delta_h^n f \right\|_{L^p},$$
$$B_{p,q}^s([0,1]^d) = \{ f \in L^p([0,1]^d) : \left\| (2^{jd/p}\omega_n(f,2^{-j})_p)_{j \in \mathbb{N}} \right\|_{l^q(\mathbb{N})} < +\infty \}.$$

There are sharp embeddings between Sobolev and Besov spaces.

Inhomogeneous Besov Spaces

From J.Barral and S.Seuret [2], the inhomogeneous Besov spaces generalise the previously introduced Besov spaces by controlling the oscillation with a capacity ξ called a ξ -environment.

Definition 2

$$\begin{split} & \text{Let } \xi \in \mathcal{C}([0,1]^d) \text{ such that, for } 0 < s_1 < s_2, \ |E|^{s_1} \leq \xi(E) \leq |E|^{s_2} \text{ and consider} \\ & \text{an integer } n \geq \left\lfloor s_2 + \frac{d}{p} \right\rfloor + 1. \\ & \text{For } 1 \leq p,q \leq +\infty, \text{ the Besov space in } \xi \text{-environment } B^{\xi}_{p,q}([0,1]^d) \text{ is the set} \\ & \text{of the functions } f: [0,1]^d \to \mathbb{R} \text{ such that } \|f\|_{L^p} < +\infty \text{ and for} \\ & \omega_n^{\xi}(f,t)_p = \sup_{t/2 \leq h \leq t} \left\| \frac{\Delta_h^n f(x)}{\xi(B[x,x+nh])} \right\|_{L^p}, \\ & |f|_{B^{\xi}_{p,q}([0,1]^d)} := \left\| (2^{jd/p} \omega_n^{\xi}(f,2^{-j})_p)_{j \in \mathbb{N}} \right\|_{l^q(\mathbb{N})} < +\infty. \end{split}$$

Pointwise exponent and Spectrum

Definition 3 (pointwise Hölder exponent)

Let $f \in L^{\infty}_{loc}(\mathbb{R})$. Let $\alpha \in \mathbb{R} \setminus \mathbb{N}$ and $x_0 \in \mathbb{R}$. The function f belongs to $C^{\alpha}(x_0)$ if there exist a polynomial P_{x_0} , $K_{\alpha}, r_{\alpha} > 0$

$$\forall x \in [x_0 - r_\alpha, x_0 + r_\alpha], \ |f(x) - P_{x_0}(x - x_0)| \leq K_\alpha |x - x_0|^\alpha.$$

The pointwise Hölder exponent is defined by

$$h_f(x_0) = \sup\{\alpha \in \mathbb{R}_+ : f \in C^{\alpha}(x_0)\}.$$

Definition 4 (Multifractal spectrum)

Let $f \in L^{\infty}_{loc}(\mathbb{R}^d)$. The multifractal spectrum of f is

$$\sigma_f: \alpha \mapsto \dim_H \left(\{ x \in \mathbb{R} : h_f(x) = \alpha \} \right),$$

with dim_H is the Hausdorff dimension (with the convention dim_H $(\emptyset) = -\infty$).

Pointwise exponent and Spectrum

Definition 5 (Multifractal spectrum)

Let $f \in L^{\infty}_{loc}(\mathbb{R}^d)$. The multifractal spectrum of f is

$$\sigma_f: \alpha \mapsto \dim_H \left(\{ x \in \mathbb{R} : h_f(x) = \alpha \} \right),$$

with dim_H is the Hausdorff dimension (with the convention dim_H $(\emptyset) = -\infty$).

Pointwise exponent and Spectrum

Definition 5 (Multifractal spectrum)

Let $f \in L^{\infty}_{loc}(\mathbb{R}^d)$. The multifractal spectrum of f is

$$\sigma_f: \alpha \mapsto \dim_H \left(\{ x \in \mathbb{R} : h_f(x) = \alpha \} \right),$$

with dim_H is the Hausdorff dimension (with the convention dim_H $(\emptyset) = -\infty$).

