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Introduction

Back to the 80s, physicists were measuring the velocity of a turbulent fluid and
aimed at quantifying the local variation of the velocity in such environment.
The interest in the trace comes from the ability to only measure one
dimensional trace of the fluid velocity across time.

Question: Can we link roughness of the 3-dimensional velocity and its
1-dimensional measurement?
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Notations

For j ∈ N, Λd
j is the collection of closed dyadic cubes of generation j ,

i.e. the cubes λd
j,k = 2−jk + 2−j [0, 1)d where k ∈ {0, . . . , 2j − 1}.

For x ∈ [0, 1]d , λd
j (x) is the dyadic cubes of generation j which contains x .

For N ∈ N∗ and B = B(x , r), we denote NB = B(x ,Nr) and similarly for
dyadic cubes λ gives Nλ.

Definition 1

The set of Hölder capacities is

C([0, 1]d) = {ν : B([0, 1]d) → R+ ∪ {+∞} : ∃C , s > 0, ∀E ,F ∈ B([0, 1]d),

ν(E) ≤ C |E |s and E ⊂ F ⇒ ν(E) ≤ ν(F )}.

Example: A Borel measure is a capacity.

For a capacity µ, s > 0, and E ⊂ [0, 1], define

µ(+s) = µ(E)|E |s .
The set function µ(+s) is still a capacity.
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Sobolev and Besov Spaces

Let 1 ≤ p, q ≤ +∞.

▶ For m ∈ N, Sobolev spaces are defined by

Wm,p([0, 1]d) = {f ∈ p([0, 1]d) : ∀α ∈ Nd , |α| ≤ m, Dαf ∈ Lp([0, 1]d)}.

▶ For s > 0 with s /∈ N, f ∈ W s,p([0, 1]d) and for all α ∈ Nd such that
|α| = ⌊s⌋, Dαf ∈ C s−⌊s⌋([0, 1]d).

For h ∈ Rd and f : Rd → R, consider the finite difference operator
∆hf : x ∈ Rd 7→ f (x + h)− f (x). Then, for n ≥ 2, set ∆n

hf = ∆h(∆
n−1
h f ).

Besov spaces are generalised versions of Sobolev spaces with control on the
oscillation of the function : for

ωn(f , t)p = sup
0≤h≤t

∥∆n
hf ∥Lp ,

B s
p,q([0, 1]

d) = {f ∈ Lp([0, 1]d) :
∥∥∥(2jd/pωn(f , 2−j)p)j∈N

∥∥∥
lq(N)

< +∞}.

There are sharp embeddings between Sobolev and Besov spaces.
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Inhomogeneous Besov Spaces

From J.Barral and S.Seuret [2], the inhomogeneous Besov spaces generalise the
previously introduced Besov spaces by controlling the oscillation with a
capacity ξ called a ξ-environment.

Definition 2

Let ξ ∈ C([0, 1]d) such that, for 0 < s1 < s2, |E |s1 ≤ ξ(E) ≤ |E |s2 and consider
an integer n ≥

⌊
s2 +

d
p

⌋
+ 1.

For 1 ≤ p, q ≤ +∞, the Besov space in ξ-environment Bξ
p,q([0, 1]d) is the set

of the functions f : [0, 1]d → R such that ∥f ∥Lp < +∞ and for

ωξ
n (f , t)p = sup

t/2≤h≤t

∥∥∥∥ ∆n
hf (x)

ξ(B[x , x + nh])

∥∥∥∥
Lp
,

|f |
B
ξ
p,q([0,1]d )

:=
∥∥∥(2jd/pωξ

n (f , 2
−j)p)j∈N

∥∥∥
lq(N)

< +∞.



Introduction Functional Spaces Multifractal Spectrum

Pointwise exponent and Spectrum

Definition 3 (pointwise Hölder exponent)

Let f ∈ L∞
loc(R). Let α ∈ R\N and x0 ∈ R. The function f belongs to Cα(x0) if

there exist a polynomial Px0 , Kα, rα > 0

∀x ∈ [x0 − rα, x0 + rα], |f (x)− Px0(x − x0)| ≤ Kα|x − x0|α.
The pointwise Hölder exponent is defined by

hf (x0) = sup{α ∈ R+ : f ∈ Cα(x0)}.

Definition 4 (Multifractal spectrum)

Let f ∈ L∞
loc(Rd). The multifractal spectrum of f is

σf : α 7→ dimH ({x ∈ R : hf (x) = α}) ,
with dimH is the Hausdorff dimension (with the convention dimH (∅) = −∞).
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Pointwise exponent and Spectrum
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Pointwise exponent and Spectrum

Similarly for a capacity ν, one has

Definition 6

For x ∈ supp(ν), the lower local dimension of ν at x is

hν(x) = lim inf
j→+∞

log2 ν(λj(x))

−j
.

The multifractal spectrum of ν is the Hausdorff dimension of the level sets

σν : α ∈ R 7→ dimH ({x ∈ R : hν(x) = α) .

Definition 7

The scaling function of ν ∈ C([0, 1]d) is defined by

τν(q) = lim inf
j→+∞

1
−j

log2

( ∑
I∈Λj ,I⊂[0,1]d

ν(I )>0

ν(I )q
)
.

Then one always has σν(α) ≤ τ∗
ν (α) := infq∈R(αq − τν(q)).
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Gibbs measures

Definition 8 (Gibbs measure)

Let φ : Rd → R be a Zd -invariant real valued Hölder continuous function.
Gibbs measures associated with the Hölder continuous potential φ are
measures satisfying the following properties :

▶ Gibbs measures are doubling measure : ∃Cν > 1, ν(2B) ≤ Cν ν(B),

▶ For a Gibbs measure ν, the multifractal spectrum σν is completely known,

▶ They satisfy the multifractal formalism : ∀α ∈ R, σν(α) = τ∗
ν (α),

▶ For a Gibbs measure ν, the function q 7→ τν(q) is analytic.

