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General setup

Let (X , d) be a compact metric space and (X ,A, µ,T ) be an ergodic,
probability measure preserving system.

Given a real, positive function ψ : N → R⩾0 let

R(T , ψ) :=
{
x ∈ X : T nx ∈ B(x , ψ(n)) for i. m. n ∈ N

}
denote the associated recurrent set, and given a point x0 ∈ X let

W (T , ψ) :=
{
x ∈ X : T nx ∈ B(xo , ψ(n)) for i. m. n ∈ N

}
denote the associated shrinking target set.

If ψ = c (a constant) then

µ(R(T , c)) = 1 = µ(W (T , c)) .

This means that the trajectories of almost all points will hit the
‘constant’ ball infinitely often. In view of this, it is natural to ask:

Question. What happens if the ball shrinks with time? More precisely.....
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Shrinking Targets

Given ψ : N → R⩾0 with that ψ(n) → 0 as n → ∞, what is the size of

W (T , ψ) :=
{
x ∈ X : T nx ∈ Bn := B(xo , ψ(n)) for i. m. n ∈ N

}
?

W (T , ψ) is a limsup set: for n ∈ N let

En :=
{
x ∈ X : T nx ∈ Bn

}
= T−n

(
Bn

)
(very useful that En is a pre-image of a ball) then

W (T , ψ) = lim sup
n→∞

En = T−n
(
Bn

)
.

“points in which lie in T−n
(
B
(
x0, ψ(n)

))
for i. m. n ∈ N.”

Since T preserves the measure µ: µ(En) =µ(T
−n
(
Bn

))
= µ

(
Bn

)
+ (convergent) Borel−Cantelli Lemma =⇒

µ(W (T , ψ)) = 0 if
∑∞

n=1 µ(Bn) <∞ .

What happens when the sum diverges?
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Shrinking Targets: a quantitative statement

Given N ∈ N and x ∈ X , consider the counting function

W (x ,N;T , ψ) := #
{
1 ⩽ n ⩽ N : T nx ∈ Bn := B(x0, ψ(n))} .

T is a exponentially mixing with respect to µ; i.e. ∃ constants C > 0
and γ ∈ (0, 1) such that for any n ∈ N, and any ball B ∈ X and F ∈ A,∣∣µ(B ∩ T−n(F )) − µ(B)µ(F )

∣∣ ⩽ Cγnµ(F ) . (1)

Theorem A

Let (X ,A, µ,T ) be a measure-preserving dynamical system and suppose
that T is exponentially mixing with respect to µ. Let ψ : N → R⩾0 be a
real, positive function. Then, for any given ε > 0, we have that

W (x ,N) = Φ(N) + O
(
Φ1/2(N) (log Φ(N))3/2+ε

)
for µ-almost all x ∈ X, where

Φ(N) :=
N∑

n=1

µ(Bn) .
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Shrinking Targets: main step for quantitative statement

Proposition 1

For arbitrary a, b ∈ N with a < b,

2
∑∑
a≤m<n≤b

µ(Em ∩ En) ⩽
( b∑

n=a

µ(En)
)2

+ O
( b∑

n=a

µ(En)
)
.

Since En = T−n(Bn), T is measure preserving and exponentially mixing:

µ(Em ∩ En) = µ
(
T−m(Bm) ∩ T−n(Bn)

)
= µ

(
Bm ∩ T−(n−m)(Bn)

)
⩽ µ

(
Bm

)
µ
(
Bn

)
+ Cγn−mµ

(
Bn

)
= µ

(
Em

)
µ
(
En

)
+ Cγn−mµ

(
En

)
.

Thus

2
∑∑
a≤m<n≤b

µ(Em ∩ En) ⩽
( b∑

n=a

µ(En)
)2

+ C
b∑

n=a

µ(En)
∞∑

m=1

γm .

This completes the proof since the sum involving γ is convergent.
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Shrinking Targets: the zero-one criterion

Theorem A =⇒ limN→∞ W (x ,N) = ∞ for µ–almost all x ∈ X if
the measure sum Φ := limN→∞ Φ(N) diverges.

The upshot is the
following zero-full measure criterion.

Theorem B

Let (X ,A, µ,T ) be a measure-preserving dynamical system and suppose
that T is exponentially mixing with respect to µ. Let ψ : N → R⩾0 be a
real, positive function. Then

µ
(
W (T , ψ)

)
=

0 if
∑∞

n=1 µ
(
Bn

)
<∞

1 if
∑∞

n=1 µ
(
Bn

)
= ∞.

