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Structure of the talk

1 What is Kleiner’s conjecture?

2 Background related to Kleiner’s conjecture

3 Present our main result:

A. and Eriksson-Bique ’24

Counstruction of the first counterexample to Kleiner’s conjecture.
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Quasisymmetric uniformization

Quasisymmetry is a homeomorphism with controlled distortion:
Preserves Shapes but not necesarily Sizes.

Quasisymmetric uniformization:
Find a quasisymmetrically equivalent space with more desirable
properties.

Figure: Smoothing of a snowflake is a quasisymmetric uniformization.
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What is Kleiner’s conjecture?

Kleiner’s conjecture ’06

If X is an approximately self-similar metric space satisfying the
combinatorial Loewner property then there is a quasisymmetric
uniformization of X to a Loewner space.

Motivation

1 Loewner spaces are “optimal”.

2 Combinatorial Loewner property is easier to verify.

Figure: Sierpński carpet is combinatorially Loewner, but we do not the
outcome of Kleiner’s conjecture.
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Fundamental tool: Modulus

Let X be a metric measure space and E ,F ⊆ X be disjoint
compact sets. The p-modulus between E and F is

Modp(E ,F ) := inf
ρ≥0

{∫
X
ρp :

∫
γ
ρ ≥ 1 for all γ ∈ Γ(E ,F )

}
.
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Conformal Modulus

Conformal modulus

n-modulus in Rn is scale invariant:

Modp(∂B(x ,R), ∂B(x ,CR)) ≍

log(1/C )1−n p = n∣∣∣(CR) p−n
p−1 − R

p−n
p−1

∣∣∣p−1
p ̸= n.
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Loewner spaces and Quasiconformal geometry

Heinonen-Koskela 98’: Abstracted conformal modulus and
introduced Q-Loewner spaces for Q ∈ (1,∞):

1 Q-Loewner estimates:

ϕ(∆(E ,F )−1) ≤ ModQ(E ,F ) ≤ ψ(∆(E ,F )−1)

∆(E ,F ) :=
dist(E ,F )

diam(E ) ∧ diam(F )

2 Q-Ahlfors regularity:

µ(B(x ,R)) ≍ RQ .

Loewner spaces are really nice for analysis

1 Similar theory of QC mappings as in Rn

2 Nice Sobolev spaces

3 Rademacher-type theorem
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Most fractals are not Loewner

Fundamental problem: Modulus does not work for most fractals.
Potential worst case scenario: Modp ≡ 0.

Loewner theory for fractals?

1 Approach 1: Uniformization? Really hard problem!

2 Approach 2: Replace modulus with something that works!

Figure: Standard modulus (Left) and Discrete modulus (Right).
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Combinatorial Loewner property

Combinatorial Loewner property (CLP)

A space X satisfies the combinatorial Q-Loewner property for
Q ∈ (1,∞) if

ϕ(∆(E ,F )−1) ≤ ModD
Q (E ,F ;U) ≤ ψ(∆(E ,F )−1)

where U is a “good” covering.

Bourdon-Kleiner ’13 (A lot of examples)

CLP is a very generic property among self-similar fractals!
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Loewner VS CLP

Recall: Q-Loewner spaces are Q-Ahlfors regular by definition.

CLP and Loewner are closely related

1 If X is Q-Ahlfors regular, then

ModD
Q ≍ ModQ and Q-Loewner ⇐⇒ Q-CLP.

2 Q-CLP is a quasisymmetric invariant.

Simplified version of Kleiner’s conjecture

Uniformization: Q-CLP to Q-Ahlfors regular

Loewner estimates come for free!
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Attainment problem

Recall: dimH(X ) = Q if X is Q-Ahlfors regular.

Carrasco-Piaggio, Keith and Laakso, Kigami,...

If X is Q-CLP then Q is necessarily the Ahlfors regular conformal
dimension of X :

dARC (X ) := inf{Q : Y is Q-Ahlfors regular and X ∼QS Y }

Kleiner’s conjecture ⇐⇒ Attainment problem

Every approximately self-similar metric space X satisfying the
combinatorial Loewner property attains its Ahlfors regular
conformal dimension.

CLP space is a Loewner space with non-optimal geometry!

11 / 17



Attainment problem

Recall: dimH(X ) = Q if X is Q-Ahlfors regular.

Carrasco-Piaggio, Keith and Laakso, Kigami,...

If X is Q-CLP then Q is necessarily the Ahlfors regular conformal
dimension of X :

dARC (X ) := inf{Q : Y is Q-Ahlfors regular and X ∼QS Y }

Kleiner’s conjecture ⇐⇒ Attainment problem

Every approximately self-similar metric space X satisfying the
combinatorial Loewner property attains its Ahlfors regular
conformal dimension.

CLP space is a Loewner space with non-optimal geometry!

11 / 17



Main result

A. and Eriksson-Bique ’24

Counstruction of the first counterexample to Kleiner’s conjecture.

Claim: No optimal geometry!

Punchline

Suppose there is a subset X ⊆ Y satisfying

1 dARC (X ) = dARC (Y )

2 X ⊆ Y is a porous subset

Then Y does not attain its Ahlfors regular conformal dimension.
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Linear replacement rule

Proof involves two self-similar fractals which arise as limit spaces
of linear replacement rules. Under very mild conditions, the limit
space is combinatorially Loewner.

1 Consider the infinite sequence of self-similar graphs {Gm}m∈N

2 The limit space is the Gromov-Hausdorff limit

X := lim
n→∞

(Gn, 4
−n · dGn).

Proposition

X is 3
2 -Loewner and dARC (X ) = 3

2 .
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Main example

1 Next consider the infinite sequence {G̃m}m∈N

and the limit space

Y := lim
n→∞

(G̃n, 4
−n · d

G̃n
).

Proposition

Y is combinatorially Loewner.

The natural mapping X → Y is a biLipschitz embedding onto a
porous subset.

2 Only left to check that dARC (X ) = dARC (Y )!
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dARC (X ) = dARC (Y )

Proposition

dARC (Y ) =
3

2
= dARC (X ).

ε

1 dimH(Y ) can be decreased arbitarily close to 3
2 .

2 dimH(Y ) cannot be decreased below 3
2 = dARC (X ).

3 Tehcnical detail: Check that the deformation is a
quasisymmetry.
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Counterexample to Kleiner’s conjecture

Main result

Y is approximately self-similar and satisfies the combinatorial
3
2 -Loewner property, but it cannot be quasisymmetrically
uniformized to a 3

2 -Loewner space.

Outline of the proof:

1 The image of the biLipschitz embedding X → Y is a porous
subset.

2 dARC (Y ) = 3
2 = dARC (X ).
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Intuition why the uniformization fails

ε
ε→ 0

Geometric intuition

1 The porous subset X has already attained its optimal
geometry (it is Loewner).

2 The only way to optimize the geometry of Y is to collapse the
edge in middle.

Analytic intuition

1 Discrete modulus is supported on the a porous subset X .
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