On a lower bound of the number of integers in Littlewood's conjecture (arXiv: 2207.13462, 2401.05027)

Shunsuke Usuki

Department of mathematics, Kyoto University

Sep 26, 2024

¹ Littlewood's conjecture and the diagonal action

2 Main Theorem

Littlewood's conjecture

For $x \in \mathbb{R}$, we write $\langle x \rangle = \min_{k \in \mathbb{Z}} |x - k|$. It is known that

$$
\liminf_{n \to \infty} n \langle n \alpha \rangle = 0 \iff \forall \varepsilon > 0, \exists m/n \in \mathbb{Q}, \left| \alpha - \frac{m}{n} \right| \leq \frac{\varepsilon}{n^2}
$$

holds for Lebesgue a.e. *α* (Khinchine's theorem), but

Bad =
$$
\left\{\alpha \in \mathbb{R} \middle| \liminf_{n \to \infty} n \langle n\alpha \rangle > 0 \right\}
$$

has full Hausdorff dimension ([Jarník, 1928]).

Littlewood's conjecture (c.1930). For every $(\alpha, \beta) \in \mathbb{R}^2$, lim inf *n→∞* $n\langle n\alpha \rangle \langle n\beta \rangle = 0,$ Shunsuke Usuki (Department of mathematicsOn a lower bound of the number of integers it and Littlewood's constant $3/15$

Results toward Littlewood's conjecture

- Littlewood's conjecture is trivial when *α* and *β* belong to the same square number field. [Cassels, Swinnerton-Dyer, 1955]. Littlewood's conjecture is true when α and β belong to the same cubic number fields.
- [Pollington, Velani, 2000]. For *∀α ∈* **Bad**, *∃***G**(*α*) *⊂* **Bad** with $\dim_H \mathbf{G}(\alpha) = 1$ s.t., if $\beta \in \mathbf{G}(\alpha)$, then

$$
n \langle n \alpha \rangle \langle n \beta \rangle \le \frac{1}{\log n} \quad \text{for infinitely many } n \in \mathbb{N}.
$$

The set of exceptions to Littlewood's conjecture has Hausdorff dimension zero.

Theorem [Einsiedler, Katok, Lindenstrauss, 2006].

$$
\dim_H \left\{ (\alpha, \beta) \in \mathbb{R}^2 \, \Big| \, \liminf_{n \to \infty} n \langle n \alpha \rangle \langle n \beta \rangle > 0 \right\} = 0.
$$

Furthermore, this set is an at most countable union of compact sets of box dimension zero.

This Theorem is obtained as a corollary of some property of the **diagonal action on** $SL(3,\mathbb{R})/SL(3,\mathbb{Z})$.

The diagonal action on SL(3*,* R)*/*SL(3*,* Z)

We write

$$
G := SL(3, \mathbb{R}), \Gamma := SL(3, \mathbb{Z}), X := G/\Gamma.
$$

 $X = G/\Gamma$ admits a unique *G*-invariant Borel probability measure m_X on *X*, called the **Haar measure**. However, *X* is *not compact*. Let

$$
A := \left\{ \begin{pmatrix} e^{t_1} & & \\ & e^{t_2} & \\ & & e^{t_3} \end{pmatrix} \middle| t_1, t_2, t_3 \in \mathbb{R}, t_1 + t_2 + t_3 = 0 \right\} < G.
$$

The left action of *A*

$$
A \times X \ni (a, x) \mapsto ax \in X
$$

is called the (higher rank) diagonal action on $X_{\mathbb{R}}$. Shunsuke Usuki (Department of mathematicsOn a lower bound of the number of integers in Littlewood's Conjecture
Geography of the number of $/15$

The relation between the diagonal action and Littlewood's conjecture

We define the positive cone *A*⁺ of *A* by

$$
A^+ := \left\{ a_{s,t} := \begin{pmatrix} e^{-s-t} & & \\ & e^s & \\ & & e^t \end{pmatrix} \middle| s, t \ge 0 \right\}.
$$

For $(\alpha, \beta) \in \mathbb{R}^2$, we write

$$
u_{\alpha,\beta} := \begin{pmatrix} 1 \\ \alpha & 1 \\ \beta & 1 \end{pmatrix} \in G, \quad \tau_{\alpha,\beta} = u_{\alpha,\beta} \Gamma \in X.
$$

Key Proposition.

