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Over v iew

MOTIVATING QUESTION

How similar are two independent
realisations of a stochastically
self-similar set?

Structure:

• What are quasi-isometries?

• Random graphs: Lattice & tree

• Applications to stochastically
self-similar sets

• The proofs: parking cars on graphs
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Quas i - i somet r ies

DEFINITION 1
Let (X ,d), (Y , ρ) be metric spaces. We say φ : X ↪→ Y is a
(A,B)-quasi-isometric embedding if for all x , y ∈ X ,

1
A
· ρ(φ(x), φ(y))− B ≤ d(x , y) ≤ A · ρ(φ(x), φ(y)) + B,

We say φ is an (A,B,C)-quasi-isometry (QI) if it is an
(A,B)-quasi-isometric embedding and there exists C > 0 s.t.
for all y ∈ Y there exists x ∈ X such that

ρ(φ(x), y) ≤ C.

A quasi-isometry is a ‘weak’ notion of geometric similarity that
represents ‘coarse’ bi-Lipschitz mappings.
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Some remar ks

REMARK 1
If there exists a quasi-isometry φ : X → Y then there exists a
quasi-isometry ψ : Y → X.

Quasi-isometries define an equivalence relation: X ∼qi Y.

EXAMPLE 2
Quasi-isometries are ‘coarse’ bi-Lipschitz maps:

• Zd ∼qi Rd

• All Delone sets F ⊂ X satisfy F ∼qi X .

• All bounded sets F are in the same equivalency class:
F ∼qi {x}
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Relevance

Quasi-isometries are a major tool in the study of groups
(geometric group theory).

We may study Cayley graphs of groups (G, ·) using
quasi-isometries with the graph metric.

Many interesting properties are invariant under quasi-isometries:

• Hyperbolicity,

• Growth rate,

• Amenability,

• . . .
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Random graphs



The perco la ted la t t i ce

Consider Zd (either as ⊂ R2 or (Zd ,+)).

Let p ∈ [0,1] and let Xg ≡ Ber(1− p), be iid random variables
indexed by g ∈ Zd . Xg determines when g is discarded:

The percolated lattice is Z (ω) = Zp(ω) = {g ∈ Zd : Xg = 1} for
ω ∈ {0,1}Zd

.

→
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A stunn ing s t r uc tu ra l s ta tement

Some easy observations:

• For p ∈ (0,1) there are (almost surely) arbitrarily large
‘holes’. Hence Z (ω) 6∼qi Zd ∼qi Rd (a.s.).

• ‘Density’ of large holes different for different 0 < p < q < 1.
Hence Zp(ω) 6∼qi Zq(ω′) (a.s.) for independent ω, ω′.

THEOREM 3 (BASU-SLY ’14, BASU-SIDORAVICIUS-SLY ’18)
Fix p ∈ [0,1]. Then, for a.e. choice of independent ω, ω′ ∈ Ω,

Z (ω) ∼qi Z (ω′).

Their result is much more general using “pattern matching”.
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Some p ic tu res

∼qi
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Gal ton-Watson t rees

Let X be a bounded, positive, integer-valued random variable.
Write pj = P(X = j).

We write T = T (ω) for the random where the ‘offspring’ has
distribution X .

TRIVIAL FACT

Let Tn be the n-tree. Then
Tn ∼qi Tm for all 2 ≤ n ≤ m.

Hence T (ω) ∼qi T (ω′) almost
surely if p1 = 0.

The problem is p1 > 0:
Expanding trees cannot be embedded into long lines.
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Resu l ts

THEOREM 4 (ATHREYA-T. ’24+)
Let T be a Galton-Watson tree with bounded offspring
distribution ((∃N)(∀n > N)pn = 0). Conditioned on
diam T =∞,

T (ω) ∼qi T (ω′) for a.e. independent ω, ω′.

COROLLARY 5
Let F be a self-similar set satisfying the SSC and let F (ω) be
fractal percolation on F. Then, F (ω) and F (ω′) are
quasisymmetrically equivalent for a.e. ω, ω′.

Before we start: it suffices1 to consider p1 + p2 = 1.
1Terms and Conditions apply.
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Par k ing on the b inar y t ree



The car par k ing problem
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The car par k ing problem

THEOREM 6 (ALDOUS-CONTAT-CURIEN-HÉNARD ’23)
Let G(t) be the generating function of X . Suppose there exists
tc ∈ (0,∞) such that

tc = min{t ≥ 0 : 2(G(t)− tG′(t))2 = t2G(t)G′′(t)}

Then the parking process is subcritical if and only if

(tc − 2)G(tc) ≥ tc(tc − 1)G′(tc).

EXAMPLE 7 (GEOMETRIC CARS)

If P(X = k) = qk (1− q) then the car parking process is critical
if and only if E(X ) ≤ 1

8 .
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Connec t ing cars and quas i - i somet r ies
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