Introduction O Functional Spaces

Multifractal Spectrum

Pointwise exponent and Spectrum

Similarly for a capacity ν , one has

Definition 6

For $x \in \text{supp}(\nu)$, the lower local dimension of ν at x is $\underline{h}_{\nu}(x) = \liminf_{j \to +\infty} \frac{\log_2 \nu(\lambda_j(x))}{-j}.$

The multifractal spectrum of ν is the Hausdorff dimension of the level sets

$$\sigma_{\nu} : \alpha \in \mathbb{R} \mapsto \dim_{H} \left(\{ x \in \mathbb{R} : \underline{h}_{\nu}(x) = \alpha \right).$$

Definition 7

The scaling function of $\nu \in \mathcal{C}([0,1]^d)$ is defined by

$$\tau_{\nu}(q) = \liminf_{j \to +\infty} \frac{1}{-j} \log_2 \left(\sum_{\substack{l \in \Lambda_j, l \subset [0,1]^d \\ \nu(l) > 0}} \nu(l)^q \right).$$

Then one always has $\sigma_{\nu}(\alpha) \leq \tau_{\nu}^*(\alpha) := \inf_{q \in \mathbb{R}} (\alpha q - \tau_{\nu}(q)).$

Gibbs measures

Definition 8 (Gibbs measure)

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ be a \mathbb{Z}^d -invariant real valued Hölder continuous function. Gibbs measures associated with the Hölder continuous potential φ are measures satisfying the following properties :

- Gibbs measures are doubling measure : $\exists C_{\nu} > 1, \ \nu(2B) \leq C_{\nu} \ \nu(B)$,
- For a Gibbs measure ν , the multifractal spectrum σ_{ν} is completely known,
- They satisfy the multifractal formalism : $\forall \alpha \in \mathbb{R}, \ \sigma_{\nu}(\alpha) = \tau_{\nu}^{*}(\alpha)$,
- For a Gibbs measure ν , the function $\mathbf{q} \mapsto \tau_{\nu}(\mathbf{q})$ is analytic.

Auxiliary measure

Definition 9 (Auxiliary measure)

Let ν be a Gibbs measure on \mathbb{R}^d and $r \in \mathbb{R}$. An auxiliary measure is a probability measure ν_r with the following properties : set $h_r = \tau'_{\nu}(r)$. Then :

 \triangleright ν_r is also a Gibbs measure and satisfies the multifractal formalism,

•
$$\nu_r(E_{\nu_r}(\sigma_{\nu}(h_r)) = 1,$$

• dim
$$(\nu_r) = \sigma_{\nu}(h_r).$$

Remark 1

for $r \in \mathbb{R}$, $h_r = \tau'_{\nu}(r)$ is in the support of σ_{ν} .

So studying $\tau'_{\nu}(r)$ for all $r \in \mathbb{R}$ means that one studies all regularity values in the support of σ_{ν} .

Traces

For $a \in \mathbb{R}$, my goal is to look at

$$f_a:=f|_{\mathcal{H}_a}:\left\{egin{array}{ccc} \mathbb{R}^2&\longrightarrow&\mathbb{R}\ t&\longmapsto&f(t,a). \end{array}
ight.$$

with $\mathcal{H}_a := \{(t, a) \mid t \in \mathbb{R}\}$ the 1-dimensional affine subspace of \mathbb{R}^2 passing by (0, a). Consider $\xi = \mu \otimes \nu$ (μ and ν will be supposed equal here).

Figure: Representation of f_a for $a \in \mathbb{R}$

Trace belonging

Standard trace theorems inevitably involve a loss of regularity. For example, the trace operator $f \mapsto f_a$ maps $B_{p,q}^s([0,1]^2)$ to $B_{p,q}^{s-1/p}([0,1])$.

For standard Besov spaces, Aubry, Maman, Seuret [1] showed the following results.

Theorem 1

Let $0 < p, s < \infty$, with s - 2/p > 0, and $0 < q \le \infty$. If $f \in B^s_{p,q}([0,1]^2)$ and q < p (resp. q = p), then for Lebesgue-almost all $a \in [0,1]$, $f_a \in B^s_{p,qp/(p-q)}([0,1])$ (resp. $B^s_{p,\infty}([0,1])$).

Theorem 2

Let
$$0 , $0 < q \le \infty$ and
 $0 < s - 1/p < +\infty$. For a prevalent set of
 $f \in B^s_{p,q}([0,1]^2)$, for Lebesgue-almost all $a \in [0,1]$,
 $\sigma_{f_a}(h) = \begin{cases} 1 + (h-s)p & \text{if } h \in [s-1/p,s], \\ -\infty & \text{else.} \end{cases}$$$

Trace belonging

For a capacity μ , s > 0, and $E \subset \mathbb{R}$, define

$$\mu^{(+s)} = \mu(E)|E|^s.$$

The set function $\mu^{(+s)}$ is still a capacity.