 $\mathsf{For} \; (\alpha, \beta) \in \mathbb{R}^2$, $\liminf_{n \to \infty} n \langle n\alpha \rangle \langle n\beta \rangle = 0$ iff the A^+ orbit of $\tau_{\alpha, \beta}$ is unbounded in *X*. Suke Usuki (Department of mathematicsOn a lower bound of the number of integers in Littlewood's Consecture (arxivision) On a lower bound of the number of integers in Littlewood's Conjecture(arxivision) Sep 26, 2024 7/15

Measure rigidity under positive entropy condition

For an *A*-invariant probability measure μ and $a \in A$, we write $h_{\mu}(a)$ for the entropy of the map $X \ni x \mapsto ax \in X$ w.r.t. μ .

Theorem [Einsiedler, Katok, Lindenstrauss, 2006].

If *µ* is an *A*-invariant and ergodic Borel probability measure on $X = SL(3, \mathbb{R})/SL(3, \mathbb{Z})$ s.t. $h_{\mu}(a) > 0$ for $\exists a \in A$, then μ is the Haar measure m_X on X .

As a corollary of this Theorem, we obtain that

 $\dim_H \left\{ (\alpha, \beta) \in \mathbb{R}^2 \left| A^+ \tau_{\alpha, \beta} \subset X \right. \text{ is bounded} \right\} = 0$

(needs more ergodic-theoretic argument). By Key Proposition, this is equivalent to

> dim_{*H*} $\left\{ (\alpha, \beta) \in \mathbb{R}^2 \right\}$ lim inf *n→∞* $n\langle n\alpha \rangle \langle n\beta \rangle > 0$ } = 0*.*

Shunsuke Usuki (Department of mathematicsOn a lower bound of the number of integers it arrays consider \sim Sep 26, 2024 \sim 8 / 15

 \equiv 990

Remarks on measure rigidity

- The similar measure rigidity holds for $SL(n, \mathbb{R})/SL(n, \mathbb{Z}), n \geq 3$, but not for $n = 2$.
- The positive entropy condition is believed to be dropped.

Full measure rigidity conjecture [Margulis].

For *n ≥* 3, every *A*-invariant and ergodic Borel probability measure on $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$ is homogeneous.

It is known that if Full measure rigidity conjecture is true, then Littlewood's conjecture follows from it.

Littlewood's conjecture and the diagonal action

Shunsuke Usuki (Department of mathematicsOn a lower bound of the number of integers in Littlewood's Conjecture
Sep 26, 2024 10 / 15

Quantitative version of Littlewood's conjecture and Main Theorem

Littlewood's conjecture says that, for every $(\alpha,\beta)\in\mathbb{R}^2$ and any $0 < \varepsilon < 1$, $n \langle n\alpha \rangle \langle n\beta \rangle < \varepsilon$ for infinitely many *n*.

Problem (Quantitative ver. of Littlewood's conjecture).

 $\mathsf{For} \; (\alpha,\beta) \in \mathbb{R}^2, \; 0 < \varepsilon < 1$ and sufficiently large $N \in \mathbb{N}$, how many **integers** $n \in [1, N]$ are there s.t.

 $n\langle n\alpha \rangle \langle n\beta \rangle < \varepsilon$?

We want to know a lower bound of $|\{n \in [1, N] \mid n \langle n \alpha \rangle \langle n \beta \rangle < \varepsilon\}|$ which is valid for as many (α, β) as possible.

Main Theorem [U., 2022+, 2024+].

For $0<\forall \gamma < 1/72$, there exists an "exceptional set" $Z(\gamma) \subset \mathbb{R}^2$ with $\dim_H Z(\gamma) \leq 90\sqrt{2\gamma}$ s.t., for $\forall (\alpha, \beta) \in \mathbb{R}^2 \setminus Z(\gamma)$ and $0 < \forall \varepsilon < 4^{-1}e^{-2}$,

$$
\liminf_{N \to \infty} \frac{(\log \log N)^2}{(\log N)^2} |\{n \in [1, N] \mid n \langle n \alpha \rangle \langle n \beta \rangle < \varepsilon\}| \ge \gamma.
$$

Corollary.

