On constructions of fractal spaces using replacement and the combinatorial Loewner property

Riku Anttila

Joint work with Sylvester Eriksson-Bique

Fractal Geometry and Stochastics 7

September 24, 2024

Structure of the talk

- What is Kleiner's conjecture?
- Background related to Kleiner's conjecture
- Present our main result:

A. and Eriksson-Bique '24

Counstruction of the first counterexample to Kleiner's conjecture.

Quasisymmetric uniformization

Quasisymmetry is a homeomorphism with controlled distortion: Preserves **Shapes** but not necessarily **Sizes**.

Quasisymmetric uniformization

Quasisymmetry is a homeomorphism with controlled distortion: Preserves **Shapes** but not necessarily **Sizes**.

Quasisymmetric uniformization:

Find a quasisymmetrically equivalent space with more desirable properties.

Figure: Smoothing of a snowflake is a quasisymmetric uniformization.

What is Kleiner's conjecture?

Kleiner's conjecture '06

If X is an approximately self-similar metric space satisfying the combinatorial Loewner property then there is a quasisymmetric uniformization of X to a Loewner space.

What is Kleiner's conjecture?

Kleiner's conjecture '06

If X is an approximately self-similar metric space satisfying the combinatorial Loewner property then there is a quasisymmetric uniformization of X to a Loewner space.

Motivation

- Loewner spaces are "optimal".
- Ombinatorial Loewner property is easier to verify.

What is Kleiner's conjecture?

Kleiner's conjecture '06

If X is an approximately self-similar metric space satisfying the combinatorial Loewner property then there is a quasisymmetric uniformization of X to a Loewner space.

Motivation

- Loewner spaces are "optimal".
- 2 Combinatorial Loewner property is easier to verify.

Figure: Sierpński carpet is combinatorially Loewner, but we do not the outcome of Kleiner's conjecture.

Fundamental tool: Modulus

Let X be a metric measure space and $E, F \subseteq X$ be disjoint compact sets. The p-modulus between E and F is

$$Mod_p(E,F) := \inf_{
ho \geq 0} \left\{ \int_{\mathcal{X}}
ho^p : \int_{\gamma}
ho \geq 1 ext{ for all } \gamma \in \Gamma(E,F)
ight\}.$$

Conformal Modulus

Conformal modulus

n-modulus in \mathbb{R}^n is scale invariant:

$$Mod_p(\partial B(x,R),\partial B(x,CR)) \asymp \begin{cases} \log(1/C)^{1-n} & p=n \\ \left|(CR)^{\frac{p-n}{p-1}} - R^{\frac{p-n}{p-1}}\right|^{p-1} & p \neq n. \end{cases}$$

Loewner spaces and Quasiconformal geometry

Heinonen-Koskela 98': Abstracted conformal modulus and introduced Q-Loewner spaces for $Q \in (1, \infty)$:

Q-Loewner estimates:

$$\phi(\Delta(E,F)^{-1}) \leq Mod_{Q}(E,F) \leq \psi(\Delta(E,F)^{-1})$$
$$\Delta(E,F) := \frac{dist(E,F)}{diam(E) \wedge diam(F)}$$

Q-Ahlfors regularity:

$$\mu(B(x,R)) \asymp R^Q$$
.

Loewner spaces and Quasiconformal geometry

Heinonen-Koskela 98': Abstracted conformal modulus and introduced Q-Loewner spaces for $Q \in (1, \infty)$:

Q-Loewner estimates:

$$\phi(\Delta(E,F)^{-1}) \leq Mod_Q(E,F) \leq \psi(\Delta(E,F)^{-1})$$

$$\Delta(E,F) := \frac{dist(E,F)}{diam(E) \wedge diam(F)}$$

Q-Ahlfors regularity:

$$\mu(B(x,R)) \asymp R^Q$$
.

Loewner spaces are really nice for analysis

- **1** Similar theory of QC mappings as in \mathbb{R}^n
- Nice Sobolev spaces
- Rademacher-type theorem

Most fractals are not Loewner

Fundamental problem: Modulus does not work for most fractals.

Potential worst case scenario: $Mod_p \equiv 0$.

Most fractals are not Loewner

Fundamental problem: Modulus does not work for most fractals. **Potential worst case scenario**: $Mod_p \equiv 0$.

Loewner theory for fractals?

4 Approach 1: Uniformization? **Really hard problem!**

Most fractals are not Loewner

Fundamental problem: Modulus does not work for most fractals. **Potential worst case scenario**: $Mod_p \equiv 0$.

Loewner theory for fractals?

- **1** Approach 1: Uniformization? Really hard problem!
- **2 Approach 2**: Replace modulus with something that works!

Figure: Standard modulus (Left) and Discrete modulus (Right).

Combinatorial Loewner property

Combinatorial Loewner property (CLP)

A space X satisfies the combinatorial Q-Loewner property for $Q \in (1,\infty)$ if

$$\phi(\Delta(E,F)^{-1}) \leq Mod_Q^D(E,F;\mathcal{U}) \leq \psi(\Delta(E,F)^{-1})$$

where ${\cal U}$ is a "good" covering.

Bourdon-Kleiner '13 (A lot of examples)

CLP is a very generic property among self-similar fractals!

Loewner VS CLP

Recall: *Q*-Loewner spaces are *Q*-Ahlfors regular by definition.

CLP and Loewner are closely related

 $oldsymbol{0}$ If X is Q-Ahlfors regular, then

$$Mod_Q^D \asymp Mod_Q$$
 and Q -Loewner $\iff Q$ -CLP.

② Q-CLP is a quasisymmetric invariant.

Loewner VS CLP

Recall: *Q*-Loewner spaces are *Q*-Ahlfors regular by definition.

CLP and Loewner are closely related

 $oldsymbol{0}$ If X is Q-Ahlfors regular, then

$$Mod_Q^D \asymp Mod_Q$$
 and Q -Loewner $\iff Q$ -CLP.

2 *Q*-CLP is a quasisymmetric invariant.

Simplified version of Kleiner's conjecture

Uniformization: Q-CLP to Q-Ahlfors regular

Loewner estimates come for free!

Attainment problem

Recall: $\dim_H(X) = Q$ if X is Q-Ahlfors regular.

Carrasco-Piaggio, Keith and Laakso, Kigami,...

If X is Q-CLP then Q is necessarily the Ahlfors regular conformal dimension of X:

 $d_{ARC}(X) := \inf\{Q : Y \text{ is } Q\text{-Ahlfors regular and } X \sim_{QS} Y\}$

Attainment problem

Recall: $\dim_H(X) = Q$ if X is Q-Ahlfors regular.

Carrasco-Piaggio, Keith and Laakso, Kigami,...

If X is Q-CLP then Q is necessarily the Ahlfors regular conformal dimension of X:

$$d_{ARC}(X) := \inf\{Q : Y \text{ is } Q\text{-Ahlfors regular and } X \sim_{QS} Y\}$$

Kleiner's conjecture ← Attainment problem

Every approximately self-similar metric space X satisfying the combinatorial Loewner property attains its Ahlfors regular conformal dimension.

CLP space is a Loewner space with non-optimal geometry!

Main result

A. and Eriksson-Bique '24

Counstruction of the first counterexample to Kleiner's conjecture.

Claim: No optimal geometry!

Main result

A. and Eriksson-Bique '24

Counstruction of the first counterexample to Kleiner's conjecture.

Claim: No optimal geometry!

Punchline

Suppose there is a subset $X \subseteq Y$ satisfying

Then Y does not attain its Ahlfors regular conformal dimension.

Linear replacement rule

Proof involves two self-similar fractals which arise as limit spaces of linear replacement rules. Under very mild conditions, the limit space is combinatorially Loewner.

Linear replacement rule

Proof involves two self-similar fractals which arise as limit spaces of linear replacement rules. Under very mild conditions, the limit space is combinatorially Loewner.

① Consider the infinite sequence of self-similar graphs $\{G_m\}_{m\in\mathbb{N}}$

The limit space is the Gromov-Hausdorff limit

$$X:=\lim_{n\to\infty}(G_n,4^{-n}\cdot d_{G_n}).$$

Linear replacement rule

Proof involves two self-similar fractals which arise as limit spaces of linear replacement rules. Under very mild conditions, the limit space is combinatorially Loewner.

① Consider the infinite sequence of self-similar graphs $\{G_m\}_{m\in\mathbb{N}}$

The limit space is the Gromov-Hausdorff limit

$$X:=\lim_{n\to\infty}(G_n,4^{-n}\cdot d_{G_n}).$$

Proposition

X is $\frac{3}{2}$ -Loewner and $d_{ARC}(X) = \frac{3}{2}$.

Main example

1 Next consider the infinite sequence $\{\widetilde{G}_m\}_{m\in\mathbb{N}}$

and the limit space

$$Y:=\lim_{n\to\infty}(\widetilde{G}_n,4^{-n}\cdot d_{\widetilde{G}_n}).$$

Main example

1 Next consider the infinite sequence $\{\widetilde{G}_m\}_{m\in\mathbb{N}}$

and the limit space

$$Y := \lim_{n \to \infty} (\widetilde{G}_n, 4^{-n} \cdot d_{\widetilde{G}_n}).$$

Proposition

- Y is combinatorially Loewner.
- The natural mapping $X \to Y$ is a biLipschitz embedding onto a porous subset.

② Only left to check that $d_{ARC}(X) = d_{ARC}(Y)!$

$d_{ARC}(X) = d_{ARC}(Y)$

Proposition

$$d_{ARC}(Y) = \frac{3}{2} = d_{ARC}(X).$$

- $\dim_H(Y)$ can be decreased arbitarily close to $\frac{3}{2}$.
- ② $\dim_H(Y)$ cannot be decreased below $\frac{3}{2} = d_{ARC}(X)$.
- Tehcnical detail: Check that the deformation is a quasisymmetry.

Counterexample to Kleiner's conjecture

Main result

Y is approximately self-similar and satisfies the combinatorial $\frac{3}{2}$ -Loewner property, but it cannot be quasisymmetrically uniformized to a $\frac{3}{2}$ -Loewner space.

Outline of the proof:

① The image of the biLipschitz embedding $X \to Y$ is a porous subset.

 $d_{ARC}(Y) = \frac{3}{2} = d_{ARC}(X).$

Intuition why the uniformization fails

Geometric intuition

- The porous subset X has already attained its optimal geometry (it is Loewner).
- The only way to optimize the geometry of Y is to collapse the edge in middle.

Analytic intuition

lacksquare Discrete modulus is supported on the a porous subset X.