Quasi-isometric equivalence of Galton-Watson trees

Sascha Troscheit

27 September 2024

Fractal Geometry and Stochastics 7, Chemnitz

UPPSALA IJNIVERSITET **Overview**

MOTIVATING QUESTION How similar are two independent

realisations of a stochastically self-similar set?

Structure:

- What are quasi-isometries?
- Random graphs: Lattice & tree
- Applications to stochastically self-similar sets
- The proofs: parking cars on graphs

Krishna Athreya (1939–2023)

Jayadev Athreya

VERSITET

Quasi-isometries

UNIVERSITET

Quasi-isometries

DEFINITION 1

Let (X, d) , (Y, ρ) be metric spaces. We say $\phi : X \hookrightarrow Y$ is a (A, B) -quasi-isometric embedding if for all $x, y \in X$,

$$
\frac{1}{A}\cdot \rho(\phi(x),\phi(y))-B\leq d(x,y)\leq A\cdot \rho(\phi(x),\phi(y))+B,
$$

We say ϕ is an (A, B, C) -quasi-isometry (QI) if it is an (A, B) -quasi-isometric embedding and there exists $C > 0$ s.t. for all $y \in Y$ there exists $x \in X$ such that

 $\rho(\phi(x), y) \leq C$.

A quasi-isometry is a 'weak' notion of geometric similarity that represents 'coarse' bi-Lipschitz mappings.

Some remarks

REMARK 1

If there exists a quasi-isometry ϕ : $X \rightarrow Y$ then there exists a *quasi-isometry* $\psi: Y \rightarrow X$.

Quasi-isometries define an equivalence relation: X ∼*qi Y .*

EXAMPLE 2

Quasi-isometries are 'coarse' bi-Lipschitz maps:

- Z *^d* ∼*qi* R *d*
- All Delone sets *F* ⊂ *X* satisfy *F* ∼*qi X*.
- All bounded sets *F* are in the same equivalency class: *F* ∼*qi* $\{x\}$

Quasi-isometries are a major tool in the study of groups (geometric group theory).

We may study Cayley graphs of groups (*G*, ·) using quasi-isometries with the graph metric.

Many interesting properties are invariant under quasi-isometries:

- Hyperbolicity,
- Growth rate,
- Amenability,
- . . .

Random graphs

UNIVERSITET

The percolated lattice

Consider \mathbb{Z}^d (either as $\subset \mathbb{R}^2$ or $(\mathbb{Z}^d,+)$).

Let $p \in [0, 1]$ and let $X_q \equiv \text{Ber}(1 - p)$, be iid random variables indexed by $g \in \mathbb{Z}^d.$ X_g determines when g is discarded:

The percolated lattice is $Z(\omega) = Z_\rho(\omega) = \{g \in \mathbb{Z}^d : X_g = 1\}$ for $\omega \in \{0,1\}^{\mathbb{Z}^d}.$

 \rightarrow

A stunning structural statement

Some easy observations:

- For $p \in (0, 1)$ there are (almost surely) arbitrarily large 'holes'. Hence *Z*(*ω*) ≁*qi ℤ^d ∼qi* ℝ^d (a.s.).
- 'Density' of large holes different for different $0 < p < q < 1$. Hence $Z_p(\omega) \not\sim_{qi} Z_q(\omega')$ (a.s.) for independent $\omega, \omega'.$

THEOREM 3 (BASU-SLY '14, BASU-SIDORAVICIUS-SLY '18) *Fix p* \in [0, 1]*. Then, for a.e. choice of independent* $\omega, \omega' \in \Omega$ *,*

$$
Z(\omega) \sim_{qi} Z(\omega').
$$

Their result is much more general using "pattern matching".

Some pictures

8

Galton-Watson trees

Let *X* be a bounded, positive, integer-valued random variable. Write $p_i = \mathbb{P}(X = i)$.

We write $T = T(\omega)$ for the random where the 'offspring' has distribution *X*.

TRIVIAL FACT

Let *Tⁿ* be the *n*-tree. Then *T*^{*n*} ∼*qi T*^{*m*} for all 2 ≤ *n* ≤ *m*. Hence $T(\omega) \sim_{q_i} T(\omega')$ almost surely if $p_1 = 0$.

The problem is $p_1 > 0$:

Expanding trees cannot be embedded into long lines.

Results

THEOREM 4 (ATHREYA-T. '24+)

Let T be a Galton-Watson tree with bounded offspring distribution ((∃*N*)(∀*n* > *N*)*pⁿ* = 0*). Conditioned on* diam $T = \infty$.

 $T(\omega) \sim_{qi} T(\omega')$ for a.e. independent ω, ω' .

COROLLARY 5

Let F be a self-similar set satisfying the SSC and let $F(\omega)$ *be fractal percolation on F. Then,* $F(\omega)$ *and* $F(\omega')$ *are* $quasisymmetrically equivalent for a.e. ω, ω' .$

Before we start: it suffices¹ to consider $p_1 + p_2 = 1$.

Parking on the binary tree

UNIVERSITET

The car parking problem

THEOREM 6 (ALDOUS-CONTAT-CURIEN-HÉNARD '23) *Let G*(*t*) *be the generating function of X. Suppose there exists* $t_c \in (0,\infty)$ *such that*

 $t_c = \min\{t \ge 0 : 2(G(t) - tG'(t))^2 = t^2 G(t)G''(t)\}$

Then the parking process is subcritical if and only if

$$
(t_c-2)G(t_c)\geq t_c(t_c-1)G'(t_c).
$$

EXAMPLE 7 (GEOMETRIC CARS)

If $\mathbb{P}(X = k) = q^k(1 - q)$ then the car parking process is critical if and only if $E(X) \leq \frac{1}{8}$ $\frac{1}{8}$.

Connecting cars and quasi-isometries

 13