There exists an "exceptional set" $Z \subset \mathbb{R}^2$ with $\dim_H Z = 0$ s.t., for $\forall (\alpha, \beta) \in \mathbb{R}^2 \setminus Z$ and $0 < \forall \varepsilon < 4^{-1}e^{-2}$,

$$
\liminf_{N \to \infty} \frac{(\log \log N)^2}{(\log N)^2} |\{n \in [1, N] \mid n \langle n \alpha \rangle \langle n \beta \rangle < \varepsilon\}| \ge C_{\alpha, \beta},
$$

where $C_{\alpha,\beta} > 0$ is a constant depending only on (α,β) .

About the proof of Main Theorem

For $x \in X$ and $T > 0$, the *T*-empirical measure of *x* w.r.t. A^+ is a probability measure on *X* defined by

$$
\delta_{A^+,x}^T := \frac{1}{T^2} \int_{[0,T]^2} \delta_{a_{s,t}x} \ dsdt.
$$

Let $(T_k)_{k=1}^\infty \subset \mathbb{R}_{>0}$ be a sequence such that $T_k \to \infty$. If $(\delta_{A^+}^{T_k})_{k=1}^\infty$ *A*+*,x*) *∞ k*=1 converges to a measure μ on X as $k \to \infty$, (w.r.t. the weak*-topology), then μ is *A*-invariant but it may be that $\mu(X) < 1$ (since *X* is not compact.)

If $\mu(X) \leq 1 - \gamma$ for $0 < \gamma \leq 1$, we say that $(\delta_{A^+}^{T_k})$ $\binom{I_{k}}{A^{+},x}$ $\stackrel{\infty}{\scriptstyle{{k=1}}}$ exhibits *γ***-escape of mass**.

For $(\alpha, \beta) \in \mathbb{R}^2$, we consider the empirical measures of $x = \tau_{\alpha,\beta}$. Assume that $(\delta_{A+}^{T_k}$ *A*+*,τα,β*) *∞ ^k*=1 converges to a measure *µ*. Let *γ >* 0.

Case 1: If μ has the **large entropy**, that is,

 $1 - \gamma < \mu(X) \leq 1$ and $h_{\mu(X)^{-1}\mu}(a_1) > \gamma$,

then, by the measure rigidity, a large part of μ consists of the Haar measure m_X .

Case 2: If γ **-escape of mass** occurs, that is, $\mu(X) \leq 1 - \gamma$, then, the A^+ orbit of $\tau_{\alpha,\beta}$ stays close to infinity for a long time.

In these two cases, we can see that

$$
\liminf_{k \to \infty} \frac{(\log \log N_k)^2}{(\log N_k)^2} |\{n < N_k \mid n \langle n \alpha \rangle \langle n \beta \rangle < \varepsilon\}| \ge \frac{\gamma}{72}
$$

for $N_k = e^{2T_k}$. $(0 \times 40 \times 40) \times 40$ \equiv 990 d of the number of inte

The remained case is when

 $1 - \gamma < \mu(X) \leq 1$ and $h_{\mu(X)^{-1}\mu}(a_1) \leq \gamma$.

We can show that **this case occurs only on a set of very small Hausdorff dimension**.

Theorem (Hausdorff dimension of the exceptional set). Let $0 < \gamma < 1$. We write $Z(\gamma)$ for the set of $(\alpha, \beta) \in [0, 1]^2$ s.t. $\delta_{A^+,\tau_{\alpha,\beta}}^T$ $(T>0)$ accumulate to some A -invariant measure μ on X s.t. $1 - \gamma < \mu(X) \leq 1$ and $h_{\mu(X)^{-1}\mu}(a_1) \leq \gamma$. Then we have dim_{*H*} $Z(\gamma) \leq 15\sqrt{\gamma}$. Our exceptional set in Main Theorem corresponds to *Z*(72*γ*).

Shunsuke Usuki (Department of mathematicsOn a lower bound of the number of integers in Littlewood's Conjecture

 \equiv 990

K ロメ イタメ イモメ イモメ