We prove that functions in $B_{p,q}^{\xi}(\mathbb{R}^2)$ show a smaller loss of regularity than expected.

Proposition 1

Let $p, q \in [1, +\infty]$. Let μ and ν be Gibbs measures on [0, 1]. Let ξ be the product capacity on $[0, 1]^2$, $\xi(\lambda^{(1)} \times \lambda^{(2)}) := \mu(\lambda^{(1)}) \cdot \nu(\lambda^{(2)})$. Let $r \in \mathbb{R}$ and ν_r be the auxiliary measure of ν . Then for every $f \in B_{p,q}^{\xi}([0, 1]^2)$, for ν_r -almost all $a \in [0, 1]$, $f_a \in \widetilde{B}_{p,q}^{\mu(+\Gamma_{\nu,r})}([0, 1])$ with $\Gamma_{\nu,r} = \tau'_{\nu}(r) + \frac{\dim(\nu_r)}{p}$.

Remark 2

The regularity depends on the regularity of ν in *a*.

Upper Bounds

Proposition 2

For all
$$f \in B_{\infty,\infty}^{\xi}$$
 and $a \in [0,1]$, one has
for $h \in \mathbb{R}$, $\sigma_{f_a}(h) \leq \begin{cases} \sigma_{\mu}(h - h_{\nu}^{\min}) & \text{if } h \leq h_{\nu}^s + h_{\nu}^{\min}, \\ 1 & \text{if } h > h_{\nu}^s + h_{\nu}^{\min}. \end{cases}$

Upper Bounds

Strengthening to ν_r -almost every point *a* of [0, 1] gives the following results.

Proposition 3

Let $r \in \mathbb{R}$ and ν_r be an auxiliary measure of ν and write $h_r = \tau'_{\nu}(r)$. For all $f \in B^{\xi}_{\infty,\infty}$ and ν_r -almost all $a \in [0,1]$, one has for $h \in \mathbb{R}$, $\sigma_{f_a}(h) \leq \begin{cases} \sigma_{\mu}(h-h_r) & \text{if } h \leq h^s_{\nu} + h_r, \\ 1 & \text{for } h > h^s_{\nu} + h_r. \end{cases}$

Prevalence

Prevalence theory is proposed independently by Christensen [3] and Hunt [4].

A set is said to be **universally measurable** if it is measurable for any (completed) Borel measure.

A universally measurable set $A \subset E$ is called **shy** if there exists a Borel measure μ that is positive on some compact subset K of E and such that

for every $x \in E$, $\mu(A + x) = 0$.

A set that is included in a shy universally measurable set is also shy.

The complement of a shy subset is called prevalent.

Lower Bound

Theorem 3

Let μ and ν be Gibbs measures on [0, 1].

Let ξ be the product capacity on $[0,1]^2$, $\xi(\lambda^{(1)} \times \lambda^{(2)}) := \mu(\lambda^{(1)}) \cdot \nu(\lambda^{(2)})$.

Let $r \in \mathbb{R}$ and ν_r be the auxiliary measure of ν and write $h_r = \tau'_{\nu}(r)$.

One has for any dense sequence $(h_n)_{n\in\mathbb{N}}$ in \mathbb{R}^+ , for a prevalent set of functions $f \in B_{\infty,\infty}^{\xi}([0,1]^2)$, for ν_r -almost all $a \in [0,1]$,

$$orall n \in \mathbb{N}, \ \sigma_{f_a}(h_n) \geq egin{cases} \sigma_\mu(h_n - h_r) & ext{if } h_n \in \operatorname{supp}(\sigma_\mu) + h \ -\infty & ext{else.} \end{cases}$$

- J.-M. Aubry, D. Maman, and S. Seuret. Local behavior of traces of besov functions: prevalent results. *Journal of Functional Analysis*, 264(3):631–660, 2013.
- J. Barral and S. Seuret. The frisch-parisi conjecture ii: besov spaces in multifractal environment, and a full solution. *Journal de Mathématiques Pures et Appliquées*, 175:281–329, 2023.
- J. P. R. Christensen. *On sets of Haar measure zero in abelian polish groups*. Volume 13 of number 3. 1972, pages 255–260.

B. R. Hunt, T. Sauer, and J. A. Yorke. Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces. *Bulletin of the American Mathematical Society*, 27(2):217–238, 1992.

Thank you for you attention !