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denote the associated recurrent set, and given a point xp € X let
W(T,¥) = {x € X: T"x € B(x,%(n)) fori. m. n€ N}
denote the associated shrinking target set.
@ If ¢ = ¢ (a constant) then
p(R(T,c)) =1=p(W(T,c)).

This means that the trajectories of almost all points will hit the
‘constant’ ball infinitely often. In view of this, it is natural to ask:

Question. What happens if the ball shrinks with time? More precisely.....
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Shrinking Targets

Given ¢ : N — R3¢ with that ¢)(n) — 0 as n — oo, what is the size of
W(T, ) :={x€X:T"x € By := B(xo,9(n)) fori. m. ne€ N} 7
W(T,%) is a limsup set: for n € N let
E, = {X eX:T'xe B,,} = Tf"(B,,)
(very useful that E, is a pre-image of a ball) then

W(T,v¢) =limsupE, = T*"(B,,) .

n— o0

“points in which lie in T="(B(xo,%(n))) fori. m. n e N.”

Since T preserves the measure ;. i(E,) =p(T"(Bn)) = p(Bn)
+  (convergent) Borel—Cantelli Lemma =

HW(T, ) =0 if 2%, u(By) < oo

What happens when the sum diverges?
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Theorem A

Let (X, A, u, T) be a measure-preserving dynamical system and suppose
that T is exponentially mixing with respect to j1. Let ¢ : N — R be a
real, positive function. Then, for any given € > 0, we have that

W(x, N) = ®(N) + O (9M/2(N) (log ®(N))*2+)
for p-almost all x € X, where

N
O(N) = 3" u(By).
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Shrinking Targets: main step for quantitative statement

Proposition 1

For arbitrary a,b € N with a < b,

2 Y5 weanen < (Lu) + o(3uen )

a<m<n<b

Since E, = T~ "(B,), T is measure preserving and exponentially mixing:

WEnNE) = (T "(Bu) N T (By)) = u(Bn T-""(5y))

< p(Bm)p(Bn) + Cy" " pu(Bn)
= 1(En)u(En) + CY""u(En) -
Thus b b o
DHWICHIE (S mE)” + > onEn >

This completes the proof since the sum involving v is convergent.
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Under additional assumptions, analogues of Theorem B for the recurrent
set R(T,) have been established in numerous works (eg. recently
Baker-Farmer (2021), Hussian-Li-Simmons-Wang (2022),
Kirsebom-Kunde-Persson (2023), He-Liao (2023), .... )
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For n € N, let
Ap={x€X:T"x e B(x,1(n))}.

By definition, .
R(T,¢) =limsupA,.

n—oo
Theorem A shows that the asymptomatic behaviour of the shrinking
target counting function is determined by the measure sum involving the
fundamental sets E, associated with W/(T, ). It would be reasonable to
expect (under suitable assumptions) that the asymptomatic behaviour of
the recurrent counting function

R(x,N) = R(x,N; T, ) := #{1 <n<N:d(T"x,x) < ¥(n)}.

is determined by the measure sum

N

P(N) =321 1(An).

The "desirable” statement would be: for p-almost all x € X
R(x, N) = ®(N) + O (¢1/2(N) (log ¢(N))3/2+5> . (3)

We establish (3) for a class of piecewise linear maps.
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Let T :[0,1] — [0, 1] be a piecewise linear map sending each interval of
linearity to [0,1]. Let ¢ : N — R be a real, positive function. Then, for
any given € > 0, we have that

R(x,N)=WV¥(N)+ O (\111/2(/\/) (|ng(N))3/2+a)

for p-almost all x € X, where

Apparently new even for T : x — 2x mod 1.
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Let K, :=1/u(Jm), where 1 is Lebsegue measure. Then T™|, is a
similarity with dilatation factor K. In particular, |(T™) (y)| = K, for
any y € Jn.



Key properties of one-dimensional set up.

Let J,, be an interval of linearity for T™; i.e., J,, € Py, - the collection of
cylinder sets of order m that partition [0, 1].

Let K, :=1/u(Jm), where 1 is Lebsegue measure. Then T™|, is a
similarity with dilatation factor K. In particular, |(T™) (y)| = K, for
any y € J,,. Moreover:

e T is expanding: there exists a A > 1 such that | T'(x)| > X for all
x € [0,1]. It follows that for any m € N

Ky > \m.

e T is a measure preserving transformation with respect to u; i.e. u is
a T-invariant probability measure. For any measurable set F C J,,

u(T™(F)) = Ky, u(F)
e T is a exponentially mixing with respect to p; i.e. there exists a

constants C > 0 and 0 < v < 1 such that for any n € N, and any
ball B € [0, 1] and measurable set F € [0, 1],

(BN T(F)) = u(B)u(F) + O(Y")u(F) .



The setup and result in higher dimensions

Let T :[0,1]¢ — [0,1]¢ be a piecewise linear map sending each rectangle
of linearity to [0,1]7; i.e., we allow the collection P, of cylinder sets J,
of order m to be rectangles.