The dimension of ν defined by

dim(ν) = inf{dimH (E) : ν(E) = 1}
The minimal local dimension of ν is defined by

hmin
ν = min{hν(x) | x ∈ supp(ν)}.

We denote the abscissa of the maximum of the
spectrum hs

ν .
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Auxiliary measure

Definition 9 (Auxiliary measure)

Let ν be a Gibbs measure on Rd and r ∈ R. An auxiliary measure is a
probability measure νr with the following properties : set hr = τ ′

ν(r). Then :

▶ νr is also a Gibbs measure and satisfies the multifractal formalism,

▶ νr (Eνr (σν(hr )) = 1,

▶ dim(νr ) = σν(hr ).

Remark 1

for r ∈ R, hr = τ ′
ν(r) is in the support of σν .

So studying τ ′
ν(r) for all r ∈ R means that one studies all regularity values in

the support of σν .
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Traces

For a ∈ R, my goal is to look at

fa := f |Ha :

{
R2 −→ R
t 7−→ f (t, a).

with Ha := {(t, a) | t ∈ R} the 1-dimensional affine subspace of R2 passing by
(0, a). Consider ξ = µ⊗ ν (µ and ν will be supposed equal here).

Figure: Representation of fa for a ∈ R
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Trace belonging

Standard trace theorems inevitably involve a loss of regularity. For example, the
trace operator f 7→ fa maps B s

p,q([0, 1]2) to B
s−1/p
p,q ([0, 1]).

For standard Besov spaces, Aubry, Maman, Seuret [1] showed the following
results.

Theorem 1

Let 0 < p, s < ∞, with s − 2/p > 0, and 0 < q ≤ ∞.
If f ∈ B s

p,q([0, 1]2) and q < p (resp. q = p), then for Lebesgue-almost all
a ∈ [0, 1], fa ∈ B s

p,qp/(p−q)([0, 1]) (resp. B s
p,∞([0, 1])).

Theorem 2

Let 0 < p < ∞, 0 < q ≤ ∞ and
0 < s − 1/p < +∞. For a prevalent set of
f ∈ B s

p,q([0, 1]2), for Lebesgue-almost all a ∈ [0, 1],

σfa(h) =

1 + (h − s)p if h ∈ [s − 1/p, s],

−∞ else.

Figure: σf for almost all
f ∈ Bs

p,q([0, 1]2) and σfa for
Lebesgue-almost every a ∈ [0, 1]
(Source: Aubry, Maman and Seuret).
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Trace belonging

For a capacity µ, s > 0, and E ⊂ R, define

µ(+s) = µ(E)|E |s .
The set function µ(+s) is still a capacity.

We prove that functions in Bξ
p,q(R2) show a smaller loss of regularity than

expected.

Proposition 1

Let p, q ∈ [1,+∞]. Let µ and ν be Gibbs measures on [0, 1].

Let ξ be the product capacity on [0, 1]2, ξ(λ(1) × λ(2)) := µ(λ(1)) · ν(λ(2)).

Let r ∈ R and νr be the auxiliary measure of ν.

Then for every f ∈ Bξ
p,q([0, 1]2), for νr -almost all a ∈ [0, 1],

fa ∈ B̃µ(+Γν,r )

p,q ([0, 1]) with Γν,r = τ ′
ν(r) +

dim(νr )

p
.

Remark 2

The regularity depends on the regularity of ν in a.



Introduction Functional Spaces Multifractal Spectrum

Upper Bounds

Proposition 2

For all f ∈ Bξ
∞,∞ and a ∈ [0, 1], one has

for h ∈ R, σfa(h) ≤

σµ(h − hmin
ν ) if h ≤ hs

ν + hmin
ν ,

1 if h > hs
ν + hmin

ν .
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Upper Bounds

Strengthening to νr -almost every point a of [0, 1] gives the following results.

Proposition 3

Let r ∈ R and νr be an auxiliary measure of ν and write hr = τ ′
ν(r).

For all f ∈ Bξ
∞,∞ and νr -almost all a ∈ [0, 1], one has

for h ∈ R, σfa(h) ≤

σµ(h − hr ) if h ≤ hs
ν + hr ,

1 for h > hs
ν + hr .



Introduction Functional Spaces Multifractal Spectrum

Prevalence

Prevalence theory is proposed independently by Christensen [3] and Hunt [4].

A set is said to be universally measurable if it is measurable for any
(completed) Borel measure.
A universally measurable set A ⊂ E is called shy if there exists a Borel measure
µ that is positive on some compact subset K of E and such that

for every x ∈ E , µ(A+ x) = 0.

A set that is included in a shy universally measurable set is also shy.

The complement of a shy subset is called prevalent.
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Lower Bound

Theorem 3

Let µ and ν be Gibbs measures on [0, 1].

Let ξ be the product capacity on [0, 1]2, ξ(λ(1) × λ(2)) := µ(λ(1)) · ν(λ(2)).

Let r ∈ R and νr be the auxiliary measure of ν and write hr = τ ′
ν(r).

One has for any dense sequence (hn)n∈N in R+, for a prevalent set of functions
f ∈ Bξ

∞,∞([0, 1]2), for νr -almost all a ∈ [0, 1],

∀n ∈ N, σfa(hn) ≥

σµ(hn − hr ) if hn ∈ supp(σµ) + hr

−∞ else.
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Thank you for you attention !
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