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Donsker’s Invariance Principle

Let (Xt)t≥0 be the simple random walk (linearly interpolated). Then(
n−1Xn2t

)
t≥0

=⇒
n→∞

(
Wt

)
t≥0

with W Brownian motion.
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Scaling Limit for the Simple Random Walk
The same convergence happens in all dimensions.

Brownian motion is the continuous counterpart of the simple random
walk.

Brownian motion is a Gaussian process. Its transition probability
densities Px [Wt ∈ dy ] = pt(x , y) dy are given by the Gaussian heat
kernel

pt(x , y) =
1√
(2π)d

t−d/2 exp

(
− |x − y |2

t

)
.
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Heat kernel behaviour on fractals
For Brownian motion on fractal spaces like

we have sub-Gaussian heat kernel behaviour

pt(x , y) ≍ c t−α/β exp

(
− c

(
d(x , y)β

t

) 1
β−1

)
, β > 2

(Barlow-Perkins ’88; Kumagai ’93; Fitzsimmons-Hambly-Kumagai ’94, Barlow-Bass ’92, ’99)

with

α = Hausdorff-dimension

β = walk dimension

Ex

[
d(x ,Wt)

]
≍ t2/β.
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The Random Conductance Model (RCM)
Intuitive description

Put random conductances (or weights) ωe ∈ [0,∞) on the edges of
the Euclidean lattice (Zd ,Ed), d ≥ 2.

Look at a continuous time Markov chain Xt with jump probabilities
proportional to the edge conductances. Then the jump probability
from x to y ∼ x is

Pxy =
ωxy∑
z∼x ωxz

.

Bond conductivities: blue ≪ 1, black ≈ 1, red ≫ 1.
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Definitions
Environment. Let

Ω = [0,∞)Ed be the space of environments,

P be a probability law on Ω which makes the coordinates (ωe)e∈Ed

stationary ergodic random variables.

Random walk. For ω ∈ Ω and x ∈ Zd let Pω
x be the law of the random

walk (Xt)t≥0 on Zd starting in x with generator

Lωf (x) =
1

µω
x

∑
y∼x

ωxy

(
f (y)− f (x)

)
, µω

x :=
∑
y∼x

ωxy .

Lω is symmetric w.r.t. the measure µω.

Heat kernel. Let

pωt (x , y) =
Pω
x (Xt = y)

µω
y

= pωt (y , x).
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Question
Goal: Understand the long-time behaviour of the random walk X and the
heat kernel pωt (x , y)! Do they exhibit Gaussian behaviour?

Why should it not be Gaussian?

Traps: d = 1

Problems

Quenched invariance principle (QIP): For P-a.a. ω, under Pω
0 ,(

n−1Xn2t

)
t≥0

=⇒
n→∞

(
Σ ·Wt

)
t≥0

with W Brownian motion on Rd .

Quenched local limit theorem:.

ndpωn2t(0, ⌊nx⌋) −→
n→∞

P0

[
Σ ·Wt ∈ dx

]
/E[µω

0 ], P-a.s.

Gaussian bounds: pωt (x , y) ≍ c t−d/2exp
(
− c |x − y |2/t

)
.
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Results in the i.i.d. case

Theorem (A.-Barlow-Deuschel-Hambly ’13)

Let d ≥ 2 and (ωe)e∈Ed
be i.i.d. with ωe ≥ 0 P-a.s. and P(ωe > 0) > pc .

Then, QIP holds with Σ = σ Id and σ > 0 iff E
[
ωe

]
< ∞.

Previous results: Sidoravicius-Sznitman ’04; Berger-Biskup ’07; Mathieu-Piatnitski ’07;

Biskup-Prescott ’07; Mathieu ’08; Barlow-Deuschel ’10.

Gaussian bound and a local limit theorem hold e.g. in the case of

‘Uniformly elliptic’conductances: 0 < c1 ≤ ωe ≤ c2 < ∞ (Delmotte ’99;

Barlow-Hambly ’09).

SRW on i.i.d. percolation clusters (Barlow ’04; Barlow-Hambly ’09)

But: For ωe ∈ [0, 1] i.i.d., sub-Gaussian heat kernel decay can occur due
to trapping effects, so

Gaussian bounds and local limit theorem may fail!

(Berger-Biskup-Hoffmann-Kozma ’08; Boukhadra-Kumagai-Mathieu ’14)
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!(x,y)  i.i.d.  +  P[!(x,y) < t] = t" (" = 1)

ωe ∈ [0, 1] i.i.d. with P[ωe ≤ t] ∼ t
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!(x,y) = "(x) # "(y)  +  P[!(x,y) < t] = t$ ($ = 1)

ωxy = λ(x) ∨ λ(y), λ(x) ∈ [0, 1] i.i.d. with P[λ(x) ≤ t] ∼ t
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!(x,y) = "(x) # "(y)  +  P[!(x,y) < t] = t$ ($ = 1)

ωxy = λ(x) ∧ λ(y), λ(x) ∈ [0, 1] i.i.d. with P[λ(x) ≤ t] ∼ t
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QIP for ergodic environments
We need moment conditions!

QIP if E[ωe ] < ∞ and E[ω−1
e ] < ∞ in d = 2 (Biskup ’11).

Example with E[ωp
e ∨ ω−p

e ] < ∞, p < 1, for which the QIP fails
(Barlow-Burdzy-Timár ’13).