Given N € N and x = (xi,...,xq4) € [0,1]9, let
R(x, N; T, 1) := #{1 < n < N dist(x, TM(x);) < i(n) ¥1<i< d}.

where
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The setup and result in higher dimensions

Let T :[0,1]¢ — [0,1]¢ be a piecewise linear map sending each rectangle
of linearity to [0,1]7; i.e., we allow the collection P, of cylinder sets J,
of order m to be rectangles.

Given N € N and x = (xi,...,xq4) € [0,1]9, let
R(x, N; T, 1) := #{1 < n < N dist(x, TM(x);) < i(n) ¥1<i< d}.

where

() =TT vi(n)
Analogue of Theorem 1: for any given € > 0, we have that
R(x, N) = W(N) + O (w1/2(/v) (log w(/v))3/2+f)
for p-almost all x € X, where

W(N) =295 y(n).

I will just concentrate on one-dimensional statement.



A mechanism for establishing counting results.

A quantitative form of the (divergence) Borel-Cantelli Lemma.

Lemma H (Harman: Lemma 1.5)

Let (X, A, u) be a probability space, let (f,(x))nen be a sequence of
non-negative p-measurable functions defined on X, and (f,)nen, (@n)nen
be sequences of real numbers such that

0< f, < o (n=1,2,...).
Suppose that for arbitrary a,b € N with a < b, we have

b

/X (Z (fn(x)—fn)> dp(x) < CY_ én (4)

n=a

for an absolute constant C > 0. Then, for any given € > 0, we have

N N
_ 1/2 3+e
HZ:; fn(x) ; fa+ O (CD(N) log2™= ®(N) + B, fk> (5)

for p-almost all x € X, where ®(N) := ZQ’ZI ®n.




Bounding the variance is the key

In statistical terms, if the sequence f, is the mean of f,(x); i.e.

f, = /X F(x)dp(x)

then the l.h.s. of (4); namely

b

/X (Z (fa(x) — fn)> du(x),

h=a

is simply the variance Var(Z, ) of the random variable

b
Zop=Zop(x) =Y _ Fa(x).
In particular,

Var(Z, ) = E(Z,) — B(Zab)* where E(Z,5) = /X Z, p(x)dp(x) .



Proving Theorem 1

We consider Lemma H with
X :=[0,1], fo(x) = xa,(x) and foi=¢n = p(An),

where x4, is the characteristic function A,. Then, by definition f, is the
mean of f,(x) and for any x € X and N € N we have that the

Lh.s. of (5) = R(x,N).

Also, the main term on the r.h.s. of (5) is

O(N) := Yp 14(An)-



Proving Theorem 1

We consider Lemma H with

=[0,1], fo(x) = xa,(x) and foi=¢n = p(An),

where x4, is the characteristic function A,. Then, by definition f, is the
mean of f,(x) and for any x € X and N € N we have that the

Lh.s. of (5) = R(x,N).
Also, the main term on the r.h.s. of (5) is
N
O(N) =31 1(An) -
Furthermore, it can be verified that for any a, b € N with a < b

Lh.s. of (4) Z“ ) +2 ) > AnNA) (Z“ )2

a<m<n<b
(6)

UPSHOT: in view of Lemma H, the proof boils down to ‘appropriately’
estimating the r.h.s. of (6) and showing ®(N) can be replaced by W(N).



Proving Theorem 1: continued

Estimating the measure of the intersection of the sets A, is where the
main difficulty lies. The following is at the heart.
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Estimating the measure of the intersection of the sets A, is where the
main difficulty lies. The following is at the heart.

Proposition 1. For arbitrary a,b € N with a < b,

23" wAnN Ay < (Eb:u(An))z + o(iu(;\n) )

a<m<n<b

With this at hand, it follows that

b b
rhs. of (6) < Y u(An) =D én (¢n:=F).

So (4) is satisfied and Lemma H implies: for p-almost all x € X.

R(x, N) = ®(N) + O (¢1/2(N) (log ¢(N))3/2+6) : (7)

The following enables us to replace ®(N) by W(N) := 22,’:’:1 ¥(n).
Proposition 2. For arbitrary N € N,

N N
> (A =2 W(n) + O(1).
n=1 n=1



Filling in the “holes”: proving Propositions 1 & 2

The following provides a mechanism for “locally” representing A, as the
inverse image of a ball.

Lemma 1. Let B := B(z,r) be a ball centred at z € X and radius
r > 0. Then for any m € N with ¢(m) > r

BOT"(B(z4(m)=r)) € BNAy C BNT "(B(z,4(m)+r))



Filling in the “holes”: proving Propositions 1 & 2

The following provides a mechanism for “locally” representing A, as the
inverse image of a ball.

Lemma 1. Let B := B(z,r) be a ball centred at z € X and radius
r > 0. Then for any m € N with ¢»(m) > r

BT (B(z0(m) ) C BA, € BOT"(8(2,0(m) +1))

Recall: T : X — X is piecewise linear map sending intervals of linearity
to X. Let J,, be an interval of linearity for T™. Then there is a unique
fixed point z;, of T™ on Jy,. Let K, = 1/|Jm|. The following (a special
case of the Lemma 1 with B = Jp,,) is key.

Lemma 2. for any m € N,
Im NV Am =1y, = I 0 B(2y,, (Ky, £1)"1p(m))

where it is “plus” if T™ is decreasing on J,, and “minus” otherwise.