Under additional assumptions, analogues of Theorem B for the recurrent
set R(T , ψ) have been established in numerous works (eg. recently
Baker-Farmer (2021), Hussian-Li-Simmons-Wang (2022),
Kirsebom-Kunde-Persson (2023), He-Liao (2023), .... )
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Recurrent Set: the zero-one criterion

If one of the additional assumptions (beyond exponentially mixing) is
that µ is δ-Ahlfors regular (as in BF & HLSW) then µ(Bn) ≍ ψδ(n) and
the conclusion of the analogous of Theorem B for R(T , ψ) reads:

µ
(
R(T , ψ)

)
=

0 if
∑∞

n=1 ψ
δ(n) <∞

1 if
∑∞

n=1 ψ
δ(n) = ∞.

(2)

Aim: to obtain an analogue of Theorem A for R(T , ψ).

Persson (May 2024) for dynamical systems ([0, 1],T , µ) obtains an
asymptotic statement (without error term) but requires growth
conditions on ψ that excludes the critical rate ψ(n) = n−1/δ.

What should we expect?
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What should we expect?

For n ∈ N, let

An =
{
x ∈ X : T nx ∈ B(x , ψ(n))

}
.

By definition,
R(T , ψ) = lim sup

n→∞
An .

Theorem A shows that the asymptomatic behaviour of the shrinking
target counting function is determined by the measure sum involving the
fundamental sets En associated with W (T , ψ).

It would be reasonable to
expect (under suitable assumptions) that the asymptomatic behaviour of
the recurrent counting function

R(x ,N) = R(x ,N;T , ψ) := #
{
1 ⩽ n ⩽ N : d(T nx , x) < ψ(n)}.

is determined by the measure sum

Φ(N) :=
∑N

n=1µ(An) .

The “desirable” statement would be: for µ-almost all x ∈ X

R(x ,N) = Φ(N) + O
(
Φ1/2(N) (log Φ(N))3/2+ε

)
. (3)

We establish (3) for a class of piecewise linear maps.
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Theorem A shows that the asymptomatic behaviour of the shrinking
target counting function is determined by the measure sum involving the
fundamental sets En associated with W (T , ψ). It would be reasonable to
expect (under suitable assumptions) that the asymptomatic behaviour of
the recurrent counting function
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{
1 ⩽ n ⩽ N : d(T nx , x) < ψ(n)}.
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Φ1/2(N) (log Φ(N))3/2+ε

)
. (3)

We establish (3) for a class of piecewise linear maps.



Our result in one-dimension

The following constitutes our main one dimensional result.

Theorem 1

Let T : [0, 1] → [0, 1] be a piecewise linear map sending each interval of
linearity to [0, 1]. Let ψ : N → R⩾0 be a real, positive function. Then, for
any given ε > 0, we have that

R(x ,N) = Ψ(N) + O
(
Ψ1/2(N) (logΨ(N))3/2+ε

)
for µ-almost all x ∈ X, where

Ψ(N) := 2
N∑

n=1

ψ(n) .

Apparently new even for T : x → 2x mod 1.
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Key properties of one-dimensional set up.

Let Jm be an interval of linearity for Tm; i.e., Jm ∈ Pm - the collection of
cylinder sets of order m that partition [0, 1].

Let KJm := 1/µ(Jm), where µ is Lebsegue measure. Then Tm|Jm is a
similarity with dilatation factor KJm . In particular, |(Tm)′(y)| = KJm for
any y ∈ Jm.

Moreover:

• T is expanding: there exists a λ > 1 such that |T ′(x)| ⩾ λ for all
x ∈ [0, 1]. It follows that for any m ∈ N

KJm ⩾ λm .

• T is a measure preserving transformation with respect to µ; i.e. µ is
a T -invariant probability measure. For any measurable set F ⊆ Jm

µ(Tm(F )) = KJmµ(F )

• T is a exponentially mixing with respect to µ; i.e. there exists a
constants C > 0 and 0 < γ < 1 such that for any n ∈ N, and any
ball B ∈ [0, 1] and measurable set F ∈ [0, 1],

µ(B ∩ T−n(F )) = µ(B)µ(F ) + O(γn)µ(F ) .
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The setup and result in higher dimensions

Let T : [0, 1]d → [0, 1]d be a piecewise linear map sending each rectangle
of linearity to [0, 1]d ; i.e., we allow the collection Pm of cylinder sets Jm
of order m to be rectangles.

Given N ∈ N and x = (x1, . . . , xd) ∈ [0, 1]d , let

R(x,N;T , ψ) := #
{
1 ⩽ n ⩽ N : dist(xi ,T

n(x)i ) ≤ ψi (n) ∀ 1 ⩽ i ⩽ d
}
.

where
ψ(n) :=

∏d
i=1 ψi (n) .

Analogue of Theorem 1: for any given ε > 0, we have that

R(x ,N) = Ψ(N) + O
(
Ψ1/2(N) (logΨ(N))3/2+ε

)
for µ-almost all x ∈ X, where

Ψ(N) := 2d
∑N

n=1ψ(n) .

I will just concentrate on one-dimensional statement.
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A mechanism for establishing counting results.

A quantitative form of the (divergence) Borel-Cantelli Lemma.

Lemma H (Harman: Lemma 1.5)

Let (X ,A, µ) be a probability space, let (fn(x))n∈N be a sequence of
non-negative µ-measurable functions defined on X , and (fn)n∈N, (ϕn)n∈N
be sequences of real numbers such that

0 ≤ fn ≤ ϕn (n = 1, 2, . . .).

Suppose that for arbitrary a, b ∈ N with a < b, we have

∫
X

(
b∑

n=a

(
fn(x)− fn

))2

dµ(x) ≤ C
b∑

n=a

ϕn (4)

for an absolute constant C > 0. Then, for any given ε > 0, we have

N∑
n=1

fn(x) =
N∑

n=1

fn + O

(
Φ(N)1/2 log

3
2+ε Φ(N) + max

1≤k≤N
fk

)
(5)

for µ-almost all x ∈ X, where Φ(N) :=
∑N

n=1 ϕn.



Bounding the variance is the key

In statistical terms, if the sequence fn is the mean of fn(x); i.e.

fn =

∫
X

fn(x)dµ(x) ,

then the l.h.s. of (4); namely

∫
X

(
b∑

n=a

(
fn(x)− fn

))2

dµ(x) ,

is simply the variance Var(Za,b) of the random variable

Za,b = Za,b(x) :=
b∑

n=a

fn(x) .

In particular,

Var(Za,b) = E(Z 2
a,b)− E(Za,b)

2 where E(Za,b) =

∫
X

Za,b(x)dµ(x) .



Proving Theorem 1

We consider Lemma H with

X := [0, 1] , fn(x) := χAn(x) and fn := ϕn := µ(An) ,

where χAn is the characteristic function An. Then, by definition fn is the
mean of fn(x) and for any x ∈ X and N ∈ N we have that the

l.h.s. of (5) = R(x ,N) .

Also, the main term on the r.h.s. of (5) is

Φ(N) :=
∑N

n=1µ(An) .

Furthermore, it can be verified that for any a, b ∈ N with a < b

l.h.s. of (4) =
b∑

n=a

µ(An) + 2
∑∑
a≤m<n≤b

µ(Am ∩ An)−

(
b∑

n=a

µ(An)

)2

(6)

UPSHOT: in view of Lemma H, the proof boils down to ‘appropriately’
estimating the r.h.s. of (6) and showing Φ(N) can be replaced by Ψ(N).
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Proving Theorem 1: continued
Estimating the measure of the intersection of the sets An is where the
main difficulty lies. The following is at the heart.

Proposition 1. For arbitrary a, b ∈ N with a < b,

2
∑∑
a≤m<n≤b

µ(Am ∩ An) ⩽
( b∑

n=a

µ(An)
)2

+ O
( b∑

n=a

µ(An)
)
.

With this at hand, it follows that

r.h.s. of (6) ≪
b∑

n=a

µ(An) :=
b∑

n=a

ϕn (ϕn := fn) .

So (4) is satisfied and Lemma H implies: for µ-almost all x ∈ X .

R(x ,N) = Φ(N) + O
(
Φ1/2(N) (log Φ(N))3/2+ε

)
, (7)

The following enables us to replace Φ(N) by Ψ(N) := 2
∑N

n=1 ψ(n).

Proposition 2. For arbitrary N ∈ N,
N∑

n=1

µ(An) = 2
N∑

n=1

ψ(n) + O(1) .
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Filling in the “holes”: proving Propositions 1 & 2

The following provides a mechanism for “locally” representing An as the
inverse image of a ball.

Lemma 1. Let B := B(z , r) be a ball centred at z ∈ X and radius
r > 0. Then for any m ∈ N with ψ(m) > r

B ∩ T−m
(
B (z , ψ(m)− r)

)
⊂ B ∩ Am ⊂ B ∩ T−m

(
B (z , ψ(m) + r)

)

Recall: T : X → X is piecewise linear map sending intervals of linearity
to X . Let Jm be an interval of linearity for Tm. Then there is a unique
fixed point zJm of Tm on Jm. Let KJm = 1/|Jm|. The following (a special
case of the Lemma 1 with B = Jm) is key.

Lemma 2. For any m ∈ N,

Jm ∩ Am := IJm = Jm ∩ B
(
zJm , (KJm ± 1)−1ψ(m)

)
,

where it is “plus” if Tm is decreasing on Jm and “minus” otherwise.
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