Theorem (A.-Deuschel-Slowik ’15)

Assume E
[
(ωe)

p
]
< ∞ and E

[
(ωe)

−q
]
< ∞ for p, q ∈ (1,∞] such that

1/p + 1/q < 2/d . Then QIP holds.

q

pd
2

d
2

1
p + 1

q < 2
d

Improved moment condition 1/p + 1/q < 2/(d − 1) (Bella-Schäffner ’20).
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Quenched local limit theorems

Suppose E
[
(ωe)

p
]
< ∞ and E

[
(ωe)

−q
]
< ∞ with 1/p + 1/q < 2/d .

Quenched local limit theorem (A.-Deuschel-Slowik, ’16; A.-Taylor ’21;

Bella-Schäffner ’22 )
▶ The moment condition is sharp!
▶ The proof requires

(i) QIP,
(ii) Hölder regularity of the heat kernel, deduced from a parabolic Harnack

inequality.

Quantitative local limit theorem with optimal rates of convergence on
i.i.d. percolation clusters. (Dario-Gu ’21)

Upper Gaussian bounds (A.-Deuschel-Slowik ’16,’19)
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Results for ergodic time-dynamic environments
Moment condition:
Suppose E[ωt(e)

p] < ∞ and E[ωt(e)
−q] < ∞, for any e ∈ Ed , t ∈ R,

with p, q ∈ (1,∞] satisfying 1
p−1 · q+1

q + 1
q < 2

d .

Theorem (QIP; A.-Chiarini-Deuschel-Slowik ’18)

Under the above moment condition the QIP holds with a deterministic,
non-degenerate covariance matrix Σ2.

Further results:

0 ≤ ωt(e) ≤ 1 (Biskup-Rodriguez ’18).

0 < c1 ≤ ωt(e) ≤ c2 and mixing (A. ’14).

Theorem (Quenched local limit theorem; A.-Chiarini-Slowik ’21)

Under the above moment condition, for all K > 0 and 0 < T1 ≤ T2,

lim
n→∞

sup
|x |≤K

sup
t∈[T1,T2]

∣∣ndpω0,n2t(0, ⌊nx⌋)− pΣBM(t, 0, x)
∣∣ = 0, P-a.s.
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Application: ∇ϕ-Interface Models
Interfaces are ubiquitous in statistical physics:

seperation of media (water-oil solution),

separation of phases (water-ice at freezing temperature)

alloys consisting of two types of metal

...

Confluence of the Rhone and Arve Rivers (Geneva, Switzerland)

picture provided by A. Chiarini
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Mathematical model

A d-dimensional interface is the graph of a function φ : Zd → R.
φx = φ(x) is the height of the interface at x ∈ Zd .
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Ginzburg-Landau ∇ϕ-interface model

The interface is specified by a field of height variables
ϕt(x), x ∈ Zd , t ≥ 0, given by

dϕt(x) = −
∑
y∼x

V ′(ϕt(x)− ϕt(y)) dt +
√
2dwt(x),

with
▶ {w(x), x ∈ Zd} collection of independent Brownian motions,
▶ potential V ∈ C 2(R,R+) even and strictly convex 0 < c− ≤ V ′′ ≤ c+.

Formal Gibbs measure

µ =
1

Z
exp(−H(ϕ))

∏
x∈Zd

dϕ(x), on RZd

with formal Hamiltonian H(ϕ) = 1
2

∑
x∼y V (ϕ(x)− ϕ(y)).

Example: V (x) = 1
2x

2 discrete Gaussian free field
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Scaling limit for the space-time covariances
Helffer-Sjöstrand representation:

covµ(ϕ0(0), ϕt(x)) =

∫ ∞

0
Eµ

[
p∇ϕ
0,t+s(0, x)

]
ds.

where p∇ϕ denotes the heat kernel of the dynamic RCM with

ωt(x , y) := V ′′(ϕt(y)− ϕt(x)
)
.

Theorem (A.-Taylor ’21)

Let d ≥ 3 and V ′′ ≥ c−. There exists p ∈ (1,∞) such that if
Eµ[V

′′(∇ϕt(e))
p] < ∞,

lim
n→∞

nd−2 covµ (ϕ0(0), ϕn2t(⌊nx⌋) ) =
∫ ∞

0
pΣBM(t + s, 0, x) ds.

Example. Anharmonic crystal potential V (x) = x2 + λx4

(see Bricmont-Fontaine-Lebowitz-Spencer ’80, ’81).
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RCM with long-range jumps
Moment condition: There exist p, q ∈ (1,∞] satisfying 1/p + 1/q < 2/d
such that

E
[( ∑

x∈Zd

ω(0, x) |x |2
)p]

< ∞ and E
[
ω(0, x)−q

]
< ∞ whenever |x | = 1.

In particular, ω(x , y) > 0 P-a.s. for all x ∼ y .

Results:

QIP (Biskup-Chen-Kumagai-Wang ’21)

Quenched local limit theorem (Chen-Kumagai-Wang ’24, A.-Slowik ’24+)

RCMs with stable-like jumps, i.e. conductances i.i.d. of the form

ω(x , y) =
ω̃(x , y)

|x − y |d+α
, α ∈ (0, 2).

Convergence towards symmetric α-stable Lévy process
(Crawford-Sly ’13, Chen-Kumagai-Wang ’21, Berger-Tokushige ’24)
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New direction: RCM on fractals

Annealed Scaling limit for random walks on (pre-)Sierpinski gasket
graph under uniformly elliptic i.i.d. conductances uniformly bounded
from below (Kumagai-Kusuoka ’96)

improved to i.i.d. conductances with upper moment condition and
bounded from below in (Croydon-Hambly-Kumagai ’17)

Quenched two-sided subdiffusive heat kernel bounds with
polylogarithmic corrections (Kajino-Slowik-Wille ’24+)

Open problems:

Quenched scaling limits.

Quenched local limit theorems

...
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Thank you for your attention